CN1283906C - 从产生蒸汽的工艺过程中回收功 - Google Patents

从产生蒸汽的工艺过程中回收功 Download PDF

Info

Publication number
CN1283906C
CN1283906C CNB028125908A CN02812590A CN1283906C CN 1283906 C CN1283906 C CN 1283906C CN B028125908 A CNB028125908 A CN B028125908A CN 02812590 A CN02812590 A CN 02812590A CN 1283906 C CN1283906 C CN 1283906C
Authority
CN
China
Prior art keywords
mentioned
stream
air
steam
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028125908A
Other languages
English (en)
Other versions
CN1518635A (zh
Inventor
A·阿查亚
C·F·戈茨曼
B·阿曼
D·P·博纳奎斯特
J·H·罗亚尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1518635A publication Critical patent/CN1518635A/zh
Application granted granted Critical
Publication of CN1283906C publication Critical patent/CN1283906C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/185Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using waste heat from outside the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • F25J1/0227Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers within a refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/22Increasing the gas reduction potential of recycled exhaust gases by reforming
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • F25J2270/91External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration using pulse tube refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/32Technologies related to metal processing using renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

实施一个涉及产生蒸汽(24;58;104;170;198;222;259)的工艺过程的一种方法,在这工艺过程中,产生热的工艺过程流(16;″A″;92;152;184;204;246)。该热的工艺过程流(16;″A″;92;152;184;204;246)可以以任何方式产生并可以包括蒸汽甲烷转化装置(2)的燃烧器部分、一种集成联合循环燃气轮机(3)、用于对鼓风炉的输入空气和氧气进行预热的燃烧室(140)、渗氧膜片系统(180)以及用来对低温空气分离装置(228;240)中的空气进行压缩的燃气轮机(202)或天然气发动机。

Description

从产生蒸汽的工艺过程中回收功
发明领域
本发明是有关实施一种涉及到产生蒸汽的工艺过程的方法,在该工艺过程中,从进入蒸汽发生器的热的工艺过程流中产生蒸汽。本发明尤其涉及到这样一种方法,在该方法中,热的工艺过程流在被引入到蒸汽发生器以前,先被引入一台热声发动机以回收功。
发明背景
有着各种各样的工业工艺过程可以产生用来生成蒸汽的热的工艺过程流。正如将要讨论的那样,蒸汽可以用来产生额外的能量,这些能量对于该工艺过程本身是有用的,或也可以转换成电能以便重新输入电网。
另外,蒸汽本身也可以成为该工艺过程必要的组成部分。
例如,也称作余热(或废热)锅炉的回热型蒸汽发生器,它从这种工艺过程所产生的工艺过程流中回收能量,这种工艺过程诸如垃圾焚烧系统、余热(废热)发电系统以及化工设备等。垃圾焚烧系统在高温下工作,温度通常在1650到2400之间。在这样的系统中,从热的烟气所形成的工艺过程流中所回收的废热可以用于产生蒸汽,这个蒸汽又可以用来产生电力。在废热发电厂中,从燃气轮机的废气所形成的工艺过程流中所含有的热能也可以以蒸汽或电能的形式加以回收。在化工设备中,蒸汽发生器通常被用来对工艺过程流进行冷却。所产生的蒸汽可以用来回收能量或者它本身可以用在所进行的工艺过程中。
可以从蒸汽转化作业看出包含产生蒸汽的化工工艺过程的一个具体例子,在该作业中,在转化炉和转换设备中产生的流体被冷却。气体和蒸汽的混合物被送进反应炉或转化炉内被烟气加热。所生成的流体在被送入反应炉以前被冷却,在该反应炉内发生发热变换反应。从这个变换反应所产生的水流也需要冷却。正如我们可以了解的,在该冷却工艺过程中,可以产生蒸汽以回收能量,而该蒸汽还可起到反应剂的作用。
前面所述的只是产生高温工艺过程流体的许多工艺过程的几个例子,可以利用蒸汽发生器来回收这些工艺过程流体中的能量。在需要通过产生蒸汽而在高温下回收能量的任何工艺过程中,可能会由于从实际尺寸和便宜的蒸汽发生器的冷端排出热量而造成低的热力学效率。
正如将要讨论的,本发明涉及到把产生蒸汽的工艺过程与热声发动机结合起来。这几个工艺过程可以是上述的几种类型。在这方面,热声发动机的工作在1995年7月出版Gregory W.Swift所著的今天的物理学,“热声发动机和制冷机”,第22-27页中已有了充分的描述。简单来说,热声发动机是一种众所周知的装置,它利用一个包含热端和冷端热交换器的谐振管把热能转换成声能,这两个热交换器被一组平行板在热学上连接起来。声能功可以转换成功、电能或用于制冷。关于把热声功转换成电能的装置的一些例子见美国专利No.5 996345和No.4 559 551。利用热声功来制冷的装置的一个例子在美国专利No.4 953 366中有描述,其中一个热声发动机与一个小孔脉冲管制冷器联合使用。至少已经有人建议采用热声发动机与小孔脉冲管制冷器的组合,名为TADOPTR的一种装置,用在天然气田中来对天然气进行液化。在这种用途中一部分天然气被燃烧以驱动TADOPTR,然后它对其余的天然气进行液化。
在本发明中,在热声发动机内的高温工艺过程流在通过与较低温度的中间温度工艺过程流之间进行的间接热交换以产生蒸汽以前,一部分能量先从这个高温工艺过程流很方便地得到回收。其结果,该工艺过程的热力学总效率以及所能够回收的能量得以增加。
发明概要
本发明涉及到进行一种产生蒸汽的工艺过程的方法。按照本发明,产生一个热的工艺过程流。热从热的工艺过程流传到热声发动机以便以热声功的形式从热的工艺过程流中回收能量并产生一个中等温度的工艺过程流。这个中等温度的工艺过程流被引入一个蒸汽发生器以产生蒸汽。
正如我们所了解的那样,如果仅仅考虑卡诺循环效率,为了通过产生蒸汽的工艺过程而从高温的工艺过程流回收到最多的能量,那么就需要一个十分庞大的,要不然就是很昂贵的热交换器以便在最低的可能温度下,通常是在环境温度时,从工艺过程排出热量。通过首先在热声发动机,然后再通过蒸汽发生器回收能量,可以接近比较理想的效率,因为能量是分两个阶段回收的,即在热声发动机上是在高温下回收,在蒸汽发生器内则是通过与较低温度的中间工艺过程流进行热交换,在较低温度下回收。经过在蒸汽发生器内的热交换以后,一旦高温工艺过程流直接引入到蒸汽发生器内,中间工艺过程流就可以在低于可以达到的温度下排出。在这方面,实现了最佳的协调,因为热声发动机的运转需要高温,而蒸汽发生器却可以在较低温度下很好地工作。
可以利用燃料在氧化剂内燃烧而生成热的工艺过程流。正如以下将要讨论到的,所产生的二氧化碳可以很方便地回收。要指出的是,在热声发动机上所产生的声能可以很方便地驱动一个声能制冷器以用于本发明的许多不同用途。
前面所提到的很方便的应用也可以用于诸如蒸汽甲烷的转化这样的工业工艺过程。例如,蒸汽可以与含有甲烷的原料气体相混合,经过蒸汽甲烷的转化工艺而得到含氢的气体。从这含氢的气体中可以分离出氢气,产生氢的气流及燃料。正如下面将要讨论到的,氢气流可以在由热声发动机驱动的声能制冷器内被液化。
另外一个潜在的用途是在煤的气化方面。在这种应用中,涡轮机内的热的工艺过程流在与热声发动机热传导以前可以从中回收更多的能量。然后该工艺过程流可以被引入到一个煤的气化装置中,以形成一部分燃料用来产生热的工艺过程流。正如下面将要讨论到的,可以把更多的功用来驱动一个空气压缩机以产生压缩空气流,这个压缩空气流至少可以有一部分用来生成氧化剂。最好是煤的气化炉产生一个未经处理的燃料流以及有另外的压缩空气流与该压缩空气流混合生成氧化剂。未经处理过的燃料流可以按顺序引入到另外一个热声发动机中以产生热声功,以及引入一个废气冷却装置、一个清洗装置以生成燃料。那个另外的热声功可以从热声发动机中输出。
热可以被传热流体从热的工艺过程流传导到热声发动机,这个传热流体是通过与热的工艺过程流进行间接热交换而被加热的,而这个热的工艺过程流则是在一个炉子内作为烟气而产生的。这个炉子可以是一个鼓风炉,蒸汽可以被用来驱动一台蒸汽轮机,因此而输出轴功。这个轴功可以被用来驱动两个空气压缩机。这两个空气压缩机中的一个被连接到一个真空压力摇摆吸收装置以生成氧气流,而另外一个空气压缩机则用来产生压缩空气流。压缩空气流和氧气流被加热。压缩空气流和氧气流可以被引入到鼓风炉内支持焦碳燃烧以生成还原气体。
在另外的应用中,含氧气体可以被输入一个渗氧膜片反应器以形成一个被加热的滞留物(retentate)流以及氧气流。然后至少部分地从这被加热的滞留物流生成热的工艺过程流。正如以下将要讨论到的,氧气流可以在一个被热声发动机驱动的声能制冷器中被液化。
还有一个应用涉及到低温空气分离。从燃气轮机的废气可以产生一个热的工艺过程流。燃气轮机的轴功可以用于空气压缩机以在一个低温空气分离装置中对空气进行压缩。这个低温空气分离装置至少会产生一个气流,它主要由氮气和氧气组成并且至少有一种气流可以在由热声发动机驱动的声能制冷器中被液化。在这样的一种应用中,气流可以很方便地引入一台蒸汽轮机以产生另外的轴功。然后该另外的轴功可以用于对空气进行进一步压缩。
在本发明另外的应用中,燃料和氧化剂在一台天然气发动机中燃烧,产生轴功。一部分轴功用来驱动一台空气压缩机,对低温空气分离装置内的空气进行压缩。这个低温空气分离装置产生一个气体流,它富含氧气和氮气中的一种。这样的气体流被引入一个被另外一部分轴功所驱动的蒸汽压缩制冷器,然后又进入一个被热声发动机所产生的声能所驱动的声能制冷器。
附图简述
虽然该说明书包含了明确指出有关本发明的用途的主题的权利要求书,但还是有理由相信,如果与附图一同阅读将会对本发明有更好的了解,在这些附图中:
图1是有关本发明的一份示意图,这个发明通常适用于按照本发明的方法去进行工作的高温工艺过程系统;
图2是采用本发明的方法的蒸汽甲烷转化系统的示意图;
图3是采用本发明的方法的一个集成的气化联合循环的示意图;
图4是一个采用符合本发明的方法的玻璃融烧炉;
图5是一个采用符合本发明的方法的渗氧膜片系统的示意图;
图6是一个把空气分离装置与一个燃气轮机联合起来的系统的示意图,它采用符合本发明的方法;以及
图7是一个利用一个空气分离装置及一台天然气发动机的系统,它采用符合本发明的方法。
详细说明
参看图1,它说明了装置1。装置1概要说明了涉及产生蒸汽的工艺过程。这样的工艺过程包括了工艺过程系统10,它是通过燃料在含氧的气体中燃烧而在高温下工作,这个含氧的气体是分别通过燃料和空气流12和14而进入工艺过程系统的。取决于工艺过程的不同,可能还需要另外一个输入的气流13。
工艺过程系统10生成一个热的工艺过程流16。热的工艺过程流16可以是废气流、燃烧产物流,或者也可以是中间产物流。工艺过程系统10的更多的一些例子将在涉及到以后的附图中讨论到。
热工艺过程16的热能在一个蒸汽发生器18中回收,它产生可以用于许多不同目的的蒸汽。假定这个热工艺过程流是处于从600℃到1000℃之间的任何一个温度,那么仅仅在蒸汽发生器18内是实际上不可能有效地回收热工艺过程流16的热能的。按照本发明,为了从热工艺过程流16回收有用功,热工艺过程流16首先要引入一个热声发动机20,它能在高温下回收热工艺过程流16的能量,并且声能可以用来产生电能、轴功,以及下面将要讨论的,可以用于制冷。
如同已经讨论过的,热声发动机是一种装置,它由谐振管所组成,而这谐振管包含被一组平行板连接的热端和冷端热交换器。这谐振管内有一种气体,通常是氦气。如果热端和冷端热交换器具有足够高的温度差,那么在平行板组内的气体就会做功,因为当压力高时,板内的气体会发生热膨胀,而压力低时会发生热收缩。这种膨胀和收缩所做的功可以用于各种不同的目的。但是本发明不应该被认为是如此的局限,并且就象在此处和在权利要求书中所用到的那样,“热声发动机”意味着是任何一种装置,它是专门设计来把热能转换成声能的。在这方面,本发明与大家都知道的象螺旋管之类的装置,诸如热声+斯特林热力发动机或Vuilerumier发动机具有相同的适用性。
正如上面所讨论到的,一个目的是驱动一个声能制冷器,如脉冲管制冷器。在一个脉冲管制冷器内,一个脉冲管通过回热物质,如极微小的钢珠或滤网与一个谐振管相连通。在热学上与回热物质的一端相连通的后冷器把压缩所产生的热排走。脉冲管内的工作流体在回热器内冷却下来,然后在脉冲管内膨胀以在冷端热交换器处产生制冷作用并在热端热交换器内排出热量。利用一个小孔与脉冲管连通的容器靠帮助控制压力的相位及脉冲的流动而提高了性能。要指出的是,以上提到的热声发动机可以适用于其他著名的声能制冷器,例如声能斯特林混合制冷器。
从热声发动机20内的热工艺过程流16中回收能量而产生了中间温度的工艺过程流22,随后它又被导入蒸汽发生器18以产生由蒸汽组成的气流24。在这方面,一股水流26分成两股分支的水流28和30。分支水流28被引入热声发动机20内部所包含的冷端热交换器。分支水流30被引入蒸汽发生器18以产生气流24。这个气流24可以被引入一台蒸汽轮机32以发出轴功,这个轴功可以用在许多装置上,例如压缩机和发电机等。涡轮机的排气流34,根据它的温度和压力,还可以进一步用在第二级蒸汽轮机或用于其他工艺过程。从蒸汽发生器18排出的冷却后的中间工艺过程流36也同样适用这点。
当燃料在氧化剂中燃烧而产生热的工艺过程流16时,就产生了二氧化碳。二氧化碳可以用很多已知的工艺从冷却的中间温度工艺过程流36中回收。这样做的的优点是可以把二氧化碳隔绝,以防止形成温室气体并且还可以方便以后出售或在其他工业工艺过程中使用。最好是水流能够在与热声发动机内的工作流体直接进行热交换和在回收二氧化碳的工艺过程中与冷却的中间温度工艺过程流36直接进行热交换而被加热,以及在蒸汽发生器18中被加热以产生蒸汽,并且如以上所提到的那样,还可以把蒸汽引入一台蒸汽轮机以回收功。所回收的二氧化碳气流则可以在由热声发动机所驱动的声能制冷器中被液化。
参看图2,图中显示的装置2是设计用于通过蒸汽甲烷转化工艺而生产出气态的氢物质。按照装置2,一个热的工艺过程流以烟气的形式而产生,图中标以箭头″A″。装置2的工艺系统是一个炉子40,空气和燃料流42和44分别引入该炉子内。一个经过预热的含有甲烷的进气流46以及一个含有蒸汽的气流48被引入已知的蒸汽甲烷转化炉40。在遇到催化剂(图中未显示出)的情况下,燃料(甲烷)与蒸汽的混合物就生成中间产物流50,它含有氢、一氧化碳、二氧化碳和一些尚未起反应的甲烷。
所生成的烟气流″A″与热声发动机52的热端热交换器进行间接的热交换以生成中间温度的烟气流,以″B″为标记。把水以水流54的形式引入位于热声发动机52的冷端热交换器内。可以把另外一股水流58与水流54混合以在热交换器56内产生蒸汽,这个热交换器56位于蒸汽甲烷转化炉40的烟气管道内。管道内的烟气以气流形式排出,它以箭头″C″为标记。混合的水流(54、58)在蒸发成蒸汽以后,可以和蒸汽发生器62内形成的另外一股气流60(也是蒸汽)混合,这个蒸汽发生器62的作用是挥手中间产物流50内的热能。在蒸汽甲烷转化炉40内的热交换器63对由58和60组成的混合蒸汽流进行过热加热,生成含有过热蒸汽的气流64。气流64可以分成输出气流66和气流48,而气流66还可以用于其他工艺过程。
中间产物流50被导入一个已知的PSA分离装置68,例如美国专利No.6 007 606中所叙述的,以生成一部分燃料流44以及气态氢产物流70和产物流72,而产物流72则在一个声能制冷器,例如脉冲管制冷器74中被液化而生成液态产物流76。小孔脉冲管制冷器74连接到热声发动机52,这发动机被从高温烟气中所取得的能量所驱动。
参看图3,图中的装置3形成了一个集成的气化联合循环,这个循环是设计来通过煤的气化而发电。在装置3中,工艺过程系统包括与燃气涡轮发电机81相连接的燃烧室80。燃料82和空气流84被导入燃烧室80。燃料燃烧生成热的烟气流85,它进入燃气涡轮发电机81的涡轮机86。涡轮机86的一部分轴功被传送到空气压缩机88,生成压缩空气流90,它的一部分生成空气流84,用于支持燃烧室80内的燃烧。涡轮机86的其余的轴功被作为电能而回收。
涡轮机86的废气形成热的工艺过程流92,它被导入热声发动机94以产生中间温度工艺过程流96,而这工艺过程流96又被引入蒸汽发生器98。一个输入的水流100被分成分支水流102和103。分支水流102把热量从热声发动机94的冷端热交换器带走。分支水流103被引入蒸汽发生器98,生成由蒸汽组成的气流104。气流104可以被导入蒸汽涡轮发电机105以产生额外的电能。这个蒸汽涡轮发电机105的排汽,气流106随同压缩空气流110一起被引入一个已知的煤的气化和脱硫系统108,这个压缩空气流110是从压缩空气流90的一部分形成的。还要把煤和石灰石112投入煤的气化和脱硫系统108中。
气化脱硫系统108产生未经处理过的燃料流114,它可以起到热的工艺过程流的作用,进入另外一个热声发动机116以发出热声功。其结果,产生了一个中间温度工艺过程流118,它在后冷器120中冷却,从输入的水流122和124中生成蒸汽流。
输入的水流122起到热声发动机116的冷端热交换器的冷却流体的作用。所产生的冷却流126被引入一个已知的清洗装置128以产生一个净化的烟气流130,它可以与天然气流132混合以生成燃料流82,这个燃料流在燃气轮机的燃烧室80内燃烧。
参看图4,图中的装置4在鼓风炉140方面利用了本发明。按照本发明的这个应用,鼓风炉内加入铁、焦碳和石灰石。加热的空气和氧气流141和142被引入炉底以使焦碳燃烧并获得含有一氧化碳、氢气和二氧化碳的还原气体。当还原气体在鼓风炉140内上升时,氧化铁被还原成铁并且在炉子的顶部其余的气体产生放热反应把送到鼓风炉140顶部的铁熔化。所产生的仍然含有大量可燃烧的氢气和一氧化碳的烟气从鼓风炉140的顶部以气流144排出。熔化的铁水和炉渣则从鼓风炉140的底部排出。
(可燃气流144)在一个分离装置146内分离了灰份以后,生成了气流148,它在燃烧室150内燃烧,对输入的空气流141和氧气流142进行加热,并产生热的工艺过程流152。
热量从热的工艺过程流152利用传热回路传导到热声发动机154,这个传热回路具有一个热交换器156和一个泵158,它通过热声发动机154的热端热交换器而泵送传热流体,这个流体由氦气或其他气体/液体组成。也可以用热管代替传热回路来把热量传到热声发动机。水流160被引入热声发动机154的冷端热交换器以便对里面的气道进行必要的冷却。通常用箭头164标志的热声功可以被用来产生电能、制冷或用于其他所需要的工艺过程。
所产生的中间温度工艺过程流166被引入蒸汽发生器168,以便使由水流160组成的水流170在被加热以后产生蒸汽。所产生的蒸汽被引入蒸汽轮机172。这个蒸汽轮机发出轴功,这个轴功用于具有压缩级174和176的空气压缩机。压缩级176对空气进行压缩,用于许多已知的真空压力摆动吸收工艺过程(VPSA)中的任何一个,标以基准号178,以产生氧气流142。压缩级174对空气进行压缩以产生压缩空气流141。
参看图5,图中的装置5是说明本发明应用于一个氧发生器5的图例,这个氧发生器具有一个渗氧膜片系统180。渗氧膜片系统180具有1个或几个陶瓷膜片,它在高温下起作用使得在含氧气体内的氧所产生的氧离子渗透到渗氧膜片系统180的一个或几个渗氧膜片的阴极侧。取决于膜片类型的不同,氧离子是通过压力差或者是电流的作用而被输送到膜片的阳极侧的。
在渗氧膜片系统180中,用压力差来实现氧离子的输送,因此压缩空气流182被引入渗氧膜片系统180中。它是靠甲烷在压缩空气流182所含的一些氧气中燃烧来加热的。氧分离出来后的空气形成热的工艺过程流184,它是由压缩空气流182在分离出氧以后的剩余成分而组成的。从渗氧膜片系统180得到氧的产物流186。热的工艺过程流184连同水流190一同引入热声发动机188。热的工艺过程流184冷却下来得到中间工艺过程流189,它被引入一个蒸汽发生器188。水流190中所含的水和水流196被引入一个蒸汽发生器197以得到一个含有蒸汽的气流198。热声发动机188发出的功用于声能制冷器例如脉冲管制冷器199,它用于对氧的产物流186进行液化。水流200被引入冷热交换器与小孔脉冲管制冷器199内所包含的回热物质所接触。
图6说明了本发明应用于一个空气分离装置。按照本发明的这个具体体现,一个燃气轮机202以废气形式产生一个热工艺过程流204。燃气轮机202具有一个空气压缩机205和一个燃烧器206使燃料与空气所含的氧气燃烧以加热空气并把它送进涡轮机208。热工艺过程流204被引入到热声发动机210中以产生中间工艺过程流212。水流214被引入热声发动机210中以便在冷端热交换器内使用,然后与水流218混合。水流214和218在混合以后形成一个混合的水流,它被引入蒸汽发生器220,产生出蒸汽,以蒸汽流222的形式可以进入蒸汽轮机224。蒸汽轮机224的轴功可以被用来发电或作为其他用途。
空气压缩机226连接到燃气轮机202以对空气进行压缩,并把被压缩的空气引入一个空气分离装置228。虽然图中没有说明,空气分离装置228具有1个或几个蒸馏塔,它的作用是把氮和氧分离出来以获得一个或几个产物流,这些产物流是富集氮或富集氧的。这样的一个产物流,标以参考号229,被引入一个声能制冷器,例如脉冲管制冷器231内被液化,然后得到液态产物流232。热声发动机的输出功驱动脉冲管制冷器230,这个制冷器包含一个冷端热交换器,这个热交换器是被水流234所冷却的。
图7说明本发明应用于装置7,它利用一个空气分离装置240,这个分离装置具有一个压缩机242,它是被天然气发动机244驱动的。天然气发动机244在氧气或富氧的空气中燃烧燃料产生废气,这个废气作为热工艺过程流246,被引入一个热声发动机248以产生一个中间温度工艺过程流250。这个中间温度工艺过程流250在蒸汽发生器252内对水加热而产生蒸汽。热声发动机248被以水流254形式所引入的水所冷却,这个水流254与水流258混合。所形成的混合水流259被引入蒸汽发生器252。
前面所提到的天然气发动机244,驱动空气压缩机242,而这空气压缩机又对在空气分离装置240内被分离的空气进行压缩。空气分离装置240产生气流260,它或者富集氮或者富集氧,被引入一个蒸汽压缩制冷器261内,这个蒸汽压缩制冷器也是被天然气发动机244所驱动的。正如所说的,一些轴功可以被用于其他用途。(上述蒸汽压缩制冷器)所产生的产物流然后被引入一个小孔脉冲管制冷器264,这个制冷器被热声发动机248所驱动,对产物流262进行液化。一股水流266被引入脉冲管制冷器264的后冷器。
虽然本发明按照比较好的具体设备进行了描述,但是随着在技术方面的日益熟练,可以在不偏离本发明的精神和范围的情况下进行许多改动、增加或省略一些部分。

Claims (11)

1.一种实施包含产生蒸汽的工艺过程的方法,该工艺过程包括:
产生一个热的工艺过程流(16;″A″;92;152;184;204;246);
把热从该热工艺过程流(16;″A″;92;152;184;204;246)传到一个热声发动机(20;52;94;154;188;210;248)以便从该热工艺过程流(16;″A″;92;152;184;204;246)回收能量,这个能量是以热声功的形式,并产生一个中间温度工艺过程流(22;″B″;96;166;189;212;262);以及
把上述中间温度工艺过程流引入一个蒸汽发生器(18;63;56;98;168;188;220;252)以产生蒸汽(24;58;104;170;198;222;259)。
2.如权利要求1所述的方法,其特征在于上述热工艺过程流(16;″A″;92;152;184;204;246)是由于燃料(12;44;82;148)在氧化剂(14;42;84)中燃烧而产生的。
3.如权利要求1所述的方法,其特征在于将上述气流(104)引入一个蒸汽轮机(105)中而回收更多的功。
4.如权利要求2所述的方法,其特征在于上述气流(58)与经过蒸汽甲烷转化的含有甲烷的进入气流(46)混合,因此而获得一个含氢的气体(50);
所述氢气从上述的含氢气体(50)中分离出来,产生一个氢产物流(70,72)以及一部分上述燃料(44)。
5.如权利要求2所述的方法,其特征在于还包括:
在涡轮机(81)内,在热从上述热工艺过程流(85)传导到上述热-声发动机(94)以前,从上述热工艺过程流(85)中回收更多的能量;以及
将上述气流(104)引入一个煤的气化炉(108)内以生成一部分上述燃料(82)。
6.如权利要求1所述的方法,其特征在于借助于通过与作为炉子(140)内的烟气而产生的上述热工艺过程流进行间接热交换而被加热的传热流体把热从上述热工艺过程流传导到上述热-声发动机(154)。
7.如权利要求7所述的方法,其特征在于:
上述炉子是一个鼓风炉(140);
上述蒸汽驱动一台蒸汽轮机(172),由此而发出轴功;
上述轴功被用于两台空气压缩机(174;176)而对空气进行压缩;
该两台空气压缩机中的一台(176)连接到一个真空压力摇摆吸收装置(178)以产生氧气流(142),而另外一台空气压缩机(174)则产生压缩空气流(141);
上述压缩空气流(141)和上述氧气流(142)被加热;并且
上述压缩空气流(141)和上述氧气流(142)在被加热以后,被引入上述鼓风炉(140)以支持焦碳燃烧,由此而产生还原气体。
8.如权利要求1所述的方法,其特征在于:
含氧的气体(182)通入一个渗氧膜片反应炉(180),由此生成一般被加热的滞留物流(184)和氧的产物流(186);并且
上述热工艺过程流至少部分地由上述被加热的retentate流(184)所产生。
9.如权利要求1所述的方法,其特征在于:上述热工艺过程流(204)产生于燃气轮机(202)的排气;
将由上述燃气轮机(202)产生的轴功用来对在一个低温空气分离装置(228)内的空气(226)进行压缩;
上述低温空气分离装置(228)至少产生一种产物流(229),它主要由氧和氮组成;并且上述至少一种产物流(229)在一个被上述热声发动机(210)所驱动的声能制冷器(231)内被液化。
10.如权利要求2所述的方法,其特征在于:
上述燃料和氧化剂在一个天然气发动机(244)内燃烧而产生轴功;
一部分轴功被用来驱动一个空气压缩机(242)以便对低温空气分离装置(240)内的空气进行压缩;
上述低温空气分离装置(240)生成一种产物流(260),它富集氧或氮中的一种;并且
上述产物流(260)被引入一个蒸汽压缩制冷器(261),该蒸汽压缩制冷器是被上述轴功的另外一部分所驱动的,然后该产物流被引入一个声能制冷器(264),该声能制冷器是被上述热声发动机(248)中所产生的声能功所驱动的。
11.如权利要求1所述的方法,其特征在于上述在热声发动机(20;52;94;154;188;210;248)中所产生的声能驱动一个声能制冷器(74;199;231;264)。
CNB028125908A 2001-05-02 2002-04-08 从产生蒸汽的工艺过程中回收功 Expired - Fee Related CN1283906C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/846,361 2001-05-02
US09/846,361 US6523348B1 (en) 2001-05-02 2001-05-02 Work recovery from process involving steam generation

Publications (2)

Publication Number Publication Date
CN1518635A CN1518635A (zh) 2004-08-04
CN1283906C true CN1283906C (zh) 2006-11-08

Family

ID=25297691

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028125908A Expired - Fee Related CN1283906C (zh) 2001-05-02 2002-04-08 从产生蒸汽的工艺过程中回收功

Country Status (6)

Country Link
US (1) US6523348B1 (zh)
EP (1) EP1525374A4 (zh)
KR (1) KR100722636B1 (zh)
CN (1) CN1283906C (zh)
CA (1) CA2446057A1 (zh)
WO (1) WO2002090726A2 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2430088A1 (en) 2003-05-23 2004-11-23 Acs Engineering Technologies Inc. Steam generation apparatus and method
MY142221A (en) * 2005-04-06 2010-11-15 Cabot Corp Method to produce hydrogen or synthesis gas
US20110045363A1 (en) * 2006-08-31 2011-02-24 Contained Energy, Inc. Process and equipment to significantly reduce co2 emissions from direct carbon fuel cells without materially increasing the cost of generating electricity
US7837928B2 (en) * 2007-01-16 2010-11-23 U.S. Steel Canada Inc. Apparatus and method for injection of fluid hydrocarbons into a blast furnace
JP5030750B2 (ja) * 2007-11-30 2012-09-19 三菱重工業株式会社 石炭ガス化複合発電設備
DE102008018000B4 (de) * 2008-04-09 2010-04-01 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur CO2-Verflüssigung
DE102008017998B4 (de) * 2008-04-09 2010-07-01 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Erhöhung der Energieeffizienz eines Kraftwerks
JP4712082B2 (ja) * 2008-09-26 2011-06-29 株式会社神戸製鋼所 石炭ガス化及び直接製鉄方法並びにそのシステム
US8739534B2 (en) * 2009-03-25 2014-06-03 John Lee Solar-based power generator
EP2281777A1 (fr) * 2009-08-06 2011-02-09 AGC Glass Europe Four de fusion du verre
US20110067405A1 (en) * 2009-09-18 2011-03-24 Concepts Eti, Inc. Integrated Ion Transport Membrane and Combustion Turbine System
FI20115038L (fi) * 2011-01-14 2012-07-15 Vapo Oy Menetelmä btl-tehtaassa muodostuvien kaasujen sisältämän lämpöenergian hyödyntämiseksi
CN102941502B (zh) * 2012-11-05 2014-08-20 江苏大学 一种液化天然气装备超低温加工的方法和装置
CN103047047B (zh) * 2013-01-24 2015-12-02 矫明义 发动机废气动力装置及使用方法
EP2954175B1 (en) * 2013-01-24 2023-06-07 Hinders, Edward Combined brayton/rankine cycle gas and steam turbine generating system operated in two closed loops
RU2529508C1 (ru) * 2013-04-09 2014-09-27 Валерий Евгеньевич Юрин Способ повышения маневренности аэс
CN103527314B (zh) * 2013-10-18 2016-01-13 西南石油大学 一种整体燃气式天然气压缩机多级压缩节能利用系统
FR3029611A1 (fr) * 2014-12-08 2016-06-10 Eosgen-Technologies Systeme de liquefaction de gaz a machine a absorption et pompe a chaleur stirling
CN107514914A (zh) * 2017-08-23 2017-12-26 萍乡市华星化工设备填料有限公司 新型焦炉烟气余热回收装置
ES2738663B2 (es) * 2018-07-23 2023-04-13 Mohedano Javier Carlos Velloso Una instalación para generación de energía mecánica mediante un Ciclo Combinado de potencia
US20240247327A1 (en) * 2023-01-25 2024-07-25 8 Rivers Capital, Llc Systems and methods for improved carbon capture associated with molten metal production

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237421A (en) 1965-02-25 1966-03-01 William E Gifford Pulse tube method of refrigeration and apparatus therefor
JPS57109373A (en) 1980-12-25 1982-07-07 Mitsubishi Electric Corp Semiconductor device
US4953366A (en) 1989-09-26 1990-09-04 The United States Of America As Represented By The United States Department Of Energy Acoustic cryocooler
US5516359A (en) 1993-12-17 1996-05-14 Air Products And Chemicals, Inc. Integrated high temperature method for oxygen production
US5515684A (en) * 1994-09-27 1996-05-14 Macrosonix Corporation Resonant macrosonic synthesis
EP0747108B1 (en) 1995-06-07 2002-02-20 Air Products And Chemicals, Inc. Oxygen production by ion transport membranes with work recovery
WO1998000677A1 (en) * 1996-07-01 1998-01-08 The Regents Of The University Of California Orifice pulse tube with variable phase shift
US5901556A (en) 1997-11-26 1999-05-11 The United States Of America As Represented By The Secretary Of The Navy High-efficiency heat-driven acoustic cooling engine with no moving parts
US6007606A (en) 1997-12-09 1999-12-28 Praxair Technology, Inc. PSA process and system
US6164073A (en) * 1998-05-18 2000-12-26 The Regents Of The University Of California Method and apparatus for adapting steady flow with cyclic thermodynamics
US6032464A (en) * 1999-01-20 2000-03-07 Regents Of The University Of California Traveling-wave device with mass flux suppression
US6711905B2 (en) * 2002-04-05 2004-03-30 Lockheed Martin Corporation Acoustically isolated heat exchanger for thermoacoustic engine
US6725670B2 (en) * 2002-04-10 2004-04-27 The Penn State Research Foundation Thermoacoustic device
US6588224B1 (en) * 2002-07-10 2003-07-08 Praxair Technology, Inc. Integrated absorption heat pump thermoacoustic engine refrigeration system
US6604364B1 (en) * 2002-11-22 2003-08-12 Praxair Technology, Inc. Thermoacoustic cogeneration system

Also Published As

Publication number Publication date
US6523348B1 (en) 2003-02-25
EP1525374A4 (en) 2006-05-10
WO2002090726A2 (en) 2002-11-14
WO2002090726A3 (en) 2005-03-03
CA2446057A1 (en) 2002-11-14
KR20030090795A (ko) 2003-11-28
KR100722636B1 (ko) 2007-05-28
CN1518635A (zh) 2004-08-04
EP1525374A2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
CN1283906C (zh) 从产生蒸汽的工艺过程中回收功
CN101622425B (zh) 在整体气化联合循环系统中分离氧气的系统和方法
US6957539B2 (en) Power generator with low CO2 emissions and associated method
US6877322B2 (en) Advanced hybrid coal gasification cycle utilizing a recycled working fluid
US7421835B2 (en) Air-staged reheat power generation system
JP2649013B2 (ja) ガスタービンの使用によりエネルギーを生じさせる方法
CN101802366A (zh) 涡轮设备和发电设备
US20040011057A1 (en) Ultra-low emission power plant
CN101287893A (zh) 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法
JP2013540933A (ja) エネルギー発生システムおよびその方法
KR920701627A (ko) 기계적 에너지의 발생 방법 및 그 장치
CN101566104B (zh) 利用液氢冷*的二氧化碳零排放的方法及装置
JP2011017341A (ja) 二酸化炭素排出量を減少させた冷媒圧縮用の動力及び軽質炭化水素ガス液化プロセス用の電力を提供するための方法及びシステム
US20110132429A1 (en) System and method for the use of waste heat
CN103912385B (zh) 集成氧离子传输膜富氧燃烧法捕集co2的igcc系统
EP0686231B1 (en) New power process
US5323616A (en) Process for cooling a gas in an apparatus for exploiting gases present in the air
KR950011694B1 (ko) 석탄가스화 복합발전 시스템
US11802496B2 (en) Direct-fired supercritical carbon dioxide power cycle that generates power and hydrogen
CN114382562B (zh) 分流再压缩纯氧燃烧循环系统
JP7025310B2 (ja) ガスタービン複合発電システム、ガスタービン複合発電方法
US20110132577A1 (en) System for the use of waste heat
JPH1113478A (ja) ガス発生装置
JPH06137115A (ja) 発電装置
CN116517653A (zh) 一种循环超临界二氧化碳工质的煤炭超临界水气化发电系统及运行方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee