CN1309454C - 气体纯化的方法和设备 - Google Patents

气体纯化的方法和设备 Download PDF

Info

Publication number
CN1309454C
CN1309454C CNB028281268A CN02828126A CN1309454C CN 1309454 C CN1309454 C CN 1309454C CN B028281268 A CNB028281268 A CN B028281268A CN 02828126 A CN02828126 A CN 02828126A CN 1309454 C CN1309454 C CN 1309454C
Authority
CN
China
Prior art keywords
adsorbent
equipment
air
gas
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028281268A
Other languages
English (en)
Other versions
CN1620332A (zh
Inventor
M·W·阿克莱
H·萨泽纳
G·W·亨兹勒
J·J·诺沃比斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1620332A publication Critical patent/CN1620332A/zh
Application granted granted Critical
Publication of CN1309454C publication Critical patent/CN1309454C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4146Contiguous multilayered adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/416Further details for adsorption processes and devices involving cryogenic temperature treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S95/00Gas separation: processes
    • Y10S95/90Solid sorbent
    • Y10S95/902Molecular sieve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明包括至少将N2O从还含有氮气和可能含有CO2和水的进料气流中除去的吸附方法。在该方法中,将进料气流经吸附剂输送以除去杂质如CO2和水,然后经具有高N2O/N2分离系数的其它吸附剂输送。在优选方式中,本发明是在深冷空气分离前从空气中除去杂质的空气预纯化方法。还公开了实施该方法的设备。

Description

气体纯化的方法和设备
本申请要求2001年12月20日提交的美国临时申请60/342,673和2002年5月31日提交的60/384,611的权益,在此将二者的全部教导引入作为参考。
发明领域
本发明涉及从气流中去除N2O、烃类、水蒸汽和CO2,更具体而言涉及在空气的深冷分离前采用吸附分离从空气中除去杂质。
发明背景
空气的深冷分离需要从空气中除去杂质如水,CO2和烃类的预纯化步骤。在分离工艺的低温部分(如热交换器和液氧槽)中,水和CO2会凝固并堵塞热交换器或蒸馏塔中的其它组件。空气中的乙炔和其它烃类带来潜在的危险。高沸点烃类会在液态氧中累积并产生爆炸的危险。因此,在空气的深冷蒸馏之前,必须在吸附净化工艺中除去空气中的那些杂质。
还应该在分离前从空气中除去氧化亚氮(N2O)。当前,N2O以约300-350ppb的浓度存在于空气中,但该浓度以约0.3%的速率逐年递增。各种因素如汽车排放物、HNO3工厂、己二酸和己内酰胺工厂(二者都采用HNO3来氧化无机物)造成了N2O环境浓度的增长。存在大于50ppb的N2O对深冷空气分离设备(ASU)是个严重的问题,因为其会在蒸馏塔中形成固体沉积物。N2O还降低了CO2在液氧中的溶解度,由此提高了在蒸馏塔中冻结CO2的可能。这会造成性能的降低,甚至会造成热交换器的阻塞。
空气的预纯化可以通过采用压力摆动吸附(PSA)、温度摆动吸附(TSA)或二者的组合(TSA/PSA),引入单一的吸附剂或多种吸附剂来实现。当采用一种以上的吸附剂时,可以将吸附剂构造成不连续的层、混合物、组合物或这些形式的组合。通常,在组合的TSA/PSA工艺中采用两个吸附剂层将杂质如H2O和CO2从空气中除去。通常,第一层活性氧化铝用来除去水,第二层13X分子筛用来除去CO2。现有技术如U.S.4711645教导了各种吸附剂的用途和从空气中除去CO2和水蒸汽的方法。
Centi等(Ind.Eng.Chem.Res.,第39卷,第131-137页,2000)研究了用来从工业气流中除去相对较高浓度N2O(500ppm(份数/百万)-2000ppm)的各种离子交换形式的ZSM5沸石。ZMS5是一种高Si/Al比(2-200)的沸石,比其低Si/Al比的对应物的亲水性低。在Centi的研究中,Ba和Sr交换的ZSM5表现出最佳的N2O去除性能。该论文指出,在水存在下,金属交换的ZSM-5具有比低Si/Al比沸石如X和Y型沸石更佳的N2O吸附性能。
U.S.6,106,593教导了一种方法,优选TSA,其采用了三层的吸附剂床以连续地除去水、CO2和N2O,其中优选的吸附剂是无粘合剂的CaX。其它的吸附剂如(带有粘合剂)的CaX、BaX和Na-丝光沸石也被推荐用作第三层。根据该专利,除去N2O所用吸附剂的选择标准是N2O相对于CO2的亨利定律选择性为0.49或N2O吸附的亨利定律常数至少为79mmol/gm。
欧洲专利申请EP 0 862 938教导了在PSA法中,在氧化铝吸附剂的下游放置选自X-沸石、Y-沸石、A-沸石或其混合物的沸石吸附剂以除去氮氧化物如NO、NO2、N2O和N2O3。欧洲专利申请EP 0 995 447教导了一种除去气流中至少一部分N2O的方法:采用Si/Al比为1.0-1.5并含有各种比例的K+(<35%)、Na+(1-99%)和Ca2+(1-99%)阳离子混合物的X-型沸石。
欧洲专利申请(EP 1 092 465)教导了一种采用三层构型的吸附剂依次除去H2O、CO2和N2O并任选地除去烃类的TSA法。为除去CO2,第二层中优选为NaLSX吸附剂。为除去N2O和烃,推荐了LSX沸石(Si/Al=0.9-1.3),优选CaLSX沸石。
欧洲专利申请EP 1 064 978教导了在PSA或TSA法中采用BaX沸石以除去丙烷、乙烯和N2O。该BaX沸石含有至少30%的钡阳离子。
U.S.4,156,598教导了从三氟化氮中除去N2O的方法:使气体经由合成沸石吸附剂如钠或钙交换的X型或A型沸石输送。
U.S.4,933,158教导了从三氟化氮中除去N2O和CO2的方法:使气体经由选自方沸石、斜发沸石、丝光沸石、镁碱沸石、钙十字石、菱沸石、毛沸石和浊沸石的经热处理的沸石输送。
U.S.4,507,271教导了采用A、X或Y沸石从含有氢、氧化氮和氧化亚氮的气体中除去N2O的方法。
U.S.5,587,003公开了采用吸附性斜发沸石从空气中基本完全地除去CO2的方法。
Rege等(Chemical Engineering Science,第55卷,第4827-4838页,2000)展示了比斜发沸石更好地从空气中除去CO2的13X吸附剂。Rege还表明Ca交换的斜发沸石具有低N2吸附作用。
杂质的催化分解是从气体混合物中除去不需要组分的另一种方式。催化剂/吸附剂可以按与上述的大体相同的方式使用,只是分解产物必须作为附加杂质除去或者作为气体混合物的可接受组分。
通常,现有技术通过寻求高N2O∶CO2选择性的吸附剂来得到解决该问题的方案。但由于N2O和CO2相似的电子结构和空气中N2O与CO2之间近1000倍的气相浓度差,这一方法难于应用。因此,需要从空气中除去N2O和其它杂质的改进方法和设备。
发明概述
在本发明的优选实施方案中,从进料空气中除去CO2和水,然后采用高N2O/N2分离系数的吸附剂来除去N2O。与现有技术引比,这种吸附剂还具有更高的Si/Al比和中度至低的N2O/CO2选择性。
在优选实施方案中,本发明涉及从含有N2O、氮气和其它组分的气体中除去N2O来制备产物气的吸附法,所述方法包含使所述气体经一或多种吸附剂床输送,其中至少一种吸附剂选自斜发沸石、菱沸石和Li交换的沸石或其组合。
在更优选的实施方案中,所述气体是空气且所述其它的组分包括水和CO2
在一个实施方案中,在所述气体中N2O的量低于100ppm。
在一个实施方案中,在所述气体经斜发沸石、菱沸石或Li交换的沸石输送前,使水和CO2吸附在另外的吸附剂上。
在一个实施方案中,该方法是空气预纯化方法。
在优选实施方案中,所述气体中至少90%的N2O被吸附掉。
在一个实施方案中,Li交换的沸石是LiX。
本发明还包含将N2O从至少含有N2O和氮气的气流中分离出来的方法,所述方法包含使所述气流经IBL下工作容量ΔN2O大于或等于3.56×10-4的吸附剂床输送。
在优选实施方案中,该气流是空气。
在优选实施方案中,所述吸附剂选自斜发沸石、菱沸石和Li交换的沸石或其组合。
在优选实施方案中,该气流含有低于100ppm的N2O。
本发明还包含从含有N2O、氮气和其它组分的气体中除去N2O的吸附设备,所述设备包含一或多个至少第一吸附剂的床,其中所述第一吸附剂是N2O选择性吸附剂,选自斜发沸石、菱沸石和Li交换的沸石。
在优选实施方案中,气体中的所述其它组分包括H2O和CO2,所述设备还含有一或多种附加吸附剂以除去H2O和CO2,其中的附加吸附剂在所述第一吸附剂的上游。
与现有技术的方法和系统相比,本发明的方法和设备提供出优越的令人吃惊的N2O去除效率。
具体地说,本发明涉及以下方面:
1.从含有N2O、氮气和其它组分的气体中除去N2O的吸附方法,所述方法包含将所述气体经一或多种吸附剂床输送并生成经纯化的气体,其中所述的一或多种吸附剂选自斜发沸石、菱沸石和Li交换的沸石。
2.第1项的方法,其中所述气体是空气。
3.第1项的方法,其中所述其它的组分包括水和CO2
4.第1项的方法,其中所述气体中的N2O的量低于100ppm。
5.第3项的方法,其中所述气体经斜发沸石、菱沸石或Li交换的沸石输送前,在附加吸附剂上吸附所述的水和CO2
6.第1项的方法,其中所述方法是压力摆动吸附或温度摆动吸附。
7.第1项的方法,其中所述方法是温度摆动吸附和压力摆动吸附的组合。
8.第5项的方法,其中所述气体中至少90%的N2O被吸附掉。
9.第1项的方法,其中所述吸附剂是斜发沸石,且其30%-80%的可交换阳离子是钠阳离子。
10.第1项的方法,其中所述的吸附剂在放置在所述床中之前经酸或碱性溶液洗涤。
11.第1项的方法,其中所述Li交换的沸石是LiX。
12.第1项的方法,其中所述产物气体含有低于100ppb的N2O。
13.第1项的方法,其中所述产物气体含有低于50ppb的N2O。
14.第1项的方法,其中所述产物气体含有低于10ppb的N2O。
15.第7项的方法,其中在所述压力摆动吸附法中,吸附在100-2500kPa的压力下进行,解吸在20-1000kPa的压力下进行。
16.第7项的方法,其中在所述温度摆动吸附法中,吸附在-70摄氏度-80摄氏度进行,解吸在高于所述吸附的温度下进行。
17.从含有至少N2O和氮气的气流中分离N2O的方法,所述方法包含经IBL下ΔN2O工作容量大于或等于3.56×10-4的吸附剂床输送所述气流。
18.第17项的方法,其中所述气流是空气。
19.第17项的方法,其中所述吸附剂选自斜发沸石、菱沸石和Li交换的沸石或其组合。
20.第17项的方法,其中所述气流含有低于100ppm的N2O。
21.第17项的方法,其中在IBL下ΔN2O/ΔN2选择性大于或等于2.23×10-4
22.从含有N2O、氮气和其它组分的气体中除去N2O的吸附设备,所述设备包含一(30)或多个至少第一吸附剂床,其中所述第一吸附剂是选自斜发沸石、菱沸石和Li交换的沸石或其组合的N2O选择性吸附剂。
23.第22项的设备,其中所述其它组分包括H2O和CO2,所述设备还含有一或多种用于吸附H2O和CO2的附加吸附剂,其中所述附加吸附剂在所述第一吸附剂的上游。
24.第23项的设备,其中所述附加吸附剂是一或多种阳离子交换的天然沸石、阳离子交换的合成沸石、氧化铝、硅胶和活性炭。
25.第23项的设备,其中所述N2O选择性吸附剂在与所述附加吸附剂隔离开的层中。
26.第22项的设备,其中所述设备包含氧化铝层和位于所述氧化铝层下游的所述N2O选择性吸附剂与对CO2具有选择性的吸附剂的混合层。
27.第22项的设备,其中所述设备包含氧化铝层和位于其下游的,包含结合成单一的颗粒材料的所述N2O选择性吸附剂和对CO2具有选择性的吸附剂的复合材料层。
28.第22项的设备,其中所述附加吸附剂在隔离开的层中。
29.第22项的设备,其中所述吸附剂的形式为平均尺寸选自US筛系列4-50目的颗粒。
30.第22项的设备,其中所述设备含有两个床(16、17)。
31.第22项的设备,其中所述的一或多个床含有用于除去烃类的第二附加吸附剂。
32.第31项的设备,其中所述第二附加吸附剂自身形成一层或与所述第一吸附剂混合。
33.第22项的设备,其中所述第一吸附剂的组合是吸附剂混合物或吸附剂复合材料的形式。
34.第22项的设备,其中所述第一吸附剂是斜发沸石和菱沸石,且所述斜发沸石和菱沸石是天然的或合成的并含有选自1A族、2A族、3A族、3B族、镧系及其组合的阳离子的可交换阳离子。
35.第22项的设备,其中所述设备是空气预纯化器。
附图简述
从以下优选实施方案和附图的描述,对本领域的技术人员而言,其它的目的、特征和优点将显而易见,其中:
图1是穿透实验设备的简图;
图2是用于N2O/N2和N2O/He的N2O的NaX(2.5)穿透曲线图;
图3是特定吸附剂的氮气等温线;
图4是显示初始穿透点(0.05ppm浓度)的穿透曲线;
图5示范了特定吸附剂的IBL N2O载荷量(IBL:初始穿透载荷量,即在50ppb穿透点的吸附的N2O/单位重量的吸附剂);
图6是用于实施本发明的吸附系统的简图。
图7a显示带有本发明的去除N2O用的附加层的常规预纯化器床。
图7b显示了带有去除水用的第一层和在下游的去除CO2和N2O用的混合层的预纯化器床。
图7c显示了带有去除水用的第一层和在下游的去除烃和N2O用的混合层的预纯化器床。
图7d显示了带有除水用的第一层、除CO2用的第二层、除烃类用的第三层和除N2O用的最后层的预纯化器床。
发明详述
本发明基于以下原理:首先确定待分离的关键组分(N2O/N2),然后在吸附器内的吸附区分离这些关键组分,最后选择能高效率地影响所述分离的吸附剂。待解决的一般性问题是在通过深冷方式分离空气前从含有其它杂质(至少包括CO2和H2O)的空气混合物中除去ppb级(≈350-400ppb)的N2O。在通过吸附作用从气体混合物除去杂质的方法中,通常相对于所选择的吸附剂而言以吸附性降低和/或选择性降低的顺序连续地吸附杂质。经常可以通过采用将组合的吸附剂构型成层状或混合物形式来改进该方法以提高各种杂质的去除效果,即通过选择特定的吸附剂以实现对于气体混合物每种杂质的最大吸附性和/或选择性。各种吸附剂在吸附器各层中的使用是本领域内所熟知的。
除去特定杂质的吸附剂的选择依赖于很多因素,例如在吸附器内去除点上混合物中目标杂质和其它气体的类型和组成,吸附剂对杂质和非杂质的相对选择性,和吸附剂对杂质的载荷能力。
在本发明的优选实施方案中,首先构造在除去N2O以前,从进料气流(例如空气)中基本上全部除去CO2和H2O的吸附剂床。然后,接下来从部分净化的进料气流中除去N2O。本发明与现有技术的区别在于,选择N2O分离用吸附剂使吸附剂兼具高ΔN2O/ΔN2分离系数和高ΔN2O(在高N2浓度存在条件下)容量。根据本发明,天然斜发沸石、天然菱沸石和LiX是从气体,特别是空气中除去N2O的优选实施方案。由于加入了N2O吸附剂,床中所有吸附剂的组合从进料气流中除去至少90%并优选全部的N2O。这样,在局部物流条件下,经纯化的物流优选含有低于约100ppb(份数/10亿)的N2O,更优选低于50ppb,最优选低于10ppb。
因此,本发明提供了在深冷空气分离设备的低温箱之前基本上除去全部N2O的简单、高效的方法,这样确保了操作安全并潜在地降低了液氧的排放。
在现有技术的选择标准下进行评估时,即N2O/CO2的亨利定律常数比>0.49(U.S.6,106,593),本发明的结果甚至更令人吃惊。该亨利定律常数比(N2O/CO2初始等温线斜率比)是就斜发沸石计算的。发现该比率为约0.40,显著低于6,106,593推荐的最小值。
现有技术从空气中除去N2O这一问题的方案致力于找到一种高N2O/CO2选择性的吸附剂;然而,由于这两种被吸附物静电性能相似,这样做是困难的。进一步考虑静电性能未能认识到被吸附物相对浓度的显著效果;例如,在环境空气中,CO2浓度一般为350ppm-400ppm,是N2O浓度的1000倍。
在本发明中,因为在去除N2O前已基本上将H2O和CO2完全除去,有关的分离就是从N2中除去N2O。在此情况下,尽管静电作用有利于N2O选择性,但明显的浓度差(~790,000ppmN2相对于~350ppb N2O)有利于N2的吸附。因此,根据本发明需要具有高N2O/N2选择性、低N2工作容量和充足的N2O工作容量的吸附剂以满足纯化的要求。
在本发明的实施当中,可以通过测定每种主要被吸附物,即N2和N2O的工作容量来估算吸附剂性能。利用如下定义的分离系数α来评估吸附剂效果。该方法详细讨论于US专利6,152,991中。
α = ΔN 2 O ΔN 2 = w N 2 O ( y , p , T ) ads - w N 2 O ( y , p , T ) des w N 2 ( y , p , T ) ads - w N 2 ( y , p , T ) des - - - ( 1 )
其中分离系数α定义为工作容量之比。该方程的分子是N2O的工作容量,其等于在吸附和解吸条件下载荷量W的差。吸附和解吸条件用组成Y,压力P和温度T来表征。
在TSA空气预纯化操作中,最大再生温度在约100℃-约350℃内变化。结果,可以预料被吸附物(特别是空气气体)将被完全热解吸。在该条件下,方程(1)可以简化如下:
α = Δ N 2 O ΔN 2 = w N 2 O ( y , p , T ) ads w N 2 ( y , p , T ) ads - - - ( 2 )
当杂质被TSA的浅表吸附剂层除去且存在显著的传质阻力时,根据方程(3)重新定义选择性:
ΔX A ΔX B = m in w s ∫ 0 t b ( y in - y out ) dt X B ( y , P , T ) ADS - - - ( 3 )
方程(3)的分子表示吸附剂对杂质的工作容量。min表示流入床的摩尔进料,Yin和Yout分别是微量组分的入口和出口摩尔分数,ws是吸附剂的质量和tb是对应于预定浓度的穿透时间。分母是吸附步骤结束条件下,即假定所有组分全部解吸时主要组分的平衡能力。当在吸附剂层深度小于传质区长度的条件下采用小孔沸石时会形成该条件。
该方法比现有技术的N2O选择性评估方法的优越之处在于,工作容量是在相关工艺条件下各独立组分的分压下测定的。而且,在载荷量的测定中引入了共吸附作用。可以采用由纯净组分数据(例如载荷量比相关性等温模型)支持的多组分等温模型或直接由实验数据进行分析。由于N2浓度远大于N2O,N2O在N2上的共吸附作用可以忽略。这样,可以从测量的纯净组分N2等温线直接获得方程(2)或方程(3)的分母。
相反,N2的共吸附对N2O的吸附有显著作用。如果有或者能够得到精确的N2O低浓度纯净组分等温线数据,那么可以应用方程(2)来评估工作容量和选择性。或者,优选采用穿透试验法在N2共吸附条件下直接测定对N2O的工作容量,这是本领域技术人员所熟知的。这还为工作容量引入了任何的动态效果。穿透试验能够测定组分在饱和状态下的平衡能力和在某些确定的穿透浓度,例如50ppb下的穿透容量和穿透时间。
为了评估吸附剂对N2O的工作容量和根据方程(3)的分离系数,按图1所示构建了穿透试验设备。
测试的吸附剂从下列来源获得。天然吸附剂(斜发沸石和菱沸石)从Steelhead Specialty Minerals,WA获得。合成沸石从不同的制造商获得:Zeolyst(ZSM5,丝光沸石),Zeochem(Cax(2.5)且>85%Ca)和UOP(13X,NaX(2.3),LiX(2.3)>97%的锂;LiX(2.0)>97%的锂,NaY)。注意:括号中所引用的数字(例如2.5、2.3和2.0)指的是SiO2/Al2O3的比。在每个试验前,对所有吸附剂都在N2的吹洗下在350℃,1.0bar(100kPa)压力下进行了约16小时的热再生。再生后,使吸附剂冷却至27℃的测试温度。
采用以下的进料气混合物进行穿透试验:在N2中1.0ppm的N2O和在He中1.0ppm的N2O。还有,用重量分析测定N2等温线。检测这些试验的结果以确定N2O的分离系数和工作容量。试验进行至饱和状态,即直到流出N2O浓度达到进料水平的浓度。为评估各种吸附剂,选择了1.0ppm的N2O浓度。所有的穿透试验都是在6bar(600kPa)、300k以及入口气体流速为约21.3slpm(0.08kmol/m2s)的条件下采用长度为22.9cm或5.6cm的吸附柱进行的。进料条件是一般深冷空气分离设备所用空气预纯化器入口处的典型条件。采用在He中的1.0ppm的N2O和在He中1.0ppm的CO2分别测定纯组分N2O或CO2载荷量产生出穿透曲线。为测定N2O和CO2在N2中的共吸附作用,还采用1.0ppm N2O+1.0ppmCO2在N2中进行了穿透试验。在50.0ppb的N2O处确立了初穿透并在50.0ppb穿透点以平均N2O吸附量/单位重量吸附剂的形式测定了初穿透载荷量(IBL)。
采用图1所示设备按以下方式进行穿透试验。经由流量控制器3计量来自气源1的含有有关杂质(例如N2中的10ppm的N2O)的测试气体并在气体混合器5中与来自气源2的高纯度稀释气N2或He混合,并以设定的流速经由流量控制器4供应以实现所需的杂质进料浓度。然后将该混合的测试气体进料到含有吸附剂的测试床6中。将流出气经由流量计7输送至N2O分析器8(TEI Model 46-C),在这里对N2O的穿透浓度作为时间的函数进行监控。应用控制阀9维持系统内的压力。通过浸没在恒温浴(未示出)中将管线和吸附剂床保持在与进料相同的温度。
以下是非限制性实施例,它们示范了本发明选择吸附剂的方法及其实施。
实施例1 N2共吸附作用
如上所述测试吸附剂以测定在N2O吸附中的N2共吸附作用。在下表1中对比了在不同吸附剂中N2O(1.0ppm)在N2和He中的饱和能力的结果。这些结果是采用22.9cm或5.6cm长度的吸附剂床就6.0bar(600kPa)、300°K和0.08kmol/m2s的摩尔流量的进料条件而测定的。对表中的一些吸附剂说明了其SiO2/Al2O3比,例如NaX(SiO2/Al2O3=2.3)。图2显示了N2O在N2中和N2O在He中对于吸附剂13X(NaX2.5)的N2O穿透曲线。
表1:N2共吸附对N2O载荷量的影响
  材料   N2O载荷量(mmol/gm)1.0ppmN2O/He   N2O载荷量(mmol/gm)1.0ppmN2O/N2   优选吸附剂
  NaY   4.06×10-4   1.42×10-4
  NaZSM5   1.7×10-3   3.59×10-4
  NaKX   4.58×10-4
  13X NaX(2.5)   9.55×10-4   6.09×10-4
  NaX(2.3)   1.73×10-3   7.03×10-4
  CaX   1.98×10-3
  Na-丝光沸石   6.38×10-3
  斜发沸石(CS400)   8.86×10-2   3.60×10-3   X
  LiX(2.3)   5.5×10-3   1.22×10-3   X
  LiX(2.0)   6.7×10-3   1.74×10-3   X
  菱沸石   6.75×10-2   3.42×10-3   X
  斜发沸石(TSM140)   6.84×10-2   8.20×10-3   X
这些结果清楚地表明了N2共吸附的显著作用,与单一组分饱和能力(在He中的1.0ppmN2O)相比造成了N2O容量从36%降至96%。表1中的第四列还指出了本发明优选吸附剂的实例(即在N2存在下具有高N2O载荷量的吸附剂)。
实施例2.N2等温线
在包括深冷空气分离设备预纯化器典型进料压力的压力范围内,测定了300°K下N2对于各种吸附剂的等温线。等温线实例示于图2中。在表3中对各种吸附剂在6.0bar(600kPa)下对比了从这些等温线得到的纯净组分N2载荷量。
表2.在6.0bar(600kPa)、300°K下N2的平衡载荷量
材料 N2载荷量(mmol/gm
高硅沸石 0.68
H-ZSM5 0.74
4A 1.11
NaY 0.85
NaZSM5
NaKX 0.86
13X NaX(2.5) 1.30
NaX(2.3) 1.33
CaX 1.53
Na-丝光沸石 1.40
斜发沸石(CS400) 0.64
LiX(2.3) 1.71
LiX(2.0) 2.29
菱沸石 1.22
斜发沸石(TSM140) 1.23
实施例3.在50ppb N2O的穿透
用与上表1中报告的相同的N2O/N2试验在50.0ppb N2O处测定了吸附剂床的平均N2O载荷量(IBL)。典型的穿透结果示于图4中。在表3中对各种吸附剂的IBL值(不仅反映了50ppb的穿透还反映了N2共吸附作用)进行了对比并示于图5中。还利用方程3计算了分离系数。在方程3中应用从表2得到的6bar(600kPa)下的N2载荷量来表示方法中N2的工作容量。
可以由N2O/N2的饱和载荷量或由IBL下的N2O的平均载荷量计算N2O工作容量。从IBL下的平均载荷量计算分离系数是优选方法,这是由于该方法反映了吸附剂的平衡和动态作用。然而,当只有等温线而不能得到穿透数据时,前一种方法(只反映了平衡作用)是可以接受的。各种吸附剂的这两种分离系数列于表3中。两种方法均确认斜发沸石(TSM-140)具有最高的N2O/N2分离系数,并确立了与现有技术选择的CaX相比同一组的六种吸附剂具有较高分离系数。在优选组中吸附剂效果的顺序受所用分离系数(计算)方法的影响。
采用本发明的方法,斜发沸石ISM-140是用于从空气中除去N2O的最优选吸附剂。该吸附剂在IBL下具有最高的N2O工作容量,最高的N2O/N2工作分离系数和适中的N2工作容量。从表3中显而易见,TSM140具有6倍于Cax的平均N2O穿透能力。因此,斜发沸石TSM140为所述问题提供了优越得另人吃惊的解决方案。
表3:各种吸附剂的IBL和α
材料   IBL(mmol/gm)   α(Eqn 3)N2O @ IBL   α(Eqn 3)N2O @ 1.0ppm
高硅沸石   2.20×10-5   3.24×10-5   1.11×10-4
活性炭   2.60×10-5
H-ZSM5   3.60×10-5   4.89×10-5   1.85×10-4
4A   4.30×10-5   3.87×10-5
NaY   5.20×10-5   6.09×10-5   1.67×10-4
NaZSM5   6.50×10-5
NaKX   1.32×10-4   1.54×10-4   5.33×10-4
13X NaX(2.5)   1.87×10-4   1.44×10-4   4.68×10-4
NaX(2.3)   2.27×10-4   1.71×10-4   5.29×10-4
CaX   2.40×10-4   1.57×10-4   1.29×10-3
Na-丝光沸石   3.13×10-4   2.24×10-4   4.56×10-3
斜发沸石(CS400)  3.56×10-4   5.57×10-4   5.64×10-3
LiX(2.3)   3.82×10-4   2.23×10-4   7.10×10-4
LiX(2.0)   7.68×10-4   3.35×10-4   7.61×10-4
菱沸石   1.04×10-3   8.55×10-4   2.81×10-3
斜发沸石(TSM140) 1.58×10-3   1.28×10-3   6.64×10-3
实施例4:N2O和CO2的共吸附作用
在本发明中,优选这样构造吸附器:在最终净化吸附N2O的气流之前,已从气体混合物中基本将进料空气中的水蒸汽和CO2杂质完全除去了。必须充分去除N2O以防止在预纯化循环的吸附步骤中50ppb以上N2O的穿透。在该情况下,估计低浓度(低于10.0ppm,最为可能低于1.0ppm)的CO2可能会与100ppb或更多的N2O和构成空气成分(N2/O2)的剩余主体气体一起存在。为了证实吸附剂的效用和测定CO2对N2O的竞争性共吸附作用,采用在N2中的1.0ppm的CO2和1.0ppm的N2O的进料混合物,对斜发沸石TSM140进行了穿透试验。N2O的平均IBL载荷量和饱和载荷量的结果示于表4中。在实验误差的范围内,所述载荷量与表1和3中的N2O载荷量是相当的。因此,显然,在这些低浓度下,CO2与N2O相互是不竞争的,即各自只与N2进行竞争。这可以用这个事实得到解释:(表3中)吸附的N2分子数远大于吸附的N2O或CO2分子数。N2O或CO2进入吸附剂时,吸附位点主要被N2分子占据了。
表4:IBL和饱和状态下的载荷量(N2中1ppm N2O+1ppm CO2)
  IBL N2O(mmol/gm)   N2O的饱和载荷量
  1.6×10-3   8.3×10-3
这些结果提示出,存在于气流中的其它低浓度杂质也可以与N2O一起同时被除去。在斜发沸石的情形中,动态直径小于约4.5且反应势能大于N2的被吸附物易于被完全或部分地除去。这样的被吸附物包括但不限于乙炔、乙烯和丙烷。
实施例5:预纯化器的操作
设计了两床式TSA预纯化器以评估完全除去N2O对吸附剂的要求。入口的空气流为72psig压力下的569,000NCFH,环境温度为约78F。环境的N2O浓度为约400ppb,CO2浓度为约400ppm。进入预纯化器的空气的平均温度为约44.6F。每个床的内径为8.0ft。
起初所述床具有两层:氧化铝的第一层(9.9in)和13X APG的第二层(46.5in)。监控该两层床系统的N2O穿透浓度。发现在每个循环中约80%进入的N2O被保留在所述床中。约20%进入的N2O穿透所述床。如果将斜发沸石TSM140层添加在13X层的下游,则该层为确保完全除去N2O所需的厚度计算值为约9in。因此,在13X层的下游添加极薄的斜发沸石TSM140层就基本消除了N2O泄漏进低温箱的问题。具有三层结构的预纯化器能够基本上消除进入所述床的全部水蒸汽、CO2和N2O以及大部分烃类。
表5中提供了斜发沸石TSM140和CS400的Si/Al比和主要阳离子的组成(可交换阳离的%)。从表1的工作容量和表3中的选择性可显而易见的是:与CS400相比,在高浓度N2存在下,TSM140具有卓越的去除N2O的能力。尽管这两种材料均是具有几乎相同的Si/Al比的斜发沸石结构,但其N2O吸附效率却截然不同。这些材料的组成中的主要区别在于存在的Na阳离子的量。我们发现优选的斜发沸石具有占可交换阳离子约30-约80%的钠。
表5:天然吸附剂的组成
  TSM140   CS400
  Si/Al   4.84   4.78
  %Ca   12   34
  %Na   62   14
  %K   19   32
  %Mg   7   20
如以上所说明,发现斜发沸石(最优选TSM140和CS400)、菱沸石和LiX(最优选具有大于86%Li交换和(2.3)或(2.0)的SiO2/Al2O3比)是在深冷空气分离前用来从空气中除去N2O的优选吸附剂。
天然沸石(斜发沸石和菱沸石)具有比X型沸石更高的Si/Al比(在本发明中为3.0-5.0),与LiX、CaX和NaX相比是“较弱”的吸附剂。这些天然沸石还具有比X型沸石更小的微孔体积。这些因素造成了较低的N2吸附能力和选择性;然而,当除去痕量杂质时,整体能力一般不是关键问题。相反地,因为斜发沸石和菱沸石较高的Si/Al比,这些材料具有较少的阳离子。这通常意味着与极性吸附物间较弱的热力学作用。虽然这有利于对N2的较弱吸引,但这还意味着对N2O的较弱吸引。
沸石的吸附特性强烈地依赖于其阳离子组成。可以通过离子交换改变其平衡和动态吸附性能。阳离子的类型、位置和数量可以完全改变吸附行为。对小孔天然沸石进行酸洗可以除去堵塞孔隙的杂质,随着处理的强度和时间的增加,逐步地除去阳离子和最终使结构脱铝。碱洗显示出对斜发沸石的孔隙尺寸和孔体积都能改良。在测定活化沸石的吸附性能和结构稳定性时,脱水的方法和程度是重要的。脱水和热处理会造成阳离子的迁移,因而影响阳离子的位置和孔隙开放度。可以采用任何方法以进一步改善本发明优选吸附剂的吸附特性,即可以实现平衡和/或动态吸附性能。
如前面所指出的,本发明涉及从H2O和CO2已经基本除去的空气中除去N2O。“基本除去”我们指的是去除到低于10ppm的浓度,优选低于1.0ppm。然而,本发明可以在较高浓度的CO2和/或H2O存在下用于除去N2O。在本发明最直接的用途中,N2O选择吸附剂层位于用来除去H2O和CO2的那些吸附剂的下游(按吸附过程中物料流动方向所确定)。其型的TSA预纯化器具有单一的沸石层以除去H2O和CO2或者活化氧化铝层(用来除去H2O)接以用来吸附CO2的沸石层。通常,用于吸附水和CO2的吸附剂是本领域技术人员已知的并包括含有阳离子的沸石(合成的或天然的)、活化的氧化铝、硅胶和活性炭。
在这样的构型中,N2O选择性层在预纯化器吸附器中分别作为第二或第三吸附剂层。本发明设想的其它构型描述在下面。根据本发明,N2O被吸附在选自天然斜发沸石、天然菱沸石和Li交换的X沸石中的至少一种吸附剂上。从气流中除去N2O是这样实现的:在约-70℃-80℃,优选0℃-40℃的温度范围,经由斜发沸石、菱沸石或LiX或这些材料的混合物的床输送气流。本发明的目的虽然是从空气中除去低浓度的N2O,但也可以将其用来从空气或其它气体混合物中除去较高浓度的N2O。可以用该方法纯化的典型气体包括空气、氮气、氧气、氢气、甲烷等。
除去N2O的方法优选以循环工艺如压力摆动吸附(PSA)、温度摆吸附(TSA)、真空摆动吸附(VSA)或这些方法组合的方式来实施。这些方法可以在深冷分离前用来除去存在于空气中的ppm或ppb级的N2O。本发明的方法可以在以循环工艺运行的单个或多个吸附容器中实施,所述循环工艺至少包括吸附和再生的步骤。吸附步骤在1.0-25bar(100-2500kPa)的压力范围内实施,优选约3-15bar(300-1500kPa)。吸附步骤中的温度为-70℃-80℃。当采用PSA法时,再生步骤中的压力低于吸附压力,优选为约0.20-10.0bar(20-1000kPa),并优选1.0-2.0bar(100-200kPa)。对TSA法而言,再生在高于吸附温度的温度下进行;优选为约50℃-400℃,更优选100℃-300℃。在深冷空气分离工艺中,再生气体一般得自于产物或废物N2或O2气流。
在循环工艺中,将含有N2O的气体引入含有至少一层N2O选择性吸附剂的吸附容器的一端。随着气体经由所述床输送,N2O被吸附并在所述床的另一端获得基本不含N2O的气体。随着吸附步骤的进行,在所述床中形成N2O前沿并且该前沿在吸附步骤中在所述床中向前移动。当该前沿到达所述床的末端时,这由出口气体中可接受的N2O的浓度来确定,终止该吸附步骤并使该容器进入再生模式。再生的方法取决于循环工艺的类型。对于PSA法,通常对容器进行逆流式减压。可以采用真空泵在再生步骤中另外施用低于大气压的压力水平。对于TSA法,吸附剂床的再生通过经由该床逆流输送热气体来实现。采用热脉冲法时,热吹洗步骤后接着是冷却吹洗步骤。还可以在减压下(相对于进料)提供热再生气,这样实施了组合TSA/PSA法。为从空气中除去N2O,优选TSA/PSA法。
在一些情况下,经由所述床逆流输送惰性的或吸附性弱的吹洗气体能进一步净化吸附剂床。在PSA法中,吹洗步骤通常在逆流减压步骤之后。在TSA法中,可以采用热吹洗气来再生吸附剂。在单一容器系统的情况下,可以从贮存容器引入吹洗气,对于多床系统而言,可以从另一个处于吸附阶段的吸附器获得吹洗气。
吸附系统可以具有比吸附和解吸这两个基本步骤更多的步骤。例如,可以采用顶对顶均衡法或底对底均衡法以保存能量和提高回收率。
在具体实施方案中,参照图6按以下运行预纯化工艺。参照图6,经由导管23向系统进料的进料空气在压缩机10中压缩并在进入两个吸附器(16和17)之一前通过冷却装置11进行冷却,在吸附器中至少将杂质H2O、CO2和N2O从空气中除去。经纯化的空气经导管24离开吸附器,然后进入空气分离设备(ASU)(未显示),在这里接下来将空气深冷分离为其主要组分N2和O2。在特殊设计的ASU中,也可以从空气中分离出Ar、Kr和Xe并进行回收。当一个所述床从空气中吸附杂质时,其它的床则利用经导管25供应的吹洗气进行再生。可以从ASU的产物或废物流或独立气源供应干燥、不含杂质的吹洗气将吸附的杂质解吸,并由此再生吸附器并将其准备好以用于循环中的下一个吸附步骤中。吹洗气可以是N2,O2、N2和O2的混合物、空气或任何干燥的惰性气体。在热摆动吸附(TSA)的情况下,在将吹洗气经由吸附器以与吸附步骤中的进料流呈逆流的方向输送之前,首先在加热器22中进行加热。TSA循环也可以包括压力摆动。当仅采用压力摆动吸附(PSA)时,没有加热器。
现针对一个吸附器参照图6描述典型PSA循环的操作。本领域技术人员将认识到,其它的吸附器容器可以以相同的循环方式操作,与第一吸附器不同之处仅在于经纯化的空气是连续地向ASU供应的。经由导管23将进料空气加入到压缩机10,在此将空气进行压缩。在冷却设备11中移走压缩热,例如机械式冷却器或直接接触式后冷却器和蒸发冷却器的组合。接下来,加压、低温且水饱和的进料气流进入吸附器16(17)。随着对吸附器容器16(17)加压打开阀门12(13)并关闭阀门14(15)、18(19)和20(21)。一达到吸附压力,即打开阀门18(19)并将经纯化的产物用导管24送往ASU以进行深冷空气分离。当吸附器16(17)完成吸附步骤时,关闭阀门18(19)和12(13)并打开阀门14(15)使吸附器16(17)排放至较低压力,一般为接近环境压力。压力一降低,就打开阀门20(21)并将热吹洗气引入到吸附器16(17)的产物端。在吹洗循环中,有时要关闭加热器使吹洗气将吸附器冷却至接近于进料温度。
本领域的普通技术人员将进一步认识到,以上描述只提供了典型预纯化器循环的一个实例,这种典型循环的许多变体可用于本发明。例如,可以单独采用PSA,其中可以去掉加热器22和冷却设备11。可以用产物气、进料气或二者的组合来实现加压。如以上所指出的,可以采用床-床式均衡操作并可以引入一个混合步骤,其中在另一个吸附器接近其吸附步骤完成时使新再生的床在线操作。这样的混合步骤起到平抑由于床转换造成的压力扰动,还使当再生床未完全冷却至进料温度时造成的任何热扰动最小化。而且,可以用不限于两个吸附器床的预纯化器循环实施本发明。
如以上所说明的,本发明最优选的实施方案是从气流中,特别是从深冷分离前的空气中除去痕量的N2O。本发明的方法特别适用于从进料气流中除去低至中等(例如ppb-ppm数量级)浓度的N2O。例如,该方法特别可用于N2O浓度为350ppb数量级的空气的预纯化(深冷蒸馏前)。所述吸附剂还可特别有效地从含有100ppm或更少N2O的气流中除去N2O。如果气体含有水蒸汽,则在将其经由N2O吸附剂输送前应最优选将水蒸汽去除至低于100ppb。如果气体含有CO2,应将CO2去除至低于10ppm,优选低于1ppm,然而,CO2的去除不像水蒸汽的去除那么重要。N2O层的相对厚度取决于进料气的压力、温度,组成和流速和纯化气所需的纯度,是能够由本领域普通技术人员所确定的。
如以上所说明的,在本发明优选的空气预纯化实施方案中,在将空气流经由N2O吸附剂层输送前,已经用至少一层活化氧化铝或沸石或多层活化氧化铝和沸石从空气中基本除去了水蒸汽和CO2。任选地,可以将N2O选择性吸附剂层扩展并用来从空气中除去部分或全部CO2。或者,在吸附容器中,第一氧化铝层可以用来除去水蒸汽,相邻的由N2O选择性吸附剂和13X(或其它沸石)的混合物形成的层用来从空气中除去CO2和N2O。这样的吸附剂混合物可以由物理分离的吸附剂或不同吸附剂以复合材料形式结合在一起而组成。另外,可以将N2O选择性吸附剂以细小颗粒的形式沉积在基材如整料上。
在现有的具有水吸附剂层和CO2吸附剂层的预纯化器床中,本发明的方法允许在最下游端用N2O吸附剂置换10-100%的CO2吸附剂层。
如图7a和7b所示,床30的各种层状排布都是可能的。例如,图7a显示的床30排布包含去除水用的第一吸附剂层31;去除CO2用的第二吸附剂层32;和N2O吸附剂的第三层33。
在图7b中的床30排布具有水吸附剂的第一层31’和CO2吸附剂与N2O吸附剂的混合物或复合材料的第二层34。
用于本发明方法中的一些化学改性形式的吸附剂也合用于去除N2O的目的。这样,可以这样实施本发明,其中所述的斜发沸石和菱沸石是天然的或合成的,并且含有来自于周期表中1A族、2A族、3A族、3B族、镧系、以及它们的混合物的离子的可交换阳离子。
根据本发明,至少将包含于气流中的氧化亚氮分离掉,由此N2O被吸附在选自以下的至少一种吸附剂或它们的混合物上:天然斜发沸石、天然菱沸石和Li交换的X沸石。可以以任意比率的这些吸附剂制成混合物,如0-100%的斜发沸石,0-100%的菱沸石和0-100%的LiX,其中这些材料的总和为100%。
本发明方法所用的吸附剂床可以具有各种构型,如垂直床、水平床或径向床,并可以以压力摆动模式、温度摆动模式、真空摆动模式或这些模式的组合进行操作。
斜发沸石在高达700℃的极高温度下具有优异的热稳定性。因此,如果需要,其可以在极高温度下再生。
由于斜发沸石和菱沸石是从地层中采矿得到的天然沸石,在用于本发明的方法中前应对它们进行热处理。还应当将这些天然沸石研磨至适当的平均颗粒尺寸,例如4-50目,优选8-12目(US筛系列),但是根据用途的要求也可以采用更小或更大的平均尺寸。
在本发明的方法中,在250℃-700℃的温度下,对经研磨具有预定颗粒尺寸分布的天然矿物进行热处理。将沸石脱水至低于1.0%(wt)的H2O是重要的。本领域的技术人员对这种筛选和煅烧方法是熟悉的。
可以通过一系列的方法将该方法中的吸附剂成形为各种几何形状如珠状和挤出物。这会涉及以现有技术熟知的方式向沸石粉末中加入粘合剂。这些粘合剂可以是调节吸附剂强度所必需的。粘合剂的类型和成形方法是现有技术所熟知的,本发明对吸附剂中粘合剂的类型和百分比量不设任何限制。
N2O吸附剂还可能从空气中吸附掉一些烃类。为确保完全除去烃类,可以将N2O吸附剂与烃选择性吸附剂如5A在层35中混合(图7C中的床30)。或者,可以在N2O吸附剂层33”的上游(层36)或下游(未显示)放置附加的烃选择性吸附剂层(图7d中床30)。请注意,在图7C和7d中31”和31”’分别指水吸附剂层,32’和32”分别指CO2吸附剂层。
术语“包含”在本文中的用意为“包括但不限于”,这就是说,如权利要求中所指在说明所述的特征、整数、步骤或组分的存在时,不排除存在或增加一或多种其它的特征、整数、步骤、组分或其组合。
仅为了方便,在一或多个附图中显示了本发明的具体特征,每个特征也可以与本发明的其它特征相结合。本领域的技术人员将认识到备选的实施方案,希望它们也被包含在权利要求的范围内。

Claims (35)

1.从含有N2O、氮气和其它组分的气体中除去N2O的吸附方法,所述方法包含将所述气体经一或多种吸附剂床输送并生成经纯化的气体,其中所述的一或多种吸附剂选自斜发沸石、菱沸石和Li交换的沸石。
2.权利要求1的方法,其中所述气体是空气。
3.权利要求1的方法,其中所述其它的组分包括水和CO2
4.权利要求1的方法,其中所述气体中的N2O的量低于100ppm。
5.权利要求3的方法,其中所述气体经斜发沸石、菱沸石或Li交换的沸石输送前,在附加吸附剂上吸附所述的水和CO2
6.权利要求1的方法,其中所述方法是压力摆动吸附或温度摆动吸附。
7.权利要求1的方法,其中所述方法是温度摆动吸附和压力摆动吸附的组合。
8.权利要求5的方法,其中所述气体中至少90%的N2O被吸附掉。
9.权利要求1的方法,其中所述吸附剂是斜发沸石,且其30%-80%的可交换阳离子是钠阳离子。
10.权利要求1的方法,其中所述的吸附剂在放置在所述床中之前经酸或碱性溶液洗涤。
11.权利要求1的方法,其中所述Li交换的沸石是LiX。
12.权利要求1的方法,其中所述产物气体含有低于100ppb的N2O。
13.权利要求1的方法,其中所述产物气体含有低于50ppb的N2O。
14.权利要求1的方法,其中所述产物气体含有低于10ppb的N2O。
15.权利要求7的方法,其中在所述压力摆动吸附法中,吸附在100-2500kPa的压力下进行,解吸在20-1000kPa的压力下进行。
16.权利要求7的方法,其中在所述温度摆动吸附法中,吸附在-70摄氏度-80摄氏度进行,解吸在高于所述吸附的温度下进行。
17.从含有至少N2O和氮气的气流中分离N2O的方法,所述方法包含经IBL下ΔN2O工作容量大于或等于3.56×10-4的吸附剂床输送所述气流。
18.权利要求17的方法,其中所述气流是空气。
19.权利要求17的方法,其中所述吸附剂选自斜发沸石、菱沸石和Li交换的沸石或其组合。
20.权利要求17的方法,其中所述气流含有低于100ppm的N2O。
21.权利要求17的方法,其中在IBL下ΔN2O/ΔN2选择性大于或等于2.23×10-4
22.从含有N2O、氮气和其它组分的气体中除去N2O的吸附设备,所述设备包含一(30)或多个至少第一吸附剂床,其中所述第一吸附剂是选自斜发沸石、菱沸石和Li交换的沸石或其组合的N2O选择性吸附剂。
23.权利要求22的设备,其中所述其它组分包括H2O和CO2,所述设备还含有一或多种用于吸附H2O和CO2的附加吸附剂,其中所述附加吸附剂在所述第一吸附剂的上游。
24.权利要求23的设备,其中所述附加吸附剂是一或多种阳离子交换的天然沸石、阳离子交换的合成沸石、氧化铝、硅胶和活性炭。
25.权利要求23的设备,其中所述N2O选择性吸附剂在与所述附加吸附剂隔离开的层中。
26.权利要求22的设备,其中所述设备包含氧化铝层和位于所述氧化铝层下游的所述N2O选择性吸附剂与对CO2具有选择性的吸附剂的混合层。
27.权利要求22的设备,其中所述设备包含氧化铝层和位于其下游的,包含结合成单一的颗粒材料的所述N2O选择性吸附剂和对CO2具有选择性的吸附剂的复合材料层。
28.权利要求22的设备,其中所述附加吸附剂在隔离开的层中。
29.权利要求22的设备,其中所述吸附剂的形式为平均尺寸选自US筛系列的4-50目的颗粒。
30.权利要求22的设备,其中所述设备含有两个床(16、17)。
31.权利要求22的设备,其中所述的一或多个床含有用于除去烃类的第二附加吸附剂。
32.权利要求31的设备,其中所述第二附加吸附剂自身形成一层或与所述第一吸附剂混合。
33.权利要求22的设备,其中所述第一吸附剂的组合是吸附剂混合物或吸附剂复合材料的形式。
34.权利要求22的设备,其中所述第一吸附剂是斜发沸石和菱沸石,且所述斜发沸石和菱沸石是天然的或合成的并含有选自1A族、2A族、3A族、3B族、镧系及其组合的阳离子的可交换阳离子。
35.权利要求22的设备,其中所述设备是空气预纯化器。
CNB028281268A 2001-12-20 2002-12-19 气体纯化的方法和设备 Expired - Fee Related CN1309454C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US34267301P 2001-12-20 2001-12-20
US60/342,673 2001-12-20
US38461102P 2002-05-31 2002-05-31
US60/384,611 2002-05-31

Publications (2)

Publication Number Publication Date
CN1620332A CN1620332A (zh) 2005-05-25
CN1309454C true CN1309454C (zh) 2007-04-11

Family

ID=26993130

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028281268A Expired - Fee Related CN1309454C (zh) 2001-12-20 2002-12-19 气体纯化的方法和设备

Country Status (5)

Country Link
US (1) US7527670B2 (zh)
CN (1) CN1309454C (zh)
AU (1) AU2002365046A1 (zh)
MX (1) MXPA04006077A (zh)
WO (1) WO2003053546A1 (zh)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863909B1 (fr) * 2003-12-22 2006-05-26 Ceca Sa Methode de purification de flux gazeux pollue par co2 et hydrocarbure(s) et/ou oxyde(s) d'azote par adsorbant zeolitique agglomere
FR2868338B1 (fr) 2004-03-31 2007-02-02 Ceca Sa Sa Composition zeolitique adsorbante, son procede de preparation et son utilisation pour l'elimination de h20 et ou h2s contenus dans des melanges gazeux ou liquides
US7722702B2 (en) * 2005-06-30 2010-05-25 Praxair Technology, Inc. Adsorbent and catalyst mixtures
EP1961477B1 (en) * 2005-12-14 2014-10-15 Taiyo Nippon Sanso Corporation Method and apparatus for purification of the air to be used as raw material in cryogenic air separation
FR2913610A1 (fr) * 2007-03-16 2008-09-19 Air Liquide Procede pour eliminer le n2o d'un flux gazeux
EP2231306B1 (en) 2007-11-12 2014-02-12 ExxonMobil Upstream Research Company Methods of generating and utilizing utility gas
US7846237B2 (en) * 2008-04-21 2010-12-07 Air Products And Chemicals, Inc. Cyclical swing adsorption processes
EA022697B1 (ru) * 2008-04-30 2016-02-29 Эксонмобил Апстрим Рисерч Компани Способ и система избирательного удаления масла из потока газа, содержащего метан
EA201171072A1 (ru) * 2009-02-20 2012-02-28 Л'Эр Ликид Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Модуль очистки
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
TWI495501B (zh) 2010-11-15 2015-08-11 Exxonmobil Upstream Res Co 動力分餾器及用於氣體混合物之分餾的循環法
EA026118B1 (ru) * 2011-03-01 2017-03-31 Эксонмобил Апстрим Рисерч Компани Способ удаления загрязняющих примесей из потока углеводородов в циклическом адсорбционном процессе и связанные с этим способом устройство и система
EA024198B1 (ru) 2011-03-01 2016-08-31 Эксонмобил Рисерч Энд Инджиниринг Компани Способ короткоцикловой адсорбции при переменном давлении и температуре для отделения тяжелых углеводородов от потоков природного газа
JP6143192B2 (ja) 2011-03-01 2017-06-07 エクソンモービル アップストリーム リサーチ カンパニー 包封型吸着剤接触器装置を含むシステム及びこれに関連したスイング吸着方法
EA201391255A1 (ru) 2011-03-01 2014-02-28 Эксонмобил Апстрим Рисерч Компани Устройства и системы, имеющие компактную конфигурацию многочисленных слоев для цикловой адсорбции, и связанные с этим способы
MX2013008387A (es) 2011-03-01 2013-08-12 Exxonmobil Upstream Res Co Metodos para remover contaminantes de una corriente de hidrocarburo mediante adsorcion oscilante y aparato y sistemas relacionados.
WO2012161828A1 (en) 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
WO2012118757A1 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
EP2680948A4 (en) 2011-03-01 2015-05-06 Exxonmobil Upstream Res Co APPARATUS AND SYSTEMS WITH VALVE ASSEMBLY ROTARY POWER SUPPLY AND BALANCED ADSORPTION PROCESS THEREFOR
JP6215515B2 (ja) * 2012-01-18 2017-10-18 東ソー株式会社 クリノプチロライト成形体
US20130284179A1 (en) * 2012-04-27 2013-10-31 Tofy Mussivand Removal of carbon dioxide from patient expired gas during anesthesia
US8734571B2 (en) 2012-05-31 2014-05-27 Air Products And Chemicals, Inc. Purification of air
RU2583012C1 (ru) * 2012-05-31 2016-04-27 Эр Продактс Энд Кемикалз, Инк. Очистка воздуха
US8808426B2 (en) 2012-09-04 2014-08-19 Exxonmobil Research And Engineering Company Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
CN103203159B (zh) * 2013-04-08 2015-04-01 浙江师范大学 一种利用类沸石分子筛骨架材料分离氧化亚氮和二氧化碳的方法
US9108145B2 (en) * 2013-05-16 2015-08-18 Air Products And Chemicals, Inc. Purification of air
CA2949262C (en) 2014-07-25 2020-02-18 Shwetha Ramkumar Cyclical swing absorption process and system
US10307749B2 (en) 2014-11-11 2019-06-04 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
SG11201703809RA (en) 2014-12-10 2017-06-29 Exxonmobil Res & Eng Co Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
SG10201912671YA (en) 2014-12-23 2020-03-30 Exxonmobil Upstream Res Co Structured adsorbent beds, methods of producing the same and uses thereof
US10017257B2 (en) * 2015-04-29 2018-07-10 Honeywell International Inc. Combined VOC—O2—CO2 treatment system
US9751041B2 (en) 2015-05-15 2017-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CA2979869C (en) 2015-05-15 2019-12-03 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto comprising mid-bed purge systems
US10080991B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
AU2016317387B2 (en) 2015-09-02 2019-11-21 Exxonmobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
AU2016344415B2 (en) 2015-10-27 2019-08-22 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having a plurality of valves
SG11201802604TA (en) 2015-10-27 2018-05-30 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto having actively-controlled feed poppet valves and passively controlled product valves
AU2016346797B2 (en) 2015-10-27 2019-10-03 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having a plurality of valves
RU2637118C2 (ru) * 2015-11-11 2017-11-30 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Способ очистки газов от летучих органических примесей
RU2018121824A (ru) 2015-11-16 2019-12-20 Эксонмобил Апстрим Рисерч Компани Адсорбирующие материалы и способы адсорбции диоксида углерода
JP2019508245A (ja) 2016-03-18 2019-03-28 エクソンモービル アップストリーム リサーチ カンパニー スイング吸着プロセス用の装置及びシステム
WO2017209861A1 (en) 2016-05-31 2017-12-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
RU2702545C1 (ru) 2016-05-31 2019-10-08 Эксонмобил Апстрим Рисерч Компани Устройство и система для осуществления процессов циклической адсорбции
US10449479B2 (en) 2016-08-04 2019-10-22 Exxonmobil Research And Engineering Company Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
RU2019107147A (ru) 2016-09-01 2020-10-01 Эксонмобил Апстрим Рисерч Компани Процессы адсорбции при переменных условиях для удаления воды с использованием структур цеолитов 3a
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
KR102262647B1 (ko) 2016-12-21 2021-06-11 엑손모빌 업스트림 리서치 캄파니 활물질을 갖는 자체-지지 구조물
CN110099730A (zh) 2016-12-21 2019-08-06 埃克森美孚上游研究公司 具有泡沫几何形状结构和活性材料的自支承性结构
US10765991B2 (en) * 2017-08-10 2020-09-08 Air Products And Chemicals, Inc. Rapid cycle pressure swing adsorption process and adsorbent laminates for use therein
US10427090B2 (en) 2017-10-18 2019-10-01 Praxair Technology, Inc. Control of swing adsorption process cycle time with ambient CO2 monitoring
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11413567B2 (en) 2018-02-28 2022-08-16 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
CN110608023B (zh) * 2018-06-15 2021-12-10 中国石油化工股份有限公司 稠油分层注汽的适应性界限分析评价方法
GB201818896D0 (en) * 2018-11-20 2019-01-02 Gas Recovery And Recycle Ltd Gas recovery method
WO2020131496A1 (en) 2018-12-21 2020-06-25 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
EP3962641A1 (en) 2019-04-30 2022-03-09 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Rapid cycle adsorbent bed
CN111977622A (zh) * 2019-05-23 2020-11-24 香港城市大学深圳研究院 一种氦气纯化的方法及其装置
WO2021071755A1 (en) 2019-10-07 2021-04-15 Exxonmobil Upstream Research Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
WO2021076594A1 (en) 2019-10-16 2021-04-22 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite rho
US11685673B2 (en) 2021-06-06 2023-06-27 Christopher R. Moylan Systems and methods for removal of carbon dioxide from seawater
US11407667B1 (en) 2021-06-06 2022-08-09 Christopher R. Moylan Systems and methods for removal of carbon dioxide from seawater
US20230027070A1 (en) * 2021-07-21 2023-01-26 Air Products And Chemicals, Inc. Air separation apparatus, adsorber, and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587003A (en) * 1995-03-21 1996-12-24 The Boc Group, Inc. Removal of carbon dioxide from gas streams
US5919286A (en) * 1997-03-06 1999-07-06 Air Products And Chemicals, Inc. PSA process for removel of nitrogen oxides from gas
US5938819A (en) * 1997-06-25 1999-08-17 Gas Separation Technology Llc Bulk separation of carbon dioxide from methane using natural clinoptilolite
US6106593A (en) * 1998-10-08 2000-08-22 Air Products And Chemicals, Inc. Purification of air

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3244370A1 (de) 1982-12-01 1984-06-07 Basf Ag, 6700 Ludwigshafen Verfahren zur entfernung von distickstoffoxid aus wasserstoff, stickstoffmonoxid und distickstoffoxid enthaltenden gasen
US4711645A (en) 1986-02-10 1987-12-08 Air Products And Chemicals, Inc. Removal of water and carbon dioxide from atmospheric air
US4935580A (en) 1988-06-14 1990-06-19 Uop Process for purification of hydrocarbons using metal exchanged clinoptilolite to remove carbon dioxide
US4933158A (en) 1988-10-25 1990-06-12 Mitsui Toatsu Chemicals, Incorporated Method for purifying nitrogen trifluoride gas
US4964889A (en) * 1989-12-04 1990-10-23 Uop Selective adsorption on magnesium-containing clinoptilolites
FR2784599B1 (fr) 1998-10-20 2000-12-08 Air Liquide Procede de purification d'un flux gazeux en ses impuretes n2o
EP1005904A3 (en) * 1998-10-30 2000-06-14 The Boc Group, Inc. Adsorbents and adsorptive separation process
FR2795657B1 (fr) 1999-07-02 2001-09-14 Air Liquide Procede de purification d'air par adsorption sur zeolite echangee au baryum
US6391092B1 (en) 1999-10-12 2002-05-21 The Boc Group, Inc. Thermal swing adsorption process for the removal of dinitrogen oxide, hydrocarbons and other trace impurities from air
US6358302B1 (en) * 1999-11-18 2002-03-19 The Boc Group, Inc. Purification of gases using multi-composite adsorbent
US6436173B1 (en) * 2000-09-18 2002-08-20 The Boc Group, Inc. Monolith adsorbents for air separation processes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587003A (en) * 1995-03-21 1996-12-24 The Boc Group, Inc. Removal of carbon dioxide from gas streams
US5919286A (en) * 1997-03-06 1999-07-06 Air Products And Chemicals, Inc. PSA process for removel of nitrogen oxides from gas
US5938819A (en) * 1997-06-25 1999-08-17 Gas Separation Technology Llc Bulk separation of carbon dioxide from methane using natural clinoptilolite
US6106593A (en) * 1998-10-08 2000-08-22 Air Products And Chemicals, Inc. Purification of air

Also Published As

Publication number Publication date
WO2003053546A1 (en) 2003-07-03
MXPA04006077A (es) 2004-09-27
US7527670B2 (en) 2009-05-05
CN1620332A (zh) 2005-05-25
US20060162556A1 (en) 2006-07-27
AU2002365046A1 (en) 2003-07-09

Similar Documents

Publication Publication Date Title
CN1309454C (zh) 气体纯化的方法和设备
CN1150053C (zh) 使用吸附剂混合物的psa设备和方法
US7935177B2 (en) Method of purifying a gas stream contaminated by CO2 and one or more hydrocarbons and/or nitrogen oxides by adsorption on an aggregated zeolitic adsorbent
CN1168523C (zh) 增速气体分离
EP0769320B1 (en) Process for selecting adsorbent materials
CN100581645C (zh) 氢气提纯用工艺和装置
CN1235869A (zh) 具有不均匀交换率的吸附剂和采用此吸附剂的psa法
CN1671461A (zh) 高纯度和超高纯度气体的生产
JPH0688768B2 (ja) ゼオライトによるco▲下2▼の選択的吸着法
CN101927117A (zh) 变压吸附系统中浅床中的性能稳定性
CN1052796A (zh) 应用装有不同颗粒大小吸附剂的序列吸附区的汽相吸附方法
Yamashita et al. Synthetic and natural MOR zeolites as high-capacity adsorbents for the removal of nitrous oxide
JP4512093B2 (ja) 空気液化分離装置の前処理精製装置、炭化水素吸着剤、及び原料空気の前処理方法
JP5193860B2 (ja) 吸着剤及び触媒混合物を用いたガス精製法
US20210060477A1 (en) Pressure-swing adsorption process for separating acid gases from natural gas
KR20230079471A (ko) 가스 스트림의 탈탄 방법
JP2005013832A (ja) 空気液化分離装置用吸着剤及びそれを用いた空気の精製方法
MXPA96004940A (es) Proceso de adsorcion mejorado y sistema para usar lechos adsorbentes de capas multiples

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070411

Termination date: 20171219