CN1314368C - 测量待测物中成分浓度的方法和设备 - Google Patents

测量待测物中成分浓度的方法和设备 Download PDF

Info

Publication number
CN1314368C
CN1314368C CNB2004100631185A CN200410063118A CN1314368C CN 1314368 C CN1314368 C CN 1314368C CN B2004100631185 A CNB2004100631185 A CN B2004100631185A CN 200410063118 A CN200410063118 A CN 200410063118A CN 1314368 C CN1314368 C CN 1314368C
Authority
CN
China
Prior art keywords
light beam
determinand
level light
intensity
positive level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100631185A
Other languages
English (en)
Other versions
CN1550213A (zh
Inventor
黄寅德
尹吉源
韩相畯
全桂珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1550213A publication Critical patent/CN1550213A/zh
Application granted granted Critical
Publication of CN1314368C publication Critical patent/CN1314368C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/1256Generating the spectrum; Monochromators using acousto-optic tunable filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Abstract

一种测量待测物中某种成分浓度的方法,包括:在特定波长下关于参照物设定正级光束和负级光束之间的强度关系式;施加具有由待测物吸收的第一波长带的光,并探测从待测物输出的正级光束的强度和从参照物输出的负级光束的强度,正级光束和负级光束具有第二波长带;通过将从参照物输出的负级光束的强度带入强度关系式,计算出输入到待测物的正级光束的强度;以及利用从待测物输出的正级光束的强度和输入到待测物的正级光束的强度计算吸光率,并利用吸光率计算该成分的浓度。

Description

测量待测物中成分浓度的方法和设备
技术领域
本发明涉及一个物体中某种成分的浓度的测量。更确切地说,本发明是通过消除参考光的测量与信号光的测量之间的时间差,来准确地测量物体内某种成分的浓度,例如人体内的体液的浓度。
背景技术
随着人类整体生活和生存条件的提高,人们对于自身的健康关注程度也在上升。于是,已经开发和研究了一大批家用医疗设备,人们使用它们可以非常容易地检测自己的健康状况。在正常人体内,体液有机地循环和调节,以便体液量被维持在一个预定的范围内。体液包括血液、尿、组织间液(interstitial fluid)、汗和唾液。一般来讲,血液和尿液(葡萄糖和蛋白质)浓度是评价一个人健康状况的重要的参数。此外,血液中各种成分,如葡萄糖、血红蛋白、胆红素、胆固醇、白蛋白、肌酸酐、蛋白质和尿素的浓度,对于评估人体的健康状况也有极其重要的作用。
当人体感染了疾病以后,体液的成分或者某种成分的含量会发生改变,这种改变可能会导致死亡。比如,正常人空腹时血糖浓度(blood glucoseconcentration)大约是80mg/dl,餐后大约是120mg/dl。为了保持这个正常的水平,人体胰腺会在餐前或餐后分泌适量的胰岛素以使葡萄糖可以被肝脏和骨骼肌细胞吸收。然而,如果胰腺由于疾病或者其他原因,不能分泌适量的胰岛素来保持正常的血糖浓度时,则血液中血糖的含量就会超标,进而引起心脏或肝脏的疾病、动脉硬化、高血压、白内障、视网膜出血、神经损伤、失聪或视神经损伤等,所有这一切都会导致包括死亡在内的很严重的问题。因此,认为测量人体内体液成分改变的技术是非常重要的。
测量体液成分浓度的方法包括侵入性(invasive)方法和非侵入性(noninvasive)方法。侵入性方法是直接从受试者采样并对受试者的采样部分进行测量;非侵入性方法不用直接从受试者采集样本而进行测量。由于侵入性的方法有许多弊端,所以人们一直在研究和开发利用非侵入性方法来容易地分析体液成分的技术。常规的检查体液成分的方法,以测量血糖浓度为例,先要抽血,然后与化学试剂起反应,再通过利用临床分析系统或者通过量化比色卡(test strip)中的变化进行分析。如果这种血糖检验每天都要进行的话,那么患者将承受直接采血而带来的疼痛,并且易受感染。此外,由于不能连续地监控血糖水平,面对某些突发事件,也许无法恰当的处理患者的情况。另外,使用一次性的试纸、试剂也会加重患者的经济负担。并且这些一次性的试纸、试剂还会产生环境污染,而且同样需要进行特殊处理。所以,希望开发一种不用采血就能测量血糖浓度的技术,用于检控和调整糖尿病患者的血糖浓度,或者用于诊断一个人的健康状况。目前已经研究了几种非侵入性的检测血糖的方法,但是使用这些方法的仪器还没有商业化。
在测量人体内血液成分浓度的最传统的、分光镜方法中,可见光或近红外光(NIR)波长范围内的光被照射到人体的某一部分,然后测量从人体反射的光或穿过人体的透射光。在这种分光镜方法中,通常测定光谱以测量血液成分的浓度。在此,需要一个参考光源,这个光源的波长能最好地响应将要测量的血液成分,并且它的带宽能够有效地均衡干扰物质。通常,连续波(CW)灯泡被用作光源,用昂贵的阵列检测器测量光强,或者用分光镜系统测量光谱,以便计算成分的浓度。此外,发光二极管(LED)或激光二极管(LD)也可以用作光源。
但是,在血液中将要测量的成分的浓度可能非常小,并且活体组织和血液中的光散射效应比光吸收效应要大很多,所以测得的信号会非常微弱。因此,需要放大信号的方法。而且,由于人体内的有机物质是在不停地流动的,所以只有当测量被快速执行时才能准确地测量成分的浓度。另外,必须要注意的是辐射在人体上的平均能量不能超出可能对人体造成损伤的极限。具体地说,在NIR波长范围是700nm~2500nm时,葡萄糖的吸收带就广泛地分布在这个区间上,但是与大的水背景光谱(aqueous background spectrum)相比葡萄糖的最大吸收率是小的。于是,信号的信噪比(SNR)就很小,精确测量就很困难。
在很多传统的测量物体中某种成分的浓度的非侵入性方法中,测量吸光率,然后对吸光率进行多元统计分析,以便分析某种成分的浓度。该吸光率可以表示为由样本测得的信号光强与参考光强之间的负对数比。由于不通过人体而测量的参考光强和从人体测量的信号光强被以预定时段间隔测量,所以信号光强的测量和参考光强的测量之间存在时间差。通过同步测量参考光强和信号光强可以消除这种时间差。在传统的用于消除时间差的方法中,在光照射人体之前,用一个分束器将一束光分为两束。其中一束送往参考光强通道,另一束送往信号光强通道。分别测量两束光的强度,并用以预测一种特定成分的浓度。然而,在这种情况下,需要一套用于将输入光束分开的附加光学系统及其配套设备。因此,很难构造成一种紧凑的系统。同时,如果不使用分束器,那么为了计算吸光率就要先测量参考光强,再测量信号光强。但是,由于在信号光强的测量和参考光强的测量之间的时间间隔期间所出现的各种变化的影响,将很难精确地预测某种成分的浓度。
发明内容
为了至少能够解决上述某些问题,本发明的实施例的特点体现在:提供一种通过消除信号光的测量和参考光的测量之间的时间差,精确地测量物体中成分浓度的方法。
本实施例的另一个特点是提供一种能够执行上述方法的设备。
根据本实施例的特征,提供了一种用于测量待测物中某种成分浓度的设备,包括:产生具有第一波长带的光的光源;射频(RF)信号发生器,其可以产生预定频率的射频(RF)信号,以便可以从具有第一波长带的光产生具有第二波长带的光;可调滤波器,其接收具有第一波长带的光,并且根据RF信号发生器提供的RF信号产生具有第二波长带的正级光束和负级光束;第一光探测器,其探测由可调滤波器产生的正级光束辐射到待测物后反射或透射的第一输出光束;第二光探测器,探测由可调滤波器产生的负级光束辐射到参照物以后反射或透射的第二输出光束;以及一个其中预先存有正级光束和负级光束之间的强度关系式的信号处理器,其通过将来自于参照物的第二输出光束的强度带入所述强度关系式中算出输入待测物之前的正级光束的强度,利用来自待测物的第一输出光束的强度和输入待测物的正级光束的强度,计算出吸收率,然后用该吸收率测量该成分的浓度。
该设备还可在光源至可调滤波器之间的光路上安装一个用于会聚由光源发出的光的聚光透镜。光源可以为卤素灯泡。第一和第二光探测器可以是由InGaAs、PbS和InSb构成的组中选择出的材料制成的。可调滤波器可以包含换能器和声光介质,且该声光介质可以是晶体。
该设备还可以包括光束导向单元,其导引由可调滤波器产生的正级光束平行地射向待测物,并导引由可调滤波器产生的负级光束平行地射向参照物。第一和第二光束导向单元可以从由锥形铝管、玻璃棒或空心波导器构成的组中被选出。
该设备还可以包含折射率匹配单元,其置于光束导向单元与待测物之间,用以匹配待测物的内部折射率和外部折射率。
在该设备中,利用正级光束与负级光束信号处理器可以获得强度关系式,所述正、负级光束是在将特定波长的、由可调滤波器产生的正级光束和负级光束照射在参照物上时从参照物输出的。
附图说明
通过参照附图详细描述优选实施例,本发明的上述和其它特征和优点对于本领域技术人员将更为清楚。
图1是根据本发明实施例测量待测物中某种成分的浓度的设备方框图;
图2是当从葡萄糖水溶液去掉水时不同波长的吸收光谱;
图3是根据本发明实施例测量待测物中某种成分的浓度的方法流程图;
图4是图3所示步骤310的具体流程图。
具体实施方式
2003年3月17日提交的、名为“测量待测物中成分浓度的方法和设备”的韩国专利申请第2003-16406号在这里作为参考而全部引用。
现在结合附图在下文中详细地描述本发明,其中示出了本发明的优选实施例。然而,本发明可以具有不同的实施方式,而且并不局限于在此提出的这些实施例。相反地,提出这些实施例使得公开更加全面和完整,并且将本发明的范围完全地传达给本领域技术人员。同样的附图标记用来标示全文中的同一元件。
图1是依据本发明实施例的用于测量待测物中成分浓度的设备的方框图。该设备包括:光源111、聚光透镜112、射频(RF)信号发生器113、可调滤波器114、第一光束导向单元118、第二光束导向单元119、第一光探测器122、第二光探测器123、放大器124、模数(A/D)转换器125、信号处理器126、存储单元127、显示单元128。光源111、聚光透镜112、射频(RF)信号发生器113、可调滤波器114、第一和第二光束导向单元118、119组成光照射单元(light radiation unit)。附图标记115、116、117分别代表由可调滤波器114产生的正级、零级、负级光束。附图标记120代表待测物,附图标记121代表容器中的参照物。参照物121是具有100%渗透性的物体。因此,输入到参照物121的光束强度与从参照物121输出的光束强度相同。参照物121可以用一种容器,如空的试管,来代替。
运行时,光源111发出能被人体体液中的特定成分所吸收的特定波长的光信号。该待测的特定成分(该特定成分可能是葡萄糖、血色素、白蛋白、或胆固醇)依据各自的特性吸收具有特定波长的光。依据待测的特定成分可以使用不同类型的灯作为光源。在本发明的实施例中使用卤素灯作为光源111。
聚光透镜112安装在光源111的光学路径上用来会聚从光源111发出的光信号。由聚光透镜112会聚的光信号被施加于可调滤波器114。聚光透镜112是可选的,根据具体的应用,来决定是否安装。
RF信号发生器113产生RF信号以改变通过聚光透镜112(如果有的话)施加到可调滤波器114的光信号的波长,并且将RF信号提供给可调滤波器114。优选的是,RF信号具有的频率能使可调滤波器114产生波长范围为400~12,000nm的光。可调滤波器114优选地是由声光装置来实现,该声光装置具有宽的调节范围和快速的调节速度以便进行微秒(μs)量级的波长扫描。可调滤波器114包括换能器(transducer)114a和声光介质114b,例如晶体。
RF信号发生器113的操作将结合可调滤波器114的操作一起描述。一旦接收到一个外部电信号,RF信号发生器113提供RF信号给与声光介质114b相结合的换能器114a。换能器114a产生并提供一个超生波阵面(ultrasonicwavefront)给声光介质114b。从光源111入射的光在声光介质114b中与超生波阵面相互作用,以通过满足布拉格(Bragg)条件来产生正级光束和负级光束。一部分入射光束照原样输出并变成零级光束。更具体地,施加到可调滤波器114的光的波长随着RF信号发生器113所提供的RF信号的频率而改变,依据声光介质114b的衍射角,光被作为正级光束115、零级光束116、和与正级光束115具有相同反射级的负级光束117而被输出。正级光束115被提供到第一光束导向单元118,负级光束117被提供到第二光束导向单元119。在此,正级光束115的反射级可以是+1,负级光束117的反射级可以是-1,零级光束116未被使用,因此阻断。正级光束115或负级光束117都可以被用作信号光。在此实施例中,正级光束115被用作信号光,而负级光束117被用作辅助光以计算参考光。
第一光束导向单元118发送正级光束115使之平行,第二光束导向单元119发送负级光束119使之平行。第一和第二光束导向单元118和119可由锥形铝管、玻璃棒或空心波导管实现。正级光束115和负级光束117被分别照射到待测物120和装在容器中的参照物121上。待测物120可以是活的人体的一部分,如手指或耳垂等,也可以是能够容纳体外样本的预定容器,如试管。因此当待测物120是在体组织(vital tissue)时,成分的浓度通过非侵入性方法测试;当待测物120是样本试管时,成分的浓度通过侵入性方法测试。
由于在体组织(包括血液)的表面折射率和在体组织内部的折射率是不同的,所以可以在第一光束导向单元118与待测物120之间另外加入折射率匹配单元以匹配待测物120的内部折射率和外部折射率,以便可以明显地提高信噪比(SNR)。
第一光探测器122探测从待测物120透射或反射的信号光并将其提供给放大器124。第二光探测器123探测从装在容器中的参照物121产生的参考光并将其提供给放大器124。第一和第二光探测器122和123可由用InGaAs、PbS或InSb构成的光电探测器实现。放大器124分别将由第一和第二光探测器122和123探测到的信号光和参考光放大到预定的水平。该放大的信号光和放大的参考光由模数(A/D)转换器125转换成数字数据,然后提供给信号处理器126。
信号处理器126一般由微处理器实现,其内部存有正级光束和负级光束之间的强度关系式以及预测成分浓度的算法。信号处理器126处理并分析从A/D转换器125接收的数字数据,利用参考光的强度和信号光的强度计算吸光率,并利用预测算法计算特定成分的浓度。更具体地,通过比较和分析不同波长下的吸光率,可以做出一个用于精确预测不同成分浓度的模型预测方程,并且可以利用模型预测方程和计算的吸光率来计算特定成分的浓度。
存储装置127存储由信号处理器126执行的处理的结果。显示单元128将此处理结果显示在屏幕上。
图2是当葡萄糖溶液中葡萄糖浓度变化时,使用分光镜系统在0.5mm路径长度测得的吸收光谱。这个吸收光谱对应于当从葡萄糖溶液中去掉水时获得的吸收光谱。如图2所示,在1500nm至1700nm的波长范围内和2100nm波长处葡萄糖的吸光率是大的。因此,为了测量葡萄糖的浓度,调节来自RF信号发生器113的RF信号的频率,以使得可调滤波器114提供的光包括1500nm至1700nm的波长范围和2100nm的波长。
图3是依据本发明实施例测量待测物中成分的浓度的方法流程图。参见图3,在步骤310中,设定正级光束和负级光束之间强度关系式。下面将结合图4对步骤310进行更详细地描述。
在图4的步骤410,RF信号发生器113将用于产生特定波长的RF信号提供给可调滤波器114。例如,当葡萄糖的浓度将要被测定时,提供频率为54-119MHz的RF信号,以便使得可调滤波器114可以输出波长范围在1200-2400nm的光,该范围包含了1500nm至1700nm波长和2100nm波长的光。
在步骤420中,用第二参照物(未示出)代替待测物120,以便根据RF信号由可调滤波器114产生的正级光束115和负级光束117均被照射到装在容器中的参照物121上,并且可以测量从参照物输出的正级光束的强度和从参照物输出的负级光束的强度。在步骤430中,根据从参照物121输出的负级光束的强度(x)和正级光束的强度(y),求得正级光束和负级光束之间的强度关系式(y=kx,其中k为常数),将此关系式与施加到可调滤波器114的光的波长、由可调滤波器114产生的光的波长、和/或RF信号的频率一起以数据库的形式存入信号处理器126中。
回头参考图3,在步骤320,RF信号发生器113将具有预定频率的RF信号施加到可调滤波器114,以从由光源111发射的具有第一波长带的光产生具有第二波长带的光。
在步骤330,根据RF信号由可调滤波器114产生正级光束115和负级光束117,该正级光束115和负级光束117分别通过第一和第二光束导向单元118和119被照射到待测物120和参照物121上,因此获得分别从待测物120和参照物121输出的正级光束和负级光束。然后测量从待测物120输出的正级光束的强度和从参照物121输出的负级光束的强度。
在步骤340,通过将在步骤330获得的从参照物121输出的负级光束的强度(x)带入在步骤310设置的强度关系式(y=kx),计算出从参照物121输出的正级光束的强度(y)。由于参照物具有100%的透过率,所以输入参照物121的光束强度与从参照物121输出的光束强度相同。因此,计算出的从参照物121输出的正级光束的强度(y)变为输入到参照物121的正级光束的强度,也就是,输入待测物120的正级光束的强度。
在步骤350,使用在步骤330获得的从待测物120输出的正级光束和在步骤340获得的从参照物121输出的正级光束,也就是输入待测物120的正级光束,来计算吸光率。
在步骤360中,利用吸光率测量成分的浓度。具体地,将从待测物120输出的正级光束的强度设置为信号光强,将输入待测物120的正级光束的强度设置为参考光强,并且计算信号光强和参考光强之间的负对数比以确定吸光率。
当待测物120是人体时,从待测物120输出的正级光束的强度直接由第一光探测器122探测。通过将从参照物121输出并由第二光探测器123探测的负级光束带入预先设定的正级光束和负级光束之间的强度关系式,算出输入待测物120的正级光束的强度。这样,就可以同时测出待测物120的输入光束的强度和待测物120的输出光束的强度,而没有时间差。因此,利用由输入和输出光束的强度计算出的吸光率以及用于预测成分浓度的算法,可以准确地计算成分的实际浓度。利用诸如部分最小二乘回归法(PLSR)的多元回归法可以获得所述算法。
本发明可以由记录在计算机可读记录介质上并能够由计算机读取的代码实现。计算机可读记录介质可以为任何形式的介质,其上可以记录能够由计算机系统读取的数据,例如,只读存储器(ROM)、随机存取存储器(RAM)、光盘只读存储器(CD-ROM)、磁带、磁盘或者光学数据存储设备。本发明也可以作为载波来实现(如,通过因特网传播)。另外,计算机可读记录介质可以在通过网络连接的计算机系统之间分配,以便本发明还可以作为一种存储在记录介质中的、计算机可读取并执行的代码来实现。本发明领域的程序员可以很容易地推断出用于实施本发明的功能程序、代码、代码段。
如上所述,在本发明中,消除了信号光强和参考光强的测量时间之间的差值。在本发明中,参考光强被获得而没有遇到将被测量的待测物,即,待测物的输入光束的强度;并且当遇到待测物时,获得信号光强的测量时间,即待测物的输出光束的强度。由于测量时间差已经去除掉了,所以诸如体液的待测物中某种成分的浓度可以精确地通过侵入或非侵入性方法测量,而不会受常规测量时间差产生的不同变化的影响。
此外,由于使用了由声光介质组成的可调滤波器,而没有使用任何运动机械部件,所以减小了外部环境(如颤动或震动)的影响,而且可以实现快速波长扫描。而且,通过调整施加到可调滤波器的RF信号的频率可以自由控制光源的光谱带宽。因此,可以容易地测量具有窄吸收带宽的物质的浓度。
在这里已经公开了本发明的优选实施例,虽然采用了专业术语,但是它们仅作为一般的、描述性的意义来使用的,并且没有任何限定的目的。因此,本领域普通技术人员能够理解在不脱离所附权利要求书所述的本发明实质和范围的情况下,可以在形式和细节上作不同的修改。

Claims (4)

1.一种用于测量待测物中某种成分浓度的设备,包括:
光源,其产生具有用于所述成分的第一波长带的光;
射频信号发生器,产生具有预定频率的射频信号,使得可以从具有第一波长带的光产生具有第二波长带的光;
可调滤波器,接收具有第一波长带的光,并根据由射频信号发生器提供的射频信号产生具有第二波长带的正级光束和负级光束;
第一光探测器,探测由可调滤波器产生的正级光束照射到待测物上以后从待测物反射或透射的第一输出光束;
第二光探测器,探测由可调滤波器产生的负级光束照射到参照物上以后从参照物反射或透射的第二输出光束;
信号处理器,其已预先存有正级光束和负级光束之间的强度关系式,其通过将来自参照物的第二输出光束的强度带入所述强度关系式中来计算输入待测物的正级光束的强度,利用来自待测物的第一输出光束的强度和输入到待测物的正级光束的强度计算吸光率,并利用该吸光率测定所述成分的浓度。
2.如权利要求1所述的设备,还包括光束导向单元,其引导由可调滤波器产生的正级光束平行发射到待测物,并引导由可调滤波器产生的负级光束平行发射到参照物。
3.如权利要求2所述的设备,还包括折射率匹配单元,其安置在光束导向单元与待测物之间,用以匹配待测物的内部与外部折射率。
4.如权利要求1所述的设备,其中所述信号处理器利用正级光束和负级光束获得强度关系式,所述正级光束和负级光束是在将特定波长的、由可调滤波器产生的正级光束和负级光束照射在参照物上时从参照物输出的。
CNB2004100631185A 2003-03-17 2004-03-17 测量待测物中成分浓度的方法和设备 Expired - Lifetime CN1314368C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR16406/2003 2003-03-17
KR16406/03 2003-03-17
KR10-2003-0016406A KR100464324B1 (ko) 2003-03-17 2003-03-17 목적물의 성분농도 측정방법 및 장치

Publications (2)

Publication Number Publication Date
CN1550213A CN1550213A (zh) 2004-12-01
CN1314368C true CN1314368C (zh) 2007-05-09

Family

ID=36934180

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100631185A Expired - Lifetime CN1314368C (zh) 2003-03-17 2004-03-17 测量待测物中成分浓度的方法和设备

Country Status (6)

Country Link
US (1) US7107087B2 (zh)
EP (1) EP1460413B1 (zh)
JP (1) JP4361822B2 (zh)
KR (1) KR100464324B1 (zh)
CN (1) CN1314368C (zh)
DE (1) DE602004001794T2 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103637768B (zh) 2007-09-13 2017-08-08 圣路易斯医疗器械有限公司 光学装置组件
US7809418B2 (en) * 2007-10-04 2010-10-05 The Curators Of The University Of Missouri Optical device components
US7961305B2 (en) * 2007-10-23 2011-06-14 The Curators Of The University Of Missouri Optical device components
WO2009120600A2 (en) 2008-03-25 2009-10-01 The Curators Of The University Of Missouri Method and system for non-invasive blood glucose detection utilizing spectral data of one or more components other than glucose
DE102008017119A1 (de) * 2008-04-02 2009-10-08 Polytec Gmbh Vibrometer und Verfahren zur optischen Vermessung eines Objekts
RU2566920C2 (ru) 2008-05-22 2015-10-27 Дзе Кьюрейторз Оф Дзе Юниверсити Оф Миссури Способ и система для неинвазивного оптического определения глюкозы крови, используя спектральный анализ данных
EP2413784A4 (en) 2009-04-01 2014-01-22 Univ Missouri OPTICAL SPECTROSCOPY DEVICE FOR NON-INVASIVE GLUCOSE DETECTION IN BLOOD AND METHOD OF USE THEREOF
WO2013141414A1 (en) * 2012-03-19 2013-09-26 Lg Electronics Inc. Method for compensating output signal of optical biosensor and optical biosensor using the same
DE102012018357A1 (de) 2012-09-17 2014-03-20 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
US10168305B2 (en) 2013-10-17 2019-01-01 Battelle Memorial Institute Container screening system and method
US10724968B2 (en) 2014-03-21 2020-07-28 Battelle Memorial Institute System and method for solution constituent and concentration identification
US10234404B2 (en) 2014-03-21 2019-03-19 Battelle Memorial Institute Liquid scanning system and method for IV drug verification and identification
US10324028B2 (en) * 2014-08-29 2019-06-18 Tohoku University Optical concentration measuring method
CN104257390B (zh) * 2014-09-04 2016-04-20 深圳市前海安测信息技术有限公司 无创血糖测定方法及系统
CN104490403B (zh) * 2014-12-06 2016-08-17 深圳市贝沃德克生物技术研究院有限公司 基于光谱技术的无创血糖测量系统及其测量方法
CN105424644B (zh) * 2016-01-18 2019-04-23 中国工程物理研究院流体物理研究所 一种用于安全检查的近红外激光照明成像系统及方法
JP6944060B2 (ja) * 2017-09-21 2021-10-06 バイタル バイオサイエンセズ インク 生体組織又は他の対象の画像化
JP2021511116A (ja) * 2018-01-15 2021-05-06 バイタル バイオサイエンセズ インク 電磁波放出に基づく試料分析
US10746716B1 (en) 2019-05-31 2020-08-18 Battelle Memorial Institute System and method for solution constituent and concentration identification
KR102656429B1 (ko) * 2022-02-08 2024-04-12 한국자동차연구원 단일 파장 레이저와 파장 필터를 이용한 형상 및 분광 정보 동시 측정 시스템 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771629A (en) * 1985-09-17 1988-09-20 Westinghouse Electric Corp. System for chemical analysis
US5039855A (en) * 1990-03-05 1991-08-13 Bran+Luebbe Analyzing Technologies, Inc. Dual beam acousto-optic tunable spectrometer
CN1194133A (zh) * 1996-01-22 1998-09-30 北京大学 中红外光纤测定人体血糖的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771829A (en) * 1987-12-30 1988-09-20 Sparlin Derry D Well liner with selective isolation screen
US5086229A (en) 1989-01-19 1992-02-04 Futrex, Inc. Non-invasive measurement of blood glucose
US5222495A (en) 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Non-invasive blood analysis by near infrared absorption measurements using two closely spaced wavelengths
AU2245092A (en) 1991-12-31 1993-07-28 Vivascan Corporation Blood constituent determination based on differential spectral analysis
US5477321A (en) * 1994-08-31 1995-12-19 Bayer Corporation Dual beam tunable spectrometer
US5655530A (en) * 1995-08-09 1997-08-12 Rio Grande Medical Technologies, Inc. Method for non-invasive blood analyte measurement with improved optical interface
US6152876A (en) 1997-04-18 2000-11-28 Rio Grande Medical Technologies, Inc. Method for non-invasive blood analyte measurement with improved optical interface
AU2003200359A1 (en) 2002-02-11 2003-08-28 Bayer Healthcare, Llc Non-invasive System for the Determination of Analytes in Body Fluids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771629A (en) * 1985-09-17 1988-09-20 Westinghouse Electric Corp. System for chemical analysis
US5039855A (en) * 1990-03-05 1991-08-13 Bran+Luebbe Analyzing Technologies, Inc. Dual beam acousto-optic tunable spectrometer
CN1194133A (zh) * 1996-01-22 1998-09-30 北京大学 中红外光纤测定人体血糖的方法

Also Published As

Publication number Publication date
JP2004279427A (ja) 2004-10-07
US20040186361A1 (en) 2004-09-23
EP1460413A1 (en) 2004-09-22
EP1460413B1 (en) 2006-08-09
CN1550213A (zh) 2004-12-01
US7107087B2 (en) 2006-09-12
DE602004001794T2 (de) 2007-08-16
JP4361822B2 (ja) 2009-11-11
KR20040081852A (ko) 2004-09-23
DE602004001794D1 (de) 2006-09-21
KR100464324B1 (ko) 2005-01-03

Similar Documents

Publication Publication Date Title
CN1314368C (zh) 测量待测物中成分浓度的方法和设备
CN1325015C (zh) 通过组织的光学特性的葡萄糖非侵入性测量
US6441388B1 (en) Methods and apparatus for spectroscopic calibration model transfer
US7098037B2 (en) Accommodating subject and instrument variations in spectroscopic determinations
US6983176B2 (en) Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy
US6622032B1 (en) Method for non-invasive blood analyte measurement with improved optical interface
US6528809B1 (en) Methods and apparatus for tailoring spectroscopic calibration models
US5383452A (en) Method, apparatus and procedure for non-invasive monitoring blood glucose by measuring the polarization ratio of blood luminescence
EP0850011B1 (en) Method for non-invasive blood analyte measurement with improved optical interface
US6353226B1 (en) Non-invasive sensor capable of determining optical parameters in a sample having multiple layers
US7248906B2 (en) Method and device for monitoring analyte concentration by optical detection
CA2383727A1 (en) Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths
CN101917899A (zh) 用于测定分析物浓度的光学传感器
CN101194828B (zh) 人眼房水葡萄糖浓度的无损光学检测装置
US20110118570A1 (en) Optic sensor device with sers
US20060211926A1 (en) Non-invasive Raman measurement apparatus with broadband spectral correction
KR20090036996A (ko) 복수 개의 단일 파장 광원을 이용한 투과와 반사 병행방식의 무채혈 혈당기
US20230148312A1 (en) Device for non-invasive blood glucose concentration measurement
JP4052461B2 (ja) 血糖値の非侵襲測定装置
KR100883153B1 (ko) 혈당치의 비침습 측정 장치
JPH11178813A (ja) グルコース濃度の定量方法及びその装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070509