CN1293653C - 全固态锂微电池正极薄膜制备方法 - Google Patents

全固态锂微电池正极薄膜制备方法 Download PDF

Info

Publication number
CN1293653C
CN1293653C CNB2005100183573A CN200510018357A CN1293653C CN 1293653 C CN1293653 C CN 1293653C CN B2005100183573 A CNB2005100183573 A CN B2005100183573A CN 200510018357 A CN200510018357 A CN 200510018357A CN 1293653 C CN1293653 C CN 1293653C
Authority
CN
China
Prior art keywords
thin film
film
preparation
micro cell
lini
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100183573A
Other languages
English (en)
Other versions
CN1655381A (zh
Inventor
刘韩星
朱先军
甘小燕
胡晨
曹明贺
罗大兵
欧阳世翕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CNB2005100183573A priority Critical patent/CN1293653C/zh
Publication of CN1655381A publication Critical patent/CN1655381A/zh
Application granted granted Critical
Publication of CN1293653C publication Critical patent/CN1293653C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种全固态锂微电池LiNi1-xCoxO2正极薄膜的制备方法,它是以乙酰丙酮锂,乙酰丙酮镍,醋酸钴为原料,按所制备的LiNi1-xCoxO2,0≤x<1.0中Li、Ni、Co的摩尔比为Li/(Ni+Co)=1.00~1.05∶1.00准确称量各原料,溶于醋酸和醇类混合溶剂中制成溶胶。采用匀胶的方法,在具有Pt或Au表面的基体上制得凝胶薄膜,经过350~400℃预热分解,再在氧气氛中650~750℃退火,制得LiNi1-xCoxO2正极薄膜。本发明提供的薄膜制备方法,工艺、设备简单,易于制作较大面积的正极薄膜。

Description

全固态锂微电池正极薄膜制备方法
技术领域
本发明公开了一种全固态锂微电池用LiNi1-xCoxO2正极薄膜的制备方法。它属于电化学和电子产品应用技术领域。
背景技术
全固态锂微电池是近几年发展起来的新型微电池,其原因在于随看微电子器件、动态随机储存器、微传感器、微电机械系统、植入体内的医用器件等系统朝着超微型化方向发展,对电源的要求不再以追求功率和电流为主,迫切要求有体积小、重量轻、比容量高的微型电源与之相匹配。全固态薄膜锂微电池具有机械强度高,不含易燃和易挥发成分,不存在漏液等安全问题,而且这类电池具有超长的储存寿命,适合做各类微电子产品的支撑电源。全固态薄膜锂微电池性能受正极薄膜材料性能的影响较大,正极薄膜材料通常为过渡金属氧化物,而获得价廉,高性能的复合氧化物正极材料薄膜是发展全固态薄膜锂微电池的关键。目前,正极材料薄膜的制备方法主要有射频磁控溅射法,脉冲激光沉积法、化学气相沉积(CVD)法等。这些制膜手段中,涉及昂贵的仪器设备,制膜成本高,或者制膜工艺复杂,制得薄膜性能不佳等。
发明内容
本发明的目的在于将LiNi1-xCoxO2材料用于全固态薄膜锂微电池用正极薄膜,并提供一种制备全固态薄膜锂微电池用LiNi1-xCoxO2正极薄膜的方法。该方法避免了目前有关专利文献中正极薄膜制备成本高,工艺复杂,制得薄膜的性能不佳等缺点,使正极薄膜制备工艺大大简化;制备的正极薄膜致密,且具有较好的电化学性能;可制得较大面积的薄膜。
本发明的目的是这样实现的:
本发明的全固态薄膜锂微电池用正极薄膜材料为LiNi1-xCoxO2,x的值为0≤x<1.0。
所说的全固态薄膜锂微电池用正极薄膜的制备方法:以乙酰丙酮锂,乙酰丙酮镍,醋酸钴为原料,按所制备的LiNi1-xCoxO2,0≤x<1.0中Li、Ni、Co的摩尔比为Li/(Ni+Co)=1.00~1.05∶1.00准确称量各原料,溶于醋酸与醇类的摩尔比为1∶1的混合溶剂中制成溶胶;将溶胶涂敷在具有Pt或Au表面的基体上制得凝胶薄膜,所得凝胶薄膜在350~400℃的平板电炉上蒸发溶剂并将Li、Ni和Co的有机盐分解,制成氧化物薄膜。将氧化物薄膜置于高温烧结炉中,在氧气氛下,650~750℃退火10~60min,即得具有α-NaFeO2层状结构的LiNi1-xCoxO2薄膜。根据需要制得薄膜厚度,可将“匀胶→加热→退火”过程重复多次,直到要求的膜厚度为止。
所说的溶胶涂敷采用的方法为匀胶法(spin coating)。。
所说的醇类包括:甲醇、乙醇、丙醇、丁醇、2-甲氧基乙二醇,及所述醇的两种和两种以上的混合醇。
经测试,制得的LiNi1-xCoxO2薄膜致密性好、均匀、且具有较好的电化学性能。相对于锂参比电极的放电电位在4.15~3.50V之间,可用于全固态锂微电池正极薄膜。
与已有技术相比,本发明制备的LiNi1-xCoxO2正极薄膜具有以下几个显著特点:
1  制备的LiNi1-xCoxO2薄膜致密、均匀,具有α-NaFeO2层状结构
2  薄膜的比容量高、循环性能好
3  可制得较厚、较大面积的薄膜
4  工艺、设备简单,易于掌握,成本低
下面结合实例对本发明作进一步说明:
具体实施方式
实施例1:
LiNi0.80Co0.20O2薄膜制备:准确称取Li(CH3COCH2COCH2)0.5817g,Ni(CH3COCH2COCH2)2·4H2O 1.2722g,Co(CH3COO)2·4H2O 0.2705g,溶入10ml叔丁醇和6.1ml醋酸的混合溶剂中,完全溶解后制成溶胶。采用匀胶的方法将所制得的溶胶涂敷在经过打磨、抛光的Pt基体上,制得凝胶薄膜。匀胶转速为3000转/分,匀胶时间为30秒。将所得凝胶薄膜在平板电炉上于400℃温度加热5min,使溶剂蒸发,并将Li、Ni、Co的有机盐分解成氧化物薄膜。将氧化物薄膜置于高温烧结炉中,在氧气氛下,700℃温度退火60分钟,即得具有α-NaFeO2层状结构的LiNi0.80Co0.20O2薄膜。重复“匀胶→加热→退火”过程9次,经测试所得薄膜的厚度为0.5μm。在50μA/cm2电流、3.0~4.2V电压范围内,以浓度为1mol/l LiClO4/EC+DMC(碳酸乙烯酯+碳酸二甲方酯1∶1体积比)为电解液,对电极为锂片,所制得的LiNi0.80Co0.20O2薄膜首次放电容量达58.4μAh/cm2·μm,50次循环之后,放电容量为45.6μAh/cm2·μm,显示其良好的循环性能。
实施例2:
LiNiO2薄膜制备:准确称取Li(CH3COCH2COCH2)0.5817g,Ni(CH3COCH2COCH2)2·4H2O 1.5903g,溶入10ml叔丁醇和6.1ml醋酸的混合溶剂中,完全溶解后制成溶胶。采用匀胶的方法将所制得的溶胶涂敷在经过打磨、抛光的Pt基体上,制得凝胶薄膜。匀胶转速为3000转/分,匀胶时间为30秒。将所得凝胶薄膜在平板电炉上于380℃温度加热5min,使溶剂蒸发,并将Li、Ni、Co的有机盐分解成氧化物薄膜。将氧化物薄膜置于高温烧结炉中,在氧气氛下,750℃温度退火60分钟,即得具有α-NaFeO2层状结构的LiNiO2薄膜。重复“匀胶→加热→退火”过程9次,经测试所得薄膜的厚度为0.5μm。在50μA/cm2电流、3.0~4.2V电压范围内,以1M LiClO4/EC+DMC(1∶1体积比)为电解液,对电极为锂片,所制得的LiNiO2薄膜首次放电容量达49.4μAh/cm2·μm,50次循环之后,放电容量为30.5μAh/cm2·μm。

Claims (3)

1、一种全固态薄膜锂微电池用正极薄膜的制备方法,该薄膜材料为LiNi1-xCoxO2,x的值为0≤x<1.0,其特征是制备步骤为:
步骤1、以乙酰丙酮锂,乙酰丙酮镍,醋酸钴为原料,按所制备的LiNi1-xCoxO2,0≤x<1.0中Li、Ni、Co的摩尔比为Li/(Ni+Co)=1.00~1.05∶1.00准确称量各原料,溶于醋酸与醇类的摩尔比为1∶1的混合溶剂中制成溶胶;
步骤2、将步骤1制成的溶胶涂敷在具有Pt或Au表面的基体上制得凝胶薄膜,经过350~400℃预分解,再在650~750℃温度氧气氛中退火10~60min即得一层LiNi1-xCoxO2薄膜;
步骤3、重复步骤2的匀胶→加热→退火制备过程,直到所需薄膜厚度为止。
2、按权利要求1所说的全固态薄膜锂微电池用正极薄膜的制备方法,其特征是所说的溶胶涂敷采用的方法为匀胶法。
3、按权利要求1所说的全固态薄膜锂微电池用正极薄膜的制备方法,其特征是所说的醇类包括:甲醇、乙醇、丙醇、丁醇、2-甲氧基乙二醇、及所述醇的两种和两种以上的混合醇。
CNB2005100183573A 2005-03-09 2005-03-09 全固态锂微电池正极薄膜制备方法 Expired - Fee Related CN1293653C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100183573A CN1293653C (zh) 2005-03-09 2005-03-09 全固态锂微电池正极薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100183573A CN1293653C (zh) 2005-03-09 2005-03-09 全固态锂微电池正极薄膜制备方法

Publications (2)

Publication Number Publication Date
CN1655381A CN1655381A (zh) 2005-08-17
CN1293653C true CN1293653C (zh) 2007-01-03

Family

ID=34894260

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100183573A Expired - Fee Related CN1293653C (zh) 2005-03-09 2005-03-09 全固态锂微电池正极薄膜制备方法

Country Status (1)

Country Link
CN (1) CN1293653C (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640265B (zh) * 2009-07-13 2011-09-07 北京安华联合能源科技有限责任公司 一种纳米银颗粒分散LiFePO4薄膜锂离子电池正极制备方法
CN102456926B (zh) * 2010-10-28 2014-10-22 华东师范大学 一种新型三维锂离子电池的构建方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153081A (en) * 1989-07-28 1992-10-06 Csir Lithium manganese oxide compound
CN1289738A (zh) * 1999-09-27 2001-04-04 北京有色金属研究总院 制备锂离子电池正极材料的方法
AU2002100000A4 (en) * 2002-01-02 2002-03-07 Dou, Shi Xue Cathode materials for rechargeable lithium batteries and a process for production
CN1567620A (zh) * 2003-06-25 2005-01-19 南都瑞宝能源科技(上海)有限公司 锂离子电池用正极材料镍钴酸锂及其制备方法
CN1571188A (zh) * 2003-07-25 2005-01-26 桂林工学院 掺杂锰酸锂粉体的相转移合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153081A (en) * 1989-07-28 1992-10-06 Csir Lithium manganese oxide compound
CN1289738A (zh) * 1999-09-27 2001-04-04 北京有色金属研究总院 制备锂离子电池正极材料的方法
AU2002100000A4 (en) * 2002-01-02 2002-03-07 Dou, Shi Xue Cathode materials for rechargeable lithium batteries and a process for production
CN1567620A (zh) * 2003-06-25 2005-01-19 南都瑞宝能源科技(上海)有限公司 锂离子电池用正极材料镍钴酸锂及其制备方法
CN1571188A (zh) * 2003-07-25 2005-01-26 桂林工学院 掺杂锰酸锂粉体的相转移合成方法

Also Published As

Publication number Publication date
CN1655381A (zh) 2005-08-17

Similar Documents

Publication Publication Date Title
US11984551B2 (en) Lithium, phosphorus, sulfur, and iodine containing electrolyte and catholyte compositions, electrolyte membranes for electrochemical devices, and annealing methods of making these electrolytes and catholytes
CN103904360B (zh) 一种固态电解质及其制作方法与全固态锂电池
KR101886514B1 (ko) 전고체 전지용 코어-쉘 구조의 전극 활물질의 제조방법
CN107611476B (zh) 一种表面为非晶态物质的无机固体电解质及其制备方法
Teshima et al. Environmentally friendly growth of well-developed LiCoO2 crystals for lithium-ion rechargeable batteries using a NaCl flux
WO2008004161A2 (en) Method for the manufacture of a thin film electrochemical energy source and device
CN113675460A (zh) 一种无机-有机复合电解质膜及其制备方法与应用
CN110994014A (zh) 全固态聚合物电解质、制备方法以及锂离子电池
CN112151859A (zh) 一种具有两种表面的复合固体电解质及其制备方法
Wang et al. Overcoming the high-voltage limitations of Li-ion batteries using a titanium nitride current collector
Fedorov et al. Functionally graded IT-MOFC electrolytes based on highly conductive δ-Bi2O3–0.2 wt% B2O3 composite with molten grain boundaries
Zhang et al. Understanding how structure and crystallinity affect performance in solid-state batteries using a glass ceramic LiV3O8 cathode
CN1293653C (zh) 全固态锂微电池正极薄膜制备方法
Xia et al. Thin film Li electrolytes for all-solid-state micro-batteries
CN101034741A (zh) 掺锆锰酸锂正极薄膜材料及其制备方法
CN1243385C (zh) 一种锂离子电池正极材料的制造方法
CN108039479B (zh) 一种用于锂电池的阳极材料及其制备方法
CN109103505A (zh) 层状全固态锂离子电池及其制备方法
CN113437359B (zh) 一种聚环氧丙烷基聚合物固态电解质薄膜的制备方法
CN115275363A (zh) 全固态薄膜锂离子电池及其制备方法
CN111029573B (zh) 一种磷酸氧钛钾薄膜负极材料及其制备方法和应用
CN108808109A (zh) 全固态锂离子电池膜及其制备方法
CN115386837A (zh) 一种无铅型高储能密度铁电薄膜的制备方法
Ozer et al. Ionic conductivity of tantalum oxide films prepared by sol-gel process for electrochromic devices
CN1803635A (zh) 改性锂离子电池正极材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070103