CN1284007C - 确定辐射场强度分布的方法和设备 - Google Patents

确定辐射场强度分布的方法和设备 Download PDF

Info

Publication number
CN1284007C
CN1284007C CN02825448.1A CN02825448A CN1284007C CN 1284007 C CN1284007 C CN 1284007C CN 02825448 A CN02825448 A CN 02825448A CN 1284007 C CN1284007 C CN 1284007C
Authority
CN
China
Prior art keywords
equipment
ionization
detector plane
radiation field
ionization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN02825448.1A
Other languages
English (en)
Other versions
CN1606701A (zh
Inventor
阿里·维尔塔宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1606701A publication Critical patent/CN1606701A/zh
Application granted granted Critical
Publication of CN1284007C publication Critical patent/CN1284007C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/185Measuring radiation intensity with ionisation chamber arrangements

Abstract

本发明涉及确定辐射场(23)强度分布的方法和设备。在该方法中,借助于电离室(10)中安排的平行电离检测器平面(11.1,11.2),检测辐射场(23)引起的电离作用,两个检测器平面(11.1,11.2)是由确定X和Y方向上电离结果位置的导线组(14.1,14.2)构成,检测器平面(11.1,11.2)提供电离结果的X和Y坐标X1,Y1。借助于辐射场(23)引起的光核反应产物,产生电离结果。

Description

确定辐射场强度分布的方法和设备
技术领域
本发明涉及用于确定辐射场强度分布的方法和设备,该设备至少包括电离室中安排的两个平行电离检测器平面,检测器平面是由确定X和Y方向上电离结果位置的导线组构成,且其中检测器平面连接到测量电路,使安排的所述两个检测器平面提供电离结果的X和Y坐标。
背景技术
病人护理设备的正常和足够准确和仔细测量性能以及其他的质量控制措施是可靠放射疗法的基础。随着这种工作条件和要求的变化,开发外部放射疗法,加速器和与放射疗法链相关的设备对于放射疗法工作人员带来新的挑战。
在工作时间和现有人员资源的限制下,医务人员实施他们的责任是很困难的。测量装置的复杂性和测量所要求的准备工作意味着,利用当前设备对病人护理设备作质量控制检测也是十分耗费时间的。进行测量占用医务人员整个工作时间,使他们没有时间执行任何其他的任务。此外,在正常的工作时间内不能对放射疗法设备实施质量控制程序所规定的测量,因为该设备在那个时间内需要用于治疗。
除了不断变化的要求以外,开发用于加速和简化医务人员任务测量设备的增大压力还来源于数据管理和数据库系统的开发。
当前用于病人护理设备质量控制测量的一种最新设备解决方案是所谓的充水体模。充水体模包括:充水的有机玻璃容器,在其内部测量辐射场强度的电离检测器可以在X-Y平面上运动。通常包含1~24个电离检测器安排成梳子形状。
检测器的平面运动可以局限于X方向或Y方向。在Z方向的不同深度上重复平面测量。由于存在少量检测器,位置测量的精确度仅仅是几个厘米。增大检测器数目就大大提高装置的价格和所需复杂电子元件的数量。
利用该检测器所做的测量可能占用几个小时,在此期间,环境温度等各种因素可能发生变化,同时改变检测器电离室中的气体压力。在此之后补偿它产生的测量误差是困难的,从而降低测量的可靠性。
除了以上所述的以外,由于检测器扫描辐射场的测量原理,按照最新技术的充水体模不能测量独立于时间的辐射场强度分布。实际上,所有新的加速器是时间有关的,能够确定辐射场强度分布的所谓动态场加速器是十分理想的。
代表最新技术的第二种装置是平面检测器,它通常包含少于10个电离室,用于高速质量保证测量以检查辐射场的稳定性,均匀性和对称性。这些装置的位置分辨率是低的,仅为几个厘米,因此,它们不能测量动态场中位置的微小变化。
在最新技术的基础上,还可以断言,即使最新的检测器型号也已远远落后于加速器以及其他测量分析装置的发展。从它们十分简单的用户接口中也可以看出已知装置是落后的。
在US专利出版物4,485,307中公开最新技术的第三种装置。该装置是用于器官内的放射性同位素诊断。其中,充气室中设置的XY平面检测器是由两个阴极层构成。阴极层是由沿一个方向的导线组成,且互相之间设置成相等的间隔。各层的导线走向是这样安排的,可以根据它们确定辐射场的XY位置。然而,这种类型的设备不能实时确定产生动态场的现代高能放射疗法装置的辐射场形状。此外,放射性同位素诊断的工作环境是,其辐射场的能量和强度与病人护理设备的能量和强度在数量级上有很大的不同,因此,不可能在加速器环境下利用该出版物中公开的设备。
发明内容
本发明的目的是制造适合于监测病人护理设备质量的完全新型设备,它可以容易和快速地测量静态和动态辐射场,并消除剂量测定中人为误差的可能性。本发明还涉及该设备的使用方法,它可以利用电离室的工作原理确定高能辐射场的形状。权利要求1中叙述按照本发明方法的特征,而权利要求4中叙述该设备的特征。
在按照本发明的方法中,辐射场引起的光核反应用于确定辐射场的形状,该设备包括光反应转换器。按照一个优选实施例,准直光核反应产物的传播方向。这可以提高该设备的位置精确度。按照另一个优选实施例,光核反应转换器可以由一种或多种物质层构成,使它可以改变利用该设备研究的能量区和强度灵敏度。
按照本发明的设备使医院工作人员的工作更有意义和动力,因为测量事件本身的速度远远高于利用当前已知的设备。
与最新技术比较,利用按照本发明的设备,通过单次测量可以快速地建立辐射场的实时图像。这还可以确定利用当前的病人护理技术获得动态场的时间依赖关系,并使该设备对于环境中发生的变化是中性的。因此,该测量是非常可靠的,它的位置精确度优于最新技术。除此以外,通过调整加速器和它的参数,可以实时改变辐射场的形状。
按照本发明的设备不受辐射损伤的影响,并获得这样一些附加的优点,小的屏蔽效应和容易安排大范围辐射场的测量。与基于最新技术的设备比较,它的另一个特征是电路的简单性和廉价。根据所附的权利要求书,按照本发明设备的其他特征是显而易见的。
附图说明
参照附图更详细地研究按照本发明的设备,其结构不限于以下描述的实施例,其中:
图1表示按照本发明一种设备的示意图,
图2表示图1所示设备的切断剖面图,
图3按照本发明一种改进设备的示意图,
图4表示图3所示按照本发明改进设备的电路图,
图5表示第二个实施例光反应转换器的示意图,和
图6表示一些可能的光反应转换器材料中的中子相互作用区。
具体实施方式
图1和图2表示按照本发明一个实施例设备的简化工作原理。该设备的外壳是由电离室10构成,例如,电离室10是30cm长和1cm高。电离室10中充满作为负压的电离气体,例如,正戊烷。惰性气体,碳化氢和它们的混合物可以用作电离室10的填充气体。负压(例如,1~6Torr)的使用导致电离室10有略微圆形侧面。
在图1和图2所示的实施例中,网状检测器平面12位于电离室10中,它的作用是排斥电子和吸引正气体分子和离子的阴极平面,且它是由连接到电源21负电势21.1的钨导线12.1,12.2(导线直径为100μm)制成。信号线13.3连接到阴极平面12,用于引导电流脉冲t到测量电路18,由于辐射场造成的电离作用,电流脉冲t是在电离室10中产生的。
作为阳极和吸引电子并连接到电源21的检测器平面11.1,11.2安排在相对于阴极平面12之上和之下一个短的距离(例如,7~8mm),它与阴极平面12平行。电源21电势21.2的符号与连接到阴极平面12电势21.1的符号相反。
阳极平面11.1,11.2是由互相隔开恒定距离的平行导线14.1,14.2构成,例如,其材料可以是镀金钨线,直径为20~40μm。阳极平面11.1,11.2在电离室10中最好是这样安排的,阳极平面11.1导线14.1饿方向与阳极平面11.2导线14.2的方向成直角,因此,检测器平面11.1确定X方向,而检测器平面11.2确定Y方向。在按照该例子的设备中,每个检测器平面11.1,11.2中导线的数目是100,所以,它们形成10,000个相交点。例如,导线之间的距离可以是1~10mm,最好是2~7mm。
阴极平面12和设置在其两侧的阳极平面11.1,11.2在电离室10中安排成与电离室10的壁10.1平行,壁10.1大致面向辐射场23的入射方向。
按照一个优选实施例,构成阳极平面11.1,11.2的导线14.1,14.2由延迟元件15互相连接到平面11.1,11.2的一端,延迟元件15与导线14.1,14.2成直角。延迟元件15构成阳极平面11.1,11.2顺序连接的延迟线17.1,17.2。延迟元件15的特征是,其中电荷的传播速度是已知的。
图1和图2所示的延迟线17.1,17.2是以示意图方式画出的。实际上,延迟元件15以及由其构成的延迟线17.1,17.2是由形成导线组的相邻导线14.1,14.2构成,借助于集成半导体元件(未画出),给每个导线组安排延迟元件15,连续设置的半导体元件在功能上形成图1和图2所示的延迟线17.1,17.2。
按照图1和图2所示的一个优选实施例,延迟线17.1,17.2的第一端安排在与阳极平面11.1,11.2边缘最接近的导线14.1′,14.2′处终止。从与边缘14.1′,14.2′最接近的导线开始,延迟元件15连接阳极平面11.1,11.2导线14.1,14.2的末端到阳极平面11.1,11.2相反边缘的导线14.1*,14.2*,因此,由于辐射引起电离作用10产生的电流脉冲X1,Y1被延迟线17.1,17.2引导到测量电路18。
这样的实施例也是可能的,从每根导线14.1,14.2到测量电路有分开的导线,但是,这种实施方案使设备变得非常复杂。
因为按照本发明设备的运行是基于观察气体中引起的电离作用,它是由病人护理装置发射高能量辐射造成的,辐射场的高能量和高强度产生某些分辨率问题,以下更详细地研究其背景。
在利用病人护理中当前使用的加速器时(例如,Linac加速器),典型的辐射在1kg空气中每秒产生约2×1015对离子。这相当于在NTP条件下的1cm3空气中(空气密度为1.293mg/cm3)每秒产生约2×109对离子。
例如,利用Klein-Nishina公式计算各个能量水平下散射光子的角分布,可以估算检测器中传播的辐射量。我们可以观察到,在10Mev下超过90%的光子相对于它们到达方向的散射角小于10度。假设散射作用平均是在2度范围内,则一个光子在散射中释放的能量是120kev。这相当于在NTP条件下1cm3空气中每秒有近600,000次光子相互作用(相同光子仅发生一次相互作用)。
按照本发明电离室10的有效体积在该例子的情况下约为2.5升,它大于以上计算例子中体积的1千倍。这相当于600MHz以上的频率,它超过按照该例子中设备测量电路18能够工作的1MHz限制。
通过减小电离室10的气体压力或体积,等等,利用有较弱电离的气体,通过减小加速器的强度,可以降低频率。然而,可能出现这样的情况,辐射场不能产生足够的点火电压,因此,电子之间互相碰撞的概率变得太低,不能产生电离室10运行所必需的电子雪崩现象。
在按照本发明的设备中,解决这个问题的方法是利用光核反应。在这种情况下,病人护理装置辐射中发射的高能光子与重核的相互作用产生核反应。
按照本发明的方法,为了实现光核反应,薄的铀层或铍层形式的光反应转换器16安排在壁10.1的内侧,壁10.1面向按照本发明电离室10中辐射场23的方向,如图1和图2所示。最好是,铀用于15~20MeV下的辐射。在使用铀时,光反应转换器16的厚度是0.1~100μm,最好是3~15μm,它取决于所用的表面材料。在使用铍时,厚度可以更大些。众所周知,光核反应的横截面积在典型的加速器能量下可以从几十毫靶(1mb=10-3b=10-24cm2)至大于300毫靶。光核反应反冲,铀的重核和铍的α粒子,使电离室10中的气体强有力地电离。除了重核以外,铀反应产生一个或多个轻粒子,例如,中子(所谓的光中子反应)或两个中重核(光裂变)。
准直器19的安装成与光反应转换器16相连,用于控制光核反应产物的传播方向。借助于准直器19,按照准直器19特性参数的设定准则,使反应产物的路径沿一个直线方向直接向下到达阳极平面11.1,11.2。这可以防止电离室10中横向反应产物引起电离位置数据的失真效应。
现在根据光反应产物数目次要地确定该设备的计算频率,代替气体中主要由辐射引起的电离作用。若光反应转换器16中每个平方厘米的目标原子数目,光中子反应的横截面积与光子能量的关系,和每秒的光子通量是已知的,则可以估算这个计算频率。
利用吸收定律可以估算光子通量,在利用该定律时还必须估算直接通过气体而没有与它相互作用的光子通量和光子的原始通量。此外,在估算光子通量时所需的参数包括:电离室10中气体(例如,氧气)的总吸收系数(cm2/g),气体的表面密度(=1.293×10-3g/cm2),和气体层的厚度(=1cm)。
众所周知,在研究氧气O2的吸收系数作为光子能量的函数时,吸收通常发生在几乎完全通过Compton散射(非相干散射)的病人护理中使用的加速器能量,以及仅仅在接近20MeV的能量下成对产物开始变成重要的相互作用机构。
按照以上的研究,在1cm3(NTP)中每秒发生600,000次Compton散射,换句话说,原始光子通量与直接通过气体而没有与它相互作用的光子通量之差是6×105。把气体的这个估算的总吸收系数(~2×102)和气体的给定表面密度和表面层厚度代入到吸收定律中,并求解与原始光通量的关系,得到的结果是2.3×1010s-1。该结果可以当作每秒光子通量的估算值,在这种情况下,得到的反应数目约为每秒10,000次反应,例如,铀膜的厚度1mg/cm2(0.5μm)和10MeV的辐射(横截面积~200mb),在按照本发明设备的计算容量(1MHz)内,这已经是很清楚的。
应当注意,在给出的计算例子中,其目的是大略估算反应次数的数量级。实际上,推迟辐射频谱是连续的,因此,它包括高达加速器最大能量的所有光子能量。因此,在估算中使用的10MeV能量和对应的横截面积是‘平均值’。
利用沉积方法,可以制造非常薄的铀层,因此,如果需要,几乎可以任意地减小反应次数。然而,不能任意地增大光反应转换器16的厚度,因为它强烈地散射和吸收产生的重反应产品。然而,通过增大准直器平板中空洞数目和/或减薄准直器,但它确实导致较差的位置分辨率,可以增加反应产物。反应产物的总数也受加速器强度(60->600R/min,R=Rontgen=258μC/kg),辐射时间和能量(=横截面积)的影响。
在利用光反应转换器16时,相互作用,即,产生的电离反冲粒子数目与电离室10中的气体量(压力)无关。与气体中因相互作用产生的散射电子比较,重粒子更容易产生引起充电脉冲的较大电子雪崩。利用这种情况可以使压力和点火电压最佳化,从而减小气体中Compton电子引起的干扰背景和试图加强反冲离子产生的脉冲。
在按照本发明设备的改进实施例中,如图3所示,在电离室10中安排两个电离检测器平面11.1,11.2作为阳极,如图1和图2的实施例所示,而作为阴极的第三检测器平面12位于检测器平面11.1,11.2之间。此外,光反应转换器16和准直器19与壁10.1是分开安排的,壁10.1与辐射方向成直角。
在壁10.1与光反应转换器16之间,安排附加的阴极平面22,它在功能上相当于所述第三检测器平面12,与该平面相联系的是安排引导电流脉冲t′到测量电路的装置13.4。利用附加的阴极平面22可以减小直接来自病人护理装置中Compton电子产生的干扰背景,它是被环境散射和在壁10.1中产生的。这是借助于测量电路通过补偿信号t,t′实现的。
此外,阳极平面的延迟线17.1,17.2在两端互相连接,用于引导光核反应引起的电流脉冲X1,X2,Y1,Y2到测量电路18。这可以改进信号的形状和电离结果中XY位置数据的分辨率。图3还展示与电离室10的气体馈送连接20。
图4表示在图3所示实施例中一个优选测量电路实施方案的例子。测量电路18包括电子学中熟知的功能电路元件。
阴极平面12,22的信号线13.3,13.4包括:从阴极12,22开始的各个元件,前置放大器PAK1,PAK2(例如,KERT AT53S),之后是定时滤波放大器TFAK1,TFAK2(例如,GSIDTFA 83)。在第二个前置放大器中,信号的极性被转换成相反的符号。这些位于阴极12,22信号线13.3,13.4上的元件之后是信号线13.3,13.4的公共加法电路SUM,借助于加法电路SUM,来自两个阴极的电流脉冲t,t′相加在一起。由于是相反的符号,因此它们互相补偿。
因为高能Compton电子在光电子转换器中仅仅轻微地相互作用,它们引起补偿的信号t,t′和由反应产物引起的信号t′传输通过SUM加法电路。这些信号被引导到恒定分式鉴别器CFDK(例如,ORTECCF 8000),并由此到达延迟门发生器CGK。在此之后,阴极信号被引导到模数转换器ADC(例如,ORTEC 413A)。
为了引导阳极平面11.1,11.2的电流脉冲X1,X2,Y1,Y2到测量电路18,在延迟线17.1,17.2的两端安排延迟线专用的单独线路13.1′,13.1*,13.2′,13.2*作为输出端。在线路13.1′,13.1*中,阳极11.1之后是前置放大器PAAX1,PAAX2,由此取出脉冲X1,X2通过第二线路13.1′中的恒定分式鉴别器CFDAX1,CFDAX2,它们被直接引导到时间/幅度转换器TACX(例如,ORTEC 467)。
在第二线路13.1*中,在TACX之前是延迟门发生器GGX2和延迟元件DLX2(例如,GAEN 107,GAEN 108)。这保证信号X2相对于信号X1总是延迟的,且TACX中形成正比于它们时间差的脉冲是正的。信号从TACX中引导到模数转换器ADC,如同在上述阴极线路13.3,13.4中的情况。
确定Y方向上电离结果的阳极11.2也有功能基本类似的信号线路安排,它的信号线路13.2′,13.2*是从其延迟线17.2的两端开始,为了引导电流脉冲Y1,Y2到测量电路18。
借助于TACX和TACY,电流脉冲X1,X2与Y1,Y2的时间差被转换成幅度,幅度的AD转换可以解释成对应的X,Y位置数据。从延迟线17.1,17.2的两端取出电流脉冲,并互相推导它们的值,可以得到远比图1所示实施例更准确的XY位置数据,其测量电路18′相当于图4所示的测量电路,不同的是,它没有对应于附加阴极22和加法电路SUM的信号线13.4,以及配置X和Y阳极平面11.1,11.2上延迟元件DLX2,DLY2的信号线13.1*,13.2*。操作上,这种测量电路18′的实施方案是功能性的,但是利用图4所示的组合,在确定辐射场23引起光核反应的电离结果XY位置数据方面,可以获得更准确的结果。再应用加法电路技术到阳极信号,可以获得比这个结果甚至更好的结果。
由测量电路18转换阴极12,22的电流脉冲t,t′和阳极11.1,11.2的电流脉冲输入到PC计算机24,利用与此有关的专用软件计算辐射场23的XY位置数据作为给定信号的输入,为的是给出辐射场23的形状。
给测量电路18的阴极线路13.3,13.4安排单独的电源26,27(通常为400~600V),和给阳极线路13.1′,13.1*,13.2′,13.2*安排公共的偏置电源25。图4没有画出阳极11.1,11.2阴极12,22的实际电源。
图5表示另一个实施例中光反应转换器16方案的示意图。因为在低的γ能量下(小于9MeV),完全由铀238制成的转换器16实际上不产生从本发明观点考虑是十分重要的光核反应,可以安排反应转换器16包括互相重叠的多层。在这个实施例中,面向辐射场23到达方向的电离室10中壁10.1之后首先是铍层Be-9,其中在小于2MeV能量(阈值能量为1.67MeV)下已发生反应。Be-9层之后是铀层U-238。在图5中,画出的各层是互相分开的,为的是更好地展示产生的反应产物。实际上,各层之间是互相重叠的。
辐射场23首先在铍层中产生Be-9γ->中子Be(γ,n)反应,其中释放中子和两个α粒子。在反应中释放的中子再撞击铀层U-238,引起中子->裂变U(n,f)反应。在这种情况下,释放的重裂变产物使气体强烈地电离,按照与高能下发生γ->裂变U(γ,f)反应描述的相同方法进行测量。
图6[1]表示铀U-235,U-238和钚Pu-239的中子横截面积。从图中可以看出,在小于2MeV下,中子在U-235中不再产生反应,转换器的材料必须用U-238(Pu-239)代替。当然,利用铀和钚的其他同位素也是可行的。
其次,描述按照本发明设备的运行。病人护理装置(未画出)发射的光子(γ光束)在电离室10的铀层或铍层16中产生光核反应,在电离室10中由于强烈电离气体产生重核或α粒子。在反应中,除了重核或α粒子以外,产生一个或多个轻粒子,通常是中子,因此,它是所谓光中子反应的问题,或者,产生两个中重核,在此情况下,它是所谓的光裂变。当气体电离时,电子从其中脱离,在它传播通过电离室10时,该电子与其他气体原子的电子发生碰撞,因此产生电子雪崩,它是足够地大以产生电流脉冲,利用检测器装置12,22,11.1,11.2可以测量该电流脉冲。
电离室10中的阴极12,22与阳极11.1,11.2之间存在电势差,因此,产生的电子雪崩传输到正电势的阳极11.1,11.2。电子雪崩在导线14.1,14.2中产生测量电路18可以检测的电流脉冲,这些导线主要是在接近于转换器16中γ光束击中的位置。由于电离作用的结果,气体分子和离子在阴极12上产生电流脉冲t,它可用于设定测量电路18的时间窗起点。可以区分电流脉冲t,因为与该电流脉冲同时发生的脉冲被附加阴极22接收,不需要考虑这些脉冲。在初始点t之后,借助于对应的时间点可以确定电离结果的XY位置数据,利用测量电路18确定对应于电离作用XY位置的电流脉冲X1,X2,Y1,Y2的对应时间点,这些电流脉冲是从阳极平面11.1,11.2到达测量电路18。
实际上,传播到阳极11.1,11.2的电子雪崩可以在几个相邻的阳极导线14.1,14.2中产生电流脉冲。然而,这对于该设备的测量精度没有重大影响,因为与对应实际击中点相邻导线的导线中信号对于位置数据是足够地弱,它可以确定为单根导线的精确度。
电流脉冲被阳极11.1,11.2收集到延迟线17.1,17.2,其中电荷的传播速度是已知的,即构成延迟线17.1,17.2的延迟元件15的延迟时间是已知的。与此进行比较,各个阳极导线14.1,14.2的延迟是如此地小,它们没有实际意义。例如,在图1和图2所示设备的情况下,若电荷从延迟线17.1,17.2的一端传播到另一端的时间是100ns,其中电荷从确定X方向的延迟线17.2上击中点的传播需要70ns,和电荷从确定Y方向的延迟线17.1上击中点的传播需要30ns,则利用测量电路18可以确定XY坐标上设定的击中位置。在此情况下,它是点(TX=70,TY=30)。通过收集一组点(TX,TY),可以确定电离室10表面上的强度分布。
在图3所示的实施例中,从延迟线17.1,17.2两端得到对应于电流脉冲X1,X2,Y1,Y2的时间是根据给出尖锐信号X2-X1,Y2-Y1导出,在此基础上得到更精确的XY位置数据。两个电流脉冲的时间差正比于电离结果的位置数据。
由于利用本发明设备获得短的测量时间,不需要考虑测量事件中发生的环境温度变化以及由此引起电离室10中气体压力的变化。此外,测量点的XY定位精度是极好的,因为它仅仅由构成阳极平面11.1,11.2的导线14.1与14.2之间距离所确定。
准确的气体馈送,压力调节和监测系统(未画出)也可以装入到按照本发明的设备中,它还可以进行压力测试。根据重离子优化该设备中的气体压力,因此,可以发生既不太多也不太少的激励。测量电路18可以适合于所利用的脉冲高度和阈值电压。
该设备包括测量电路18,气体馈送和数据处理,以及控制操作系统的必需连接。该系统具有准确的软件基自动控制能力,用于监测点火电压和气体压力。该设备不但包含测量电路18,还包含用户接口30,用于控制和处理测量数据。用户接口30可以容易地连接到用于质量控制的自动数据系统和加速器(未画出)。
光核反应中还产生中子。然而,实际上中子是非常少的。电离室10中的壁可以由减慢中子的材料制成,例如,利用石蜡或硼制成。此外,当加速器工作时,不允许任何人呆在测量室中,所以,操作光核反应对于设备操作员和环境都是无害的。在电离室10的内部,热中子仅在薄型光反应转换器16和阳极导线14.1,14.2中能够产生长期放射性,但由于重材料的数量很少,这种放射性是不严重的。然而,应当监测放射性的可能累积。
本发明获得的一个主要优点是消除剂量测定中可能的人为误差。这是借助于用户友好和方便使用的操作系统30和把加速器集成到测量中实现的。此外,测量过程变得较简单和更合理,因为按照本发明的设备消除不必要的手工操作阶段。
以下是收集与放射疗法质量控制有关的更重要测量内容,利用按照本发明的设备可以有利地实现。
按照具体测量协议的等剂量测定,其中利用预定的场范围值测量辐射场标准深度下水中的剂量分布。测量结果可用于配置剂量计划程序和质量控制。
场范围值系数和楔形系数的定义是用于预定的矩形场。在这种情况下,定义辐射场中心轴上的最大剂量,并测量所在位置处特定监控单元(MU)产生的剂量。把该结果相对于标准场(10cm×10cm)的剂量进行标准化。楔形系数的定义是相对于开放场和对应楔形场的剂量。
剂量定标,其中确定护理装置产生的剂量与该装置监控单元设定之间的对应关系。在10cm×10cm范围的辐射场中心轴上,剂量定义为每种类型辐射能量的最大剂量。剂量定标的精确度是极其重要的,因为它构成所有护理剂量的基础。
在确定剂量的线性度时,它是预定监测单元辐射时的剂量线性度。
确定剂量的可重复性,其中几次重复特定监测单元的辐射,从而确定剂量的可重复性。
剂量与不同的倾斜角有依赖关系,因为放射疗法加速器产生的辐射场在某种程度上取决于加速器的倾斜角。该变化是加速器的机构引起的,以及在某种程度上与重力有关。
由于加速器和其他机械结构中运动部分的容差,剂量的变化也作为准直器转动的函数出现。利用各种能量下预定的准直器夹角,测定剂量的变化。
必须明白,以上的描述和相关的附图仅仅用于说明本发明。按照本发明方法和设备中的基本要素是利用光核反应。在此描述的基础上,的确有几种不同的测量电路方案和确定电离结果中XY位置数据的方式。因此,本发明不局限于上述的实施例或权利要求书中规定的内容,在所附权利要求书规定本发明的思想范围内,许多不同的变化方案和修改对于本领域专业人员而言是显而易见的。
参考文献
[1]OECD/NEA 1989,Plutonium fuel-an assessment Taube 1974,Plutonium-a general survey。

Claims (17)

1.一种用于确定辐射场(23)强度分布的方法,其中借助于电离室(10)中安排的平行电离检测器平面(11.1,11.2),检测辐射场(23)引起的电离作用,两个检测器平面(11.1,11.2)是由确定X和Y方向上电离结果位置的导线组(14.1,14.2)构成,该检测器平面(11.1,11.2)提供电离结果的X和Y坐标X1,Y1,其特征是,借助于辐射场(23)引起的光核反应产物,建立电离结果。
2.按照权利要求1的方法,其特征是,准直光核反应产物的传播方向相对于检测器平面(11.1,11.2)基本成直角。
3.  按照权利要求1或2的方法,其特征是,通过一个或多个中间产物阶段,建立所述光核反应产物。
4.一种用于确定辐射场(23)强度分布的设备,该设备至少包括电离室(10)中安排的两个平行电离检测器平面(11.1,11.2),电离检测器平面(11.1,11.2)是由确定X和Y方向上电离结果位置的导线组(14.1,14.2)构成,它们提供电离结果的X和Y坐标X1,Y1,其特征是,光反应转换器(16)装入电离室(10)以实现该设备中的间接检测。
5.按照权利要求4的设备,其特征是,所述光反应转换器(16)安排成包括一层或多层铀和/或铍。
6.按照权利要求4或5的设备,其特征是,所述光反应转换器(16)的厚度是0.1~100μm。
7.按照权利要求4或5的设备,其特征是,所述光反应转换器(16)的厚度是是3~15μm。
8.按照权利要求7的设备,其特征是,所述光反应转换器(16)安排在电离室(10)中,电离室的壁(10.1)安排成面向辐射场(23)的方向。
9.按照权利要求4或5的设备,其特征是,用于控制光核反应产物传播方向的准直装置(19)安排成与该设备相连。
10.按照权利要求4的设备,其特征是,该设备包括用于确定每次测量时间窗的第三检测器平面(12),且所述两个检测器平面(11.1,11.2)安排成作为阳极,而所述第三检测器平面(12)作为阴极。
11.按照权利要求4的设备,其特征是,所述两个检测器平面(11.1,11.2)的导线组(14.1,14.2)安排成至少一端连接到测量电路(18)。
12.按照权利要求11的设备,其特征是,所述两个检测器平面(11.1,11.2)的导线组(14.1,14.2)的至少一端安排成与延迟元件(15)连接,因此,相继连接的所述延迟元件(15)安排成建立延迟线(17.1,17.2),借助于延迟线(17.1,17.2),电离结果产生的电流脉冲安排成从延迟线(17.1,17.2)的至少一端引导到测量电路(18)。
13.按照权利要求12的设备,其特征是,辐射场(23)产生的电流脉冲安排成从延迟线(17.1,17.2)的两端引导到测量电路(18),其中延迟装置(DLX2,DLY2)安排成从延迟线(17.1,17.2)的一端引导电流脉冲,为的是提高该设备的位置分辨率。
14.按照权利要求10-12中任何一个的设备,其特征是,所述两个检测器平面(11.1,11.2)安排成由导线组(14.1,14.2)构成,导线之间的距离是1~10mm。
15.按照权利要求10-12中任何一个的设备,其特征是,所述两个检测器平面(11.1,11.2)安排成由导线组(14.1,14.2)构成,导线之间的距离是2~7mm。
16.按照权利要求10-13中任何一个的设备,其特征是,除了所述检测器平面(12,11.1,11.2)以外,在电离室(10)中安排功能相当于所述第三检测器平面(12)的平面(22),为的是提高该设备的分辨率。
17.按照权利要求16的设备,其特征是,电离室(10)中安排的电离气体是惰性气体或碳化氢或基于它们的混合物。
CN02825448.1A 2001-12-20 2002-12-18 确定辐射场强度分布的方法和设备 Expired - Fee Related CN1284007C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20015052A FI112285B (fi) 2001-12-20 2001-12-20 Menetelmä ja laitteisto ajasta riippuvan säteilykentän intensiteettijakauman määrittämiseksi
FI20015052 2001-12-20

Publications (2)

Publication Number Publication Date
CN1606701A CN1606701A (zh) 2005-04-13
CN1284007C true CN1284007C (zh) 2006-11-08

Family

ID=8562662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02825448.1A Expired - Fee Related CN1284007C (zh) 2001-12-20 2002-12-18 确定辐射场强度分布的方法和设备

Country Status (8)

Country Link
US (1) US7170066B2 (zh)
EP (1) EP1456692A1 (zh)
JP (1) JP4663234B2 (zh)
CN (1) CN1284007C (zh)
AU (1) AU2002352291A1 (zh)
CA (1) CA2468140A1 (zh)
FI (1) FI112285B (zh)
WO (1) WO2003054582A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028035A1 (de) * 2004-06-09 2005-12-29 Gesellschaft für Schwerionenforschung mbH Vorrichtung und Verfahren zur Kompensation von Bewegungen eines Zielvolumens während einer Ionenstrahl-Bestrahlung
US7564039B1 (en) * 2004-06-17 2009-07-21 Integrated Sensors, Llc Dual substrate plasma panel based ionizing radiation detector
US7332726B2 (en) * 2004-06-19 2008-02-19 Integrated Sensors, Llc Plasma panel based ionizing radiation detector
WO2008133710A2 (en) 2006-10-28 2008-11-06 Integrated Sensors, Llc Plasma panel based radiation detector
US9817822B2 (en) * 2008-02-07 2017-11-14 International Business Machines Corporation Managing white space in a portal web page
FR2939906B1 (fr) * 2008-12-16 2011-11-25 Commissariat Energie Atomique Procede de determination de distribution spectrale et spatiale de photons de freinage et dispositif associe
EP2628021B1 (en) * 2010-10-15 2018-09-19 Atomic Energy Of Canada Limited Directional radiation detection apparatus and method using inverse collimation
GB2492999A (en) 2011-07-20 2013-01-23 Univ Central Lancashire Neutron detector
US9645255B2 (en) * 2011-09-21 2017-05-09 Varian Medical Systems Particle Therapy Gmbh Method for efficient daily constancy check or calibration of proton therapy system
CN102608558B (zh) * 2012-03-31 2014-06-25 上海市计量测试技术研究院 辐射场均匀性校验定位装置
US9529099B2 (en) 2012-11-14 2016-12-27 Integrated Sensors, Llc Microcavity plasma panel radiation detector
US9964651B2 (en) 2013-03-15 2018-05-08 Integrated Sensors, Llc Ultra-thin plasma panel radiation detector
US9551795B2 (en) 2013-03-15 2017-01-24 Integrated Sensors, Llc Ultra-thin plasma radiation detector
US9851452B2 (en) 2013-09-04 2017-12-26 C-Rad Imaging Ab Converter unit
JP6733677B2 (ja) * 2015-09-30 2020-08-05 大日本印刷株式会社 核医学検査装置及び核医学検査方法
JP6645709B2 (ja) * 2016-05-18 2020-02-14 三菱電機株式会社 線量分布モニタおよび放射線照射システム
CN106783502B (zh) * 2016-11-30 2018-08-24 中国科学院上海应用物理研究所 一种同步辐射软x射线无损实时位置分辨电离室
EP4224216A1 (en) * 2020-10-01 2023-08-09 Dai Nippon Printing Co., Ltd. Detection device
CN113566970B (zh) * 2021-06-22 2023-06-16 中国辐射防护研究院 一种Pu-238同位素热源的搜寻方法和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772521A (en) * 1971-08-30 1973-11-13 Univ California Radiation camera and delay line readout
US3760183A (en) * 1972-06-08 1973-09-18 Gen Electric Neutron detector system
JPS5840823B2 (ja) * 1976-12-09 1983-09-08 株式会社東芝 放射線検出器
US4320299A (en) * 1977-06-24 1982-03-16 National Research Development Corporation Position-sensitive neutral particle sensor
US4485307A (en) 1982-01-27 1984-11-27 Massachusetts Institute Of Technology Medical gamma ray imaging
JPH0330126Y2 (zh) * 1985-06-07 1991-06-26
US4999501A (en) * 1985-08-27 1991-03-12 Baylor College Of Medicine High speed multiwire photon camera
FR2591036A1 (fr) * 1985-12-04 1987-06-05 Balteau Dispositif de detection et de localisation de particules neutres, et applications
JPS62133377A (ja) * 1985-12-06 1987-06-16 Rigaku Denki Kk X線入射位置検出装置
GB8606086D0 (en) * 1986-03-12 1986-04-16 Marsden P K Cathode/converter
JPS6340244A (ja) * 1986-08-05 1988-02-20 Mitsubishi Electric Corp 原子炉用中性子検出器
DE3704716A1 (de) * 1987-02-14 1988-08-25 Kernforschungsanlage Juelich Ortsempfindlicher detektor
DE3744808A1 (de) * 1987-10-17 1989-09-07 Berthold Lab Prof R Zweidimensionales proportionalzaehlrohr zur ortsempfindlichen messung von ionisierender strahlung
JPH0262993A (ja) * 1988-08-29 1990-03-02 Mc Sci:Kk 位置検出型放射線検出装置及びその調整方法
JP2609707B2 (ja) * 1988-11-04 1997-05-14 株式会社東芝 核分裂性物質測定装置
JPH02222886A (ja) * 1989-02-14 1990-09-05 Toshiba Corp 核燃料物質の濃度分布測定方法およびその装置
GB9203466D0 (en) * 1992-02-19 1992-04-08 Philips Electronics Uk Ltd Apparatus for detecting high energy radiation
AU6449994A (en) * 1993-04-30 1994-11-21 Board Of Regents, The University Of Texas System Megavoltage scanning imager and method for its use
JP3222725B2 (ja) * 1995-04-21 2001-10-29 核燃料サイクル開発機構 光核反応断面積の判定方法、原子核変換方法およびゲルマニウム検出器
US6100532A (en) * 1997-03-14 2000-08-08 Triumf Detector for gamma rays
DE19711927A1 (de) 1997-03-21 1998-09-24 Siemens Ag Energieselektive Detektoranordnung

Also Published As

Publication number Publication date
FI20015052A (fi) 2003-06-21
CA2468140A1 (en) 2003-07-03
AU2002352291A1 (en) 2003-07-09
US20050006591A1 (en) 2005-01-13
JP2005513486A (ja) 2005-05-12
WO2003054582A1 (en) 2003-07-03
FI112285B (fi) 2003-11-14
FI20015052A0 (fi) 2001-12-20
US7170066B2 (en) 2007-01-30
EP1456692A1 (en) 2004-09-15
JP4663234B2 (ja) 2011-04-06
CN1606701A (zh) 2005-04-13

Similar Documents

Publication Publication Date Title
CN1284007C (zh) 确定辐射场强度分布的方法和设备
CN108680943B (zh) 一种基于瞬发伽马射线中子活化分析技术的中子能谱测量装置及方法
Boretzky et al. NeuLAND: The high-resolution neutron time-of-flight spectrometer for R3B at FAIR
Birgersson et al. Properties of the reaction 238U (n, f) at the vibrational resonances
CN101477205A (zh) 基于多算法的放射源反演方法
Kindin et al. A Cherenkov Water Calorimeter Based on Quasi-Spherical Modules
Messi et al. The neutron tagging facility at Lund University
Fan et al. Detection of low-energy charged-particle using the ΔE-E telescope at the Back-n white neutron source
Ayllon Unzueta et al. An all-digital associated particle imaging system for the 3D determination of isotopic distributions
Curtis et al. The construction and operation of a hybrid gas-silicon detector for studies of cluster breakup reactions
Dehning et al. LHC beam loss detector design: Simulation and measurements
Ruirui et al. Detector development at the Back-n white neutron source
RU2527137C2 (ru) Способ определения изотопного отношения делящегося вещества, содержащегося в камере деления
Sanami et al. Methodology for the neutron time of flight measurement of 120-GeV proton-induced reactions on a thick copper target
Joković et al. Application of Geant4 simulation in measurement of cosmic-ray muon flux and studies of muon-induced background
Tsuno et al. Gamma-ray sensitivity of a thin gap chamber
Moyer et al. Characteristics of π 0 Production from Proton-Proton Collisions near Threshold
JP2013120123A (ja) 核種組成分析装置、核種組成分析方法
Miller et al. Scintillator-based measurement of off-axis neutron and photon dose rates during proton therapy
Bäck Prestudy: Detectors for variance measurements in the nanometer range
Baruffaldi Development of a Proton Tomography scanner
Liu et al. Measurement of differential cross sections of neutron-induced alpha production reactions on carbon from 6.3 to 102.3 MeV
Mauritzson Neutron-Induced Scintillation in Organics
Annand et al. Liquid scintillation counter stability
Byrd Calculations of the response of shielded detectors to gamma rays at MeV-range energies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061108

Termination date: 20121218