CN1264511A - 码分多址直接扩展覆盖系统及其操作方法 - Google Patents

码分多址直接扩展覆盖系统及其操作方法 Download PDF

Info

Publication number
CN1264511A
CN1264511A CN98807292.0A CN98807292A CN1264511A CN 1264511 A CN1264511 A CN 1264511A CN 98807292 A CN98807292 A CN 98807292A CN 1264511 A CN1264511 A CN 1264511A
Authority
CN
China
Prior art keywords
transmission
covering
base station
orthogonal
walsh code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98807292.0A
Other languages
English (en)
Other versions
CN1135764C (zh
Inventor
小A·古铁雷斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Telecom Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Telecom Ltd filed Critical Northern Telecom Ltd
Publication of CN1264511A publication Critical patent/CN1264511A/zh
Application granted granted Critical
Publication of CN1135764C publication Critical patent/CN1135764C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0048Walsh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

CDMA无线通信系统支持底层传输与直接扩展覆盖传输的,从而覆盖传输至少部分正交于底层传输。基站支持覆盖传输与底层传输两者,并且包括与移动通信交换中心的接口、底层单元(206)覆盖单元(204),以及至少一个射频(RF)单元(212)。该接口接收要发送给由该基站服务的多个移动电台的通信。这些通信包括要发送给支持底层传输的移动电台的底层通信以及支持覆盖传输的移动电台的覆盖通信。底层单元(206)接收通信的底层部分,并产生底层传输。覆盖单元(204)接收通信的覆盖部分,并产生覆盖传输。然后,底层传输与覆盖传输会被至少一个射频单元接收,再透过至少一架天线(214)发送给多个移动电台。每个移动电台均会接收到底层传输与覆盖传输。

Description

码分多址直接扩展覆盖系统及其操作方法
发明背景
1.发明领域
本发明一般涉及蜂窝无线通信,尤其涉及码分多址(CDMA)蜂窝无线通信系统,该系统具有一底层(Underlay)系统,以及占有共用频谱的直接扩展(direct spread,DS)覆盖系统,并且藉由该覆盖系统,以至少部分正交于该底层系统的方式进行操作。
2.相关技术的描述
众所周知,蜂窝无线通信系统包括有多个基站,它们分布于一地理的服务区域。每一个基站都包括至少有一架天线与基站收发系统(BTS),在各自的小区内提供无线通信服务。基站收发系统耦接到基站控制器(BSC),每一个基站控制器服务多个基站收发系统。基站控制器也耦接到移动通信交换中心(MSC),该中心连接至公用交换电话网络(PSTN)和其他移动通信交换中心。这些基站收发系统、基站控制器和移动通信交换中心形成一无线网络,对位于各自的服务区域内的移动电台(MS)提供无线电覆盖。
无线通信系统按照各种协议标准而操作。其中适用于世界范围的协议标准为CDMA协议标准。该CDMA协议标准是一直接序列扩展频谱系统,在一共用频带上同时地发送及接收多重的扩展频谱信号。在CDMA系统中,每一个移动电台(MS)会被指定一个不同的Walsh代码,以该代码来识别各移动电台发送及接收的信号。
在下面的操作实施例里,由BTS到第一个MS的前向链路信号先以Walsh代码进行扩展后再行发送,其中该发送过程包括了伪噪声(Pseudo Noise,PN)扰码(扩展)。同样地,由BTS到第二个MS的前向链路信号先以第二个Walsh代码进行扩展后再行发送,或许是与从BTS至第一个MS的发送同时进行。该第一个MS的接收机于其天线处接收到所有由BTS传来的能量。然而,由于Walsh代码信道为正交的(Orthogonal),在利用第一个Walsh代码对该接收到的信号进行去扩展(despreading)后,该去扩展输出所有欲送给第一个MS的能量,但是由于正交损耗的关系对第二个或第三个MS,却没有或是只有些微的能量。同样地,第二个MS利用第二个Walsh代码,对该接收到的前向链路信号进行去扩展,以接收第二个MS想要的前向链路能量。每个MS再对其所去扩展的信号能量进行操作,以取出送给各自的MS的数据。前向链路信号所能容纳的用户数受到由于正交损耗、小区内干扰与其他诸如热噪声干扰等因素而造成的小区间干扰的限制。
在一些特定的应用中(例如,固定接入),反向链路信道可构造得Walsh代码能够区分各个反向链路的用户。然而,在典型的情形中,反向链路确实会因干扰而受到限制。在这种信号以Walsh代码进行构造的特例里,由MS到BTS的在反向链路上的操作与在正向链路上的操作是类似的。多个MS同时在反向链路上发送到BTS,而每一个反向链路传输均以各自指定的Walsh代码进行扩展。BTS接收机接收合成的反向链路信号,并且对反向链路传输以预期的Walsh代码进行去扩展,以便提取第一、二、三等等MS传来的信号。然后BTS处理每个经去扩展的信号,以获得由各个MS送来的数据。
由于正交损耗使得要发送给CDMA系统的其他用户的信号对于其他用户来说可能状似噪声,这是由于这些信号来自另一个小区,或者是由于这些信号非正交,CDMA的容量会因干扰而受到限制。能够使用共用频谱且效能仍然可以接受的用户数由全部用户作为一个整体所产生的总干扰功率来决定。如此,每个BTS在任何频谱上所支持的用户数会受到限制。为增加CDMA系统的容量,可再另外增加基站数,以提高服务区域内的小区数。但是,因为负载常常集中于一个小的地理区域内,即使是再增加小区数,一些特定的小区可能仍然过载,而相邻的小区负载却很轻微。
于是提出解决方法以克服CDMA系统中的过度拥挤问题。一种解决方法包括在单个服务区域里指派多个载波,而用多个载波中的每一个来对各自的覆盖小区提供服务。在多载波的操作中,每一个载波会被指派一个可用频谱片段,且该片段不会与可用频谱内其他的片段相重叠。一些移动电台会在载波频率中的一个载波频率上接受服务,而其余的移动电台则是在另外的载波频率上接受服务。
另外一种提高容量的解决方法则是以较宽的带宽来部署载波。此法可提高系统容量,这是由于宽带用户的频谱特徵性较佳。不过,基本载波系统与宽带载波系统之间的相互操作性(interoperation)会产生问题,因为会出现在相同的频谱上布署两种系统的问题。
一种针对相互操作性课题所产生的特定解决方法以直接扩展(DS)覆盖方式进行,其中,覆盖系统在底层系统之上操作,使得覆盖系统与底层系统可至少部分地共享频谱。在使用正交式传输的CDMA系统里,很重要的一点即是努力维持传输的正交性。然而,迄今底层/覆盖系统仍无法达到保持正交性的目的。因此,具有DS覆盖的系统提供了好处不大。
如此,在本领域中存在着对使用覆盖的底层/覆盖CDMA系统的需要,但其中该覆盖系统对底层系统产生最小的负面影响,反之亦然。
发明概述
为克服现有技术CDMA系统各项缺点,按照本发明构造的通信系统即可支持底层/覆盖系统。为提高系统容量以及支持与较宽频带的CDMA系统间的相互操作性,但是将对系统的影响减至最小,按照本发明所构造的CDMA系统提供覆盖传输,它至少部分正交于该系统所支持的底层传输。
按照本发明而应用于CDMA-无线通信系统的基站的一种构造中,基站支持底层传输与覆盖传输两者。在该构造中,基站包括与移动通信交换中心的接口、底层单元、覆盖单元,以及至少一个射频(RF)单元。该接口接收要发送给由该基站所服务的多个移动电台的通信。这些通信包括要送到支持底层传输的移动电台的底层通信,与要送到支持覆盖传输的移动电台的覆盖通信。
底层单元接收通信的底层部分,并产生底层传输。覆盖单元接收通信的覆盖部分,并产生覆盖传输。接着,底层传输与覆盖传输被至少一个射频(RF)单元所接收,并且透过至少一个天线发送到多个MS。每一个MS既接收底层传输又接收覆盖传输。然而,那些可支持底层传输的MS提取所要的底层通信,而支持覆盖传输的MS提取所要的覆盖通信。根据本发明,该底层单元与覆盖单元产生覆盖传输,从而覆盖传输至少部分正交于底层传输。
基站也可包括一耦接至底层单元和覆盖单元的同步单元,使得覆盖传输大体上同步于底层传输。正交性的程度根据基站特定的构造与操作来决定。在一个实施例中,覆盖传输部分正交于底层传输。在另一个实施例中,覆盖传输大体上正交于底层传输。在这两种情况下,所提供的信号-噪声比都会明显地比由非正交性覆盖系统所得的结果为佳。
在构造覆盖传输的过程中,覆盖传输的伪噪声序列可由底层传输的伪噪声序列所减缩(puncture),以产生一部分的正交性。另外的正交性由选取覆盖传输Walsh代码而获得,它正交于底层传输的Walsh代码。覆盖传输接着可被底层伪噪声序列扩展,以产生一部分的正交性。
在典型的构造里,覆盖传输具有的片码速率为底层传输的片码速率的整数倍。在这种情况下,就可以产生覆盖传输与底层传输之间的同步。
在其他按照本发明的CDMA无线通信系统的构造里,覆盖传输是由第一个基站发送,而底层传输由另一个基站发送。在这种情况下,同步单元提供必要的定时约束供底层单元和覆盖单元使用,以产生覆盖传输与底层传输。
此外,本发明的其他方面将由参照下列附图与说明书而变得很明显。
附图概述
在结合下列附图考虑下述较佳实施例的详细描述后,将可更明了本发明,其中:
图1A是一系统图,说明一种CDMA蜂窝系统,它具有底层系统与至少部分正交于该底层系统的DS覆盖系统;
图1B是一系统图,说明另一种CDMA蜂窝系统的实施例,在该系统中覆盖小区延伸至各自服务的底层小区的边界之外;
图1C是一系统图,说明另一种CDMA蜂窝系统的实施例,在该系统中底层传输与覆盖传输是由不同的基站提供的;
图1D示出由支持多个底层载波的通信系统所占用的频谱;
图1E示出由具有多个底层载波与单个覆盖载波的通信系统所占用的频谱;
图2A是一方框图,图中概略地示出依据本发明的基站的一部分的构造,该基站支持底层系统与覆盖系统两者;
图2B是一方框图,图中概略地示出依据本发明的基站(或多个基站)的构造,所述基站支持底层系统与覆盖系统两者;
图3示出依据本发明以Walsh代码及伪噪声(PN)序列对数据信号进行扩展的操作;
图4示出依据本发明的Rake接收机的构造;
图5及图6示出依据本发明的信号处理操作;
图7示出将底层PN序列减缩(puncture)为覆盖传输的方式,以在底层系统内产生覆盖传输的部分正交性;
图8是一方框图,显示依据本发明而构造的覆盖发射机;
图9是一方框图,显示依据本发明而构造底层发射机;
图10是一方框图,显示依据本发明而构造的同步单元;
图11示出依据本发明的Rake接收机的构造,它进行操作以接收覆盖系统传输;以及
图12及图13示出依据本发明而操作的CDMA信道的性能与没有本发明的好处的CDMA信道操作的性能的比较。
附图的详细说明
图1A描述依据本发明而构造的无线通信系统100,它可在各自的服务区域内提供无线服务。在所述的实施例中,该无线通信系统100按码分多址(CDMA)标准而操作,该标准可为TIA/EIA/IS95 CDMA标准,并以加以修改以配合本发明的构思。本发明的原理亦可应用于按其他标准操作的其他CDMA无线通信系统,其中直接扩展(DS)系统覆盖于底层系统之上,以提高无线通信系统100容量。
无线通信系统100包括了移动通信交换中心(MSC)102、基站控制器(BSC)104与106、和多个基站108-114,每一个基站都包括一架天线与基站收发子系统(BTS)。MSC102将无线通信系统100耦接到公用交换电话网(PSTN)116。无线通信系统例如在连接到PSTN116的电话118以及位于服务区域内的多个移动电台(MS)130、132、134、136和138之间提供服务。无线通信系统100也可在多个MS130、132、136和138间提供服务。
BTS108和110耦接到BSC104,而BTS112和114耦接到BSC106。构造BTS108-114以支持底层传输与覆盖传输。然而,按照本发明,BTS108-114所提供的覆盖传输至少部分正交于底层传输。在此操作中,甚至即使占用共用的频谱,对于底层传输而言,覆盖传输并不会完全呈现噪声。故当按照本发明而发送覆盖传输时,比起非正交覆盖系统,就可以提高系统容量。
覆盖传输与底层传输之间的正交性要求在传输底层传输与覆盖传输时,必须大致上能够互相同步。前向链路传输(即由BTS到MS的传输)由一特定的BTS发送出去,并可藉现有技术使二者相互同步。不过,CDMA系统的反向链路传输(即由MS到BTS的传输)一般不同步,因为它们由各个移动电台分别发送而来。由于这个原因,这里的计论仅适用于CDMA系统的前向链路传输。不过,倘若也能满足定时约束,则在此所讨论的概念亦可应用于反向链路传输。
BTS108支持小区120A中的底层传输与小区120B中的覆盖传输二者。同样地,BTS110、112、114可分别在小区122A、124A、126A内提供底层传输,而在小区122B、124B、126B内提供覆盖传输。按照本发明,由BTS108-114任何一个发送的覆盖传输均会至少部分正交于由BTS108-114发送的底层传输。如此一来,每个BTS都可提供底层服务与覆盖服务二者。藉由提供在底层与覆盖系统上的无线覆盖,得以提供基本CDMA系统与较宽频带CDMA覆盖系统之间的相互操作性。
图1A所描述的无线通信系统100可以向后相容于现有的CDMA的方式来建造,可支持底层系统上的通信功能。此外,系统100可在相当广的频谱上对覆盖传输提供服务。藉由对现有的BTS稍加修改以支持DS覆盖传输,以及继续对底层传输提供服务,系统100的容量即可予以提升。
在无线通信系统100的操作的一个例子里,MS130仅支持底层传输。这样,BTS108提供前向链路底层传输给小区120A内的MS130。不过,MS132及134只有支持覆盖传输。因此,BTS110与112分别在小区122B与124B中在前向链路上使用覆盖传输来发送给MS132及134。此外,MS136支持底层传输而MS138仅支持覆盖传输。因此,BTS114在小区126A中的前向链路上把底层传输发送给MSs136,而在小区126B中的前向链路上把覆盖传输发送给MS138。在其他的实施例中,有些MS可以支持底层传输和覆盖传输,根据系统负载与其他操作考虑,来提供底层或是覆盖传输给各个MS。
图1B是一系统图,它描述另外的CDMA蜂窝系统150的实施例,其中,覆盖小区160的边界延伸越过分开服务的底层小区158的边界。如图所示,BTS152、154和156在该服务区域内提供无线服务。BTS152、154和156分别在小区158、162与164内提供底层服务。BTS152也在小区160里提供覆盖服务,其服务区域大体上要比小区158更大。根据本发明,提供覆盖服务并不需要修改所有的基站。有些BTS也可以仅提供底层传输,而其余的可提供底层传输和覆盖传输两者。在这样一个系统的操作例子中,MS170、172与174接收底层传输,而MS176接收覆盖传输。
图1C是一系统图,它描述CDMA蜂窝系统180的另一实施例,其中,底层传输与覆盖传输由不同的基站来服务。图1C所示的各个与参照图1A内的系统元件的标号相同的系统180的诸元件具有共同的功能,因而参照图1C不再赘述。
BTS182A、184A及186A分别在小区190A、192A与194A中支持底层传输。此外,BTS182B、184B及186B分别在小区190B、192B与194B中支持覆盖传输。如图所示,这些BTS在覆盖小区内提供传输,但却需要另外的结构才能达成。然而,BTS188A和188B共享单个基站,在小区196A与196B内提供底层服务和覆盖服务。如此,从图1A、图1B与图1C可以明显看出,依据本发明,可以不同的方式构造CDMA蜂窝系统以支持底层通信和覆盖通信。
图1D说明通信系统所占用的频谱,其中,底层传输由三个载波传送,各个载波在频率上隔开。对于CDMA,各个载波占有的带宽近似地由扩展频谱系统的片码速率决定。因此,每个底层载波的频谱由的片码速率所确定。每个载波的频谱内支持多个通信信道。
图1E说明由通信系统所占用的频谱,其中包含了三个邻接的底层载波与一个覆盖载波。该覆盖载波占有三倍于底层载波的带宽,并且与三个底层载波共享该频谱。为获取这三倍的带宽,覆盖传输使用三倍于底层传输的片码速率,并且具有与中央底层载波的载波频率相符的载波频率。
覆盖的缺省方法为非正交覆盖。在非正交操作里,覆盖信号的总能量会干扰底层信号,而有效地降低底层系统的可用的信号-噪声比(SNR)值。类似地,底层信号的总能量会干扰覆盖信号,因而也降低了覆盖系统的可用的信号-噪声比。
对于部分正交覆盖的情形,系统设计得减少覆盖对底层系统的干扰的影响,反之亦然。对于这种方法而言,覆盖信号的一部分的能量会正交于底层信号的能量。类似地,底层信号的一部分的能量会正交于覆盖信号的能量,如此,相对于非正交覆盖而言,减少了对覆盖信号SNR的影响。
而对于正交覆盖的情形,覆盖信号的所有(或几乎所有)的能量正交于底层信号的能量。对于这种方法,底层信号的SNR相对于非覆盖系统并不会改变。类似地,所有(或几乎所有)的底层信号能量正交于覆盖信号的能量,而且就非覆盖系统来说,覆盖信号的SNR相对于非覆盖系统情形的SNR并不会改变。虽然从维持覆盖与底层系统正交性的观点来说,本法很具有吸引力,但是尚有其他由于频谱特性造成的重要问题,它们源于正交覆盖方法的设计。
图2A为一方框图,概略说明依据本发明的支持覆盖的基站BTS200的构造。基站BTS200包括BSC接口(I/F)202,该接口把覆盖单元204和底层单元206连至耦接的BSC(如同图1A所示的构造)。该BSC接口(I/F)202以该数据将由覆盖传输或底层传输来发送作为依据,将由BSC接收到的数据划分为覆盖数据及底层数据。透过底层单元206,可接收由BSC接口(I/F)202传来的底层数据,并依CDMA协议标准处理该数据,以产生底层传输。此外,透过覆盖单元204可接收由BSC接口(I/F)202传来的覆盖数据,并依本发明处理该数据以产生覆盖传输,该覆盖传输会至少部分正交于底层传输。同步单元208耦接到覆盖单元204与底层单元206,以产生具有所要的正交性的覆盖传输及底层传输。
覆盖传输及底层传输合并于加法单元210处,以产生一合成信号,再被送往射频(RF)单元212。该RF单元对接收到的信号进行RF调制,并透过天线214将该合成信号在前向链路上发送。应了解图2A所描述的特定构造并未显示出通常出现于BTS或基站中的其他系统,它们是且公知的,但在说明本发明的原理时用不到。
图2B说明依据本发明而支持覆盖的基站或是多个基站的构造。如图所示,覆盖基站单元252与底层基站单元254分开设立。虽然覆盖基站单元254与覆盖基站单元252可以设置于同一BTS内,诸如图1A所述的BTS108-114,但覆盖基站单元254与覆盖基站单元252可设置于不同的BTS内,诸如图1C所述的BTS182A与182B。如此,图2B的构造描述了覆盖传输与底层传输如何可由诸独立单元所产生,而同时又维持正交性。最好透过共用的天线来进行传输,这将会导致多路径衰落造成的正交损耗降至最低。
底层基站单元254透过BSC接口(I/F)264接收底层数据。BSC接口(I/F)264耦接至底层单元266,该单元接收并处理底层数据,以产生由RF单元268接收的底层传输,再经天线270在前向链路上发送。覆盖基站单元252透过BSC接口(I/F)256接收覆盖数据。BSC接口(I/F)256耦接至覆盖单元258,它接收覆盖数据。覆盖单元258及底层单元266也耦接至同步单元208。该同步单元208提供同步信号给覆盖单元258及底层单元266。根据该同步信号,覆盖单元258可产生覆盖传输,从而至少部分正交于底层传输。RF单元260接收该覆盖传输,再经天线270在前向链路上发送。
图3说明依据本发明以Walsh代码及伪噪声(Pseudo Noise,PN)序列进行数据信号扩展的操作。在CDMA系统里,每个用户的数据均被编码,从而与其他用户的数据相互正交。一般,以如图3的方法实现。对三个代码信道(导频信道,它不包括信息而以全为1的方式传送;代码信道X,它包含信号x(n);以及代码频道Y,它包含信号y(n)),进行操作。对应于导频信道、代码信道X与代码频道Y,每个代码信道调制一Walsh函数,即Wo、Wx、及Wy。Walsh编码(即Walsh函数调制)后,代码信道即合并为一(即,Walsh代码调制后进行相加)。
接下来,对信号以伪噪声(PN)序列进行扩展。一般而言,信号x(n)和y(n)乃至于用作PN扩展的PN序列均可为复数。在实际系统里,最终信号s(n)会被滤波、频率调制、放大及在天线上发送。因这些操作是众所周知的,故不再在此赘述。
有效地使用Walsh代码,可提供前向链路信道之间的正交性。Walsh代码具有一特殊性质,即,任何Walsh代码除与本身之外,与其他Walsh代码间的相关性均为零。该特殊性质可表示如第1式:
Figure A9880729200141
其中表示异(exclusive or)运算(即模2相加),N为Walsh代码的长度,且Walsh代码比特包含多个1及0(在变换到I及Q信道后,成为多个1与-1,由此运算成为乘法)。具有这些性质的代数码即定义为正交。
图4说明相对应于图1A、1B或1C所述的MS的底层接收机400。图3的信号s(n)经由通信信道被送往空中,并且受到多路径衰落与添加噪声的影响。最终信号为r(n)。接收机400称为Rake接收机,一般当由RF单元进行频率解调、滤波及取样后,该接收机会对s(n)信号进行处理。这种Rake接收机的目的在在于在数个“搜寻指”(fingers)上收集信号能量,它们由移动信道产生之多路径而来。Rake接收机的操作可类似于普通的花园用耙子的操作。
假设Rake接收机400对应于用户X。每个Rake搜寻指402、408、410均以适当的PN序列与该信号相关,并依第i个信号X(即,Ki x)的路径而被时延。一般而言,PN序列与接收到的信号为复数值。接着,该信号与路径X的Walsh代码,Wx(n)相关。滤波器hp(n)404为信道滤波器,且*运算表示复数共轭运算。经过相位及增益校正后(即与滤波器输出的共轭相乘)后,将得到的信号相加以产生信号x’(n)。除了多路径合并与去扩展之外,Rake接收机400所执行的操作有效地实现了第1式。
对于包含有一条多路径的通信道而言,除了WX(n)之外的所有Walsh信道均正交,因此可被消去。而对于包含有超过一条路径的信道而言,正交信道可被消去。然而,路径间干扰却无法被消除掉。一般说来,正交扩展可在一条多路径内消除信道间干扰。
假设在接收机400处,来自基站的总发送功率频谱密度(即,所有信道)与其他小区干扰频谱密度IOC的比值由参数G=IOT/IOC规定。该参数G具有几何性(geometry),因对从该小区(基站)算起的距离与该几何性(G值)之间具有相关性。例如,小区8dB的几何性表示距离该小区较近,因为来自该移动电台所在的小区的能量IOT,比其他小区干扰IOC强8dB。而0dB的几何性表示距离该小区较远,因为其他的小区干扰跟从该小区基站所接收到的能量一样强。移动接收机处的SNR可表示为如下第2式:
Figure A9880729200151
其中Ec为各个Walsh信道每个片码(chip)的能量,而σI 2为由正交性损耗所产生的干扰,且假设Ioc包括有热噪声。将几何性代入并加以整理,可得第3式对于没有覆盖的系统而言,σI 2=0,如此则SNR为SNR=GEc/Ior第4式
第4式为要对本发明的覆盖方法的效能作比较的基准线。由于CDMA系统容量正比于SNR值,则依据本发明构造的系统效能与按照第4式操作的系统比较结果提供了关于容量相对效能的量度。
总通带发送信号s(t)由覆盖部分与底层部分组成,并如第5式所述
Figure A9880729200161
其中u上标对应于底层系统,而o上标则对应于覆盖系统,fk为第k个底层载波的载波频率,fc为覆盖载波的载波频率,x(n)为相对应的载波频率的合成信号,h(t)为发送滤波器,而Tc为相对应系统的片码间隔。分别对于底层系统与覆盖系统,经扩展后的合成信号x(n)由第6式表给出
Figure A9880729200162
其中 为用户nuser的第i个经编码的信息码元,[x]表示x的整数部分,Nc为每个信息码元的片码数,
Figure A9880729200165
为指派给nuser的Walsh代码之第i个Walsh比特,%表示模除,而p(n)为第n个PN片码。
图5里描述简化的底层接收机的接收机滤波及相位校正的模型。输入部分r(t)为接收到的信号,其中包含经多路径衰落与背景噪声后的发送信号s(t)。接收到的信号r(t)经底层接收机滤波器滤波,而该接收机滤波器的中心频率位于对应于所需信道的底层载波上。图5里描述的后续操作代表频率解调与相位校正。
经过相位校正后,不含噪声的基带等效接收到的信号由下式给出 y ~ u L ( k , t ) ≈ Σ p Σ n α ( p , f k , t ) x u ( n , k ) h uu ( t - n T c u - τ p )
其中huu(t)为合并的底层发射机与接收机脉冲,兹假设其为Nyquist型式,hou(t)为合并的覆盖系统的发送滤波器与底层系统的接收机滤波器,并且α(p,fi,t)表示在时间t而中心频率位于fi的载波于第p个多路径系统上的复数衰落过程。对于一以覆盖载波确定中心频率,以底层片码速率取样并对取样相位加以调整的底层接收机来说,接收到的信号可如下式分解为底层部分与覆盖部分: y ~ L u ( k , m T c u + τ p ) = Σ p α ( p , f k , m T c u + τ p ) x u ( m , k )
第9式中最后一个相加运算表示覆盖系统因片码间干扰(ICI)而对底层系统产生的干扰。一般而言,对n的相加运算为无限大;不过,在实际系统中,该相加运算是有限的。如果信号脉冲hou(t)为Nyquist型的,则除了i=0外,对所有的样本t=iTc u,均为零。对于实际的系统,由于与覆盖滤波器比较起来为窄频,故合并脉冲hou(t)主要由底层滤波器确定。于是,相加运算的主要项相应于底层发送滤波器的非零部分。
在考虑覆盖系统对底层系统干扰时,对所有的相互作用必须计及载波间干扰。例如,对于每个覆盖载波具有三个底层载波的系统来说,每个底层片码会得出三个主要ICI项。对于这种系统,主要项对应于n=m-1、n=m以及n=m+1,其中,中央项(即,n=m)对应于最大项。还有,注意到以底层滤波器来滤波覆盖输入,会阻止掉大约1/3的覆盖信号的能量。对于fk=fc,相位项将为零。
图6描述覆盖接收机的接收机滤波及相位校正的简化模型。经过相位校正后,不含噪声的基带等效接收到的信号由第10式给出 y ~ L o ( k , t ) ≈ Σ p Σ k Σ n α ( p , f k , t ) x u ( n , t ) h uo ( t - n T c u - τ p ) e j 2 π [ f ak ( t - τ p ) - f k τ p + ( f k - f c ) τ p ]
Figure A9880729200174
其中huo(t)为合并的底层发射机与覆盖接收机,hoo(t)为覆盖系统的合并的覆盖系统的发射机与接收机滤波器,它假设为Nyquist型式。在以覆盖片码速率取样,并调整取样相位后,把接收到的信号如下列第10式那样分解为底层部分与覆盖部分 y ~ L ( k , m T c o + τ p ) = Σ p Σ k Σ n α ( p , f k , m T c o + τ p ) x u ( n , k ) h uo ( m T c o - n T c u ) e jφ ( m T c o , k )
Figure A9880729200176
第11式内的第一组相加运算表示底层系统对覆盖系统的干扰。第二组相加运算表示所需的信号(即覆盖信号)。该所需的信号包括在正交Walsh信道上载送的多个用户的信号。底层干扰由于对n的相加运算,它以底层片码速率对脉冲huo(t)有效取样;然而,由于接收滤波器与底层滤波器比较起来为宽频,故脉冲hou(t)主要由底层发送滤波器确定。实际上,这会导致对底层滤波器以每个覆盖片码取样K次,其中K表示底层载波的个数。此外,底层项xu()对K个取样仍保持固定值。对于fk=fc,相位项为零。
在导出操作参数的例子中,将考虑底层系统与覆盖系统。本例中,底层系统包括有三个载波,而覆盖系统包括带宽等于底层系统带宽3倍的宽带载波(如第1E图所示)。直接扩展无线电技术的容量(即频谱效能)(以bits/Hz为单位)为C。虽然预期频谱效能可因频宽而有所增加,但是为推导说明起见,假设该容量为带宽的线性函数仍是合理的。此外,假设每个系统的容量正比于该相对应接收机处的信号-噪声比也是合理的。
按如上之假设,每个独立操作(没有覆盖部分)的系统,均具有C的容量。在覆盖模式下,两个系统(底层+覆盖系统)的总容量为C,其中每个系统共享合并后的系统的容量。忆及基站的总发送功率为Ior。最后,将发送功率的一部分以α表示指派给覆盖系统。
对于非正交覆盖的情形,底层传输起着对覆盖系统干扰的作用。利用第3式,底层系统的SNR值可由第12式给出
Figure A9880729200181
对于覆盖系统,其SNR值可由第13式给出
Figure A9880729200182
正如第9式所述,覆盖的干扰具有一主要项。对于部分正交覆盖方法而言,覆盖系统的Walsh及PN结构将加以修饰,以使得主要干扰项可正交于底层系统。
图7说明在部分覆盖操作中,如何将底层PN序列减缩的覆盖PN序列。如图所示,底层PN序列702速率为1.2288Mcps,覆盖PN序列704速率为3.6864Mcps,把二者输入一2∶1多路复用器706以产生一速率为3.6864Mcps的减缩PN序列708。额外的要求为该合并后的经编码的信息码元(对应于经减缩的PN片码)、Walsh片码,与覆盖系统的经减缩的PN片码似为另一底层接收机的片码。这可由将经编码的信息码元加以分配而达成,分配方式为每三个经编码的信息码元依次送出PN片码a1、a2、a3...,然后送出b2、b5、b8...,再送出b3、b6、b9。藉由选定正交于底层Walsh代码的覆盖Walsh代码,在经过与底层PN序列相关后,该对应于a1、a2、a3的经编码的信息码元在底层接收机处正交于底层Walsh代码信道。
在数学上,以Walsh代码编码经编码的信息码元(对于三载波覆盖),可描述为如每三个经编码的信息码元与Walsh代码的相乘,并按下列第14式交织:f([c1 C2 C3],Wn)→[c1wn1 c2wn1 c3wn1 c1wn2 c2wn2 c3wn2…c1wnN c2wnN c3wnN]
                                                                                      第14式基本上,此为对每个经编码的信息码元(标量)乘上整个Walsh代码(1×N的矢量),并且将三个得到的片码序列交织。该运算可以用串行-并行转换器(P/S)后接Walsh代码乘法运算,然后再接并行-串行转换器的方式实行。
图8说明一与前文相符,并且依三个底层信道所设计的覆盖发射机800,它与图1E图描述的系统相容。用户信息比特du(t)以9.6kbps速率抵达,然后输入1/3速率前向纠错码(FEC)编码器802,以28.8kbps速率产生输出。在经方框806处的QPSK变换后,经编码的信息码元被串行-并行(S/P)转换器808转换成三个平行路径,再经过调制器810A、810B与810C的Walsh代码调制。所使用的Walsh代码为256比特的Walsh代码。
并行-串行(P/S)转换器812接着以连续地对来自每条路径-个比特的交织方式,将并行比特数据流转换成串行比特数据流。这种交织方式可产生3.6864Mcps的片码速率。然后,复数扩展单元814以将该信号乘以覆盖PN序列的方式,用经缩减的覆盖PN序列将信号扩展,而且它亦以3.6864Mcps速率到达。如此一来,由复数扩展单元814产生输出,其输出片码速率为3.6864Mcps。
该信号接着在820A及820B处被调制,并且在822处合并为一,以形成覆盖信号s°(t)。其中,S/P转换、Walsh编码及P/S转换可确保经编码的信息码元与覆盖和底层PN片码正确对齐,且由同步单元816提供同步操作。
在接收机处,将执行反向的S/P、P/S操作。在与适当的PN序列相关后,已被减缩的覆盖PN代码的一部分现在底层接收机处进行去扰码(descrambled,或称uncovered)操作。藉由正交于底层Walsh代码的Walsh代码对覆盖信号加以编码的方式,该来自覆盖系统的前向链路传输(即主要干扰项)中已经去扰码的部分会正交于底层代码。
本质上为正交技术的发射机类似于图8所示,然而,每个在方框810A、810B与810C处的平行路径的Walsh代码是唯一的,并且PN序列里包含有底层PN序列。为了要使频谱覆盖所有的底层载波,平行路径上的Walsh信道必须是唯一的。后者会对可用的Walsh信道产生影响,因为覆盖发射机都将对每位用户占用K个Walsh信道。对于底层接收机,该覆盖方法可具有依据第9式将三个主要干扰项消去的优点。不过,仍然会存在有其他关于得到的信号的频谱、多路径分辨以及接收机效能等问题。
覆盖PN序列包含以覆盖PN片码速率三倍速率,重复每个底层PN片码三次,按照第15式,
[p1  p1  p1  p2  p2  p2  p3  p3  p3  …  ]
                                                   第15式
对覆盖操作来说,这导致有效地使用底层PN序列及片码速率,以产生部分正交的覆盖信号。因此,PN扩展只会扩展信号至底层系统那一部分。扩展的其余部分得自Walsh编码。对于三个底层信道的覆盖来说,Walsh编码包括了将每三个经编码的信息码元的组各乘上一个唯一的Walsh代码,然后再交织三个得到的序列。这可以用第16式来描述。f([c1 c2 c3],Wx Wy Wz)→[c1wx1 c2wy1 c3wz1 c1wx2 c2wy2 c3wz2…c1wxN c2wyN c3wzN]
                                                                                        第16式
为定义覆盖与底层Walsh代码的处理规则,首先讨论一些Walsh代码的普遍性质。一个Walsh代码组,WM可由第17式定义。
Figure A9880729200211
其中组中有M个Walsh代码;该组中的每个Walsh代码Wm M的长度为M;且每个Walsh代码比特Wn,m M为0或1。当Walsh代码组WM由下式开始产生时,
M的幂次为2;并且,当n≠m时,每个Walsh代码Wm M均正交于另一个Walsh代码Wn M
Walsh代码组可由下列著名的Haddamard矩阵求得。
注意,在组WM/2内的Walsh代码WM包含于组WM之内。此外,组WM中的任何Walsh代码均具备如下形式
其中,该形式将决定对于部分正交覆盖与正交覆盖方法来说,选取覆盖与底层Walsh代码的规则。对于非正交覆盖方法来说,覆盖与底层系统对于Walsh代码不会产生或受到影响。覆盖系统可使用覆盖系统可接受使用的任何Walsh代码。而底层系统可使用底层系统可接受使用的任何Walsh代码。
对于部分正交覆盖方法以及大体上为正交的覆盖方法来说,由覆盖与底层系统所共享的Walsh代码,可由实施例加以说明。在实践中,下例可以多种形式出现。假设一位覆盖用户被指派了一个长度为M的Walsh代码,其中,该Walsh代码如上述方式构造。同样地,一位底层用户被指派了一个长度为M/2的Walsh代码。正如底下面所说明的那样,藉由选取适当的覆盖与底层Walsh代码,则覆盖与底层系统可因部分正交覆盖的性质而受惠。假定一底层用户被指派了Walsh代码Wm M/2,其中0<m<M/2。因为覆盖Walsh代码为如第20式的形式,于是任何覆盖Walsh代码Wn M,其中n≠m,而且n≠m+M,正交于Wm M/2。于是这意味着底层系统所使用的任何Walsh代码都会由于被覆盖系统使用而去除掉两个Walsh代码。
覆盖与底层Walsh代码之间的关系意味着在覆盖与底层系统间的一种协调使用Walsh代码的方法。换句话说,如果Walsh代码m被底层系统使用,这里0<m≤M,则覆盖系统不使用n=m或是n=m+M的Walsh代码。反过来说,如果Walsh代码n被覆盖系统所使用,如果0<n≤M/2,则底层系统不使用m=n-M的Walsh代码。
假设底层系统采用长度为128的Walsh代码。可应用具有三个底层载波的覆盖系统与长度为256的Walsh代码。假设使用NW u的Walsh代码。那么覆盖系统有
Figure A9880729200222
个Walsh代码。例如,如果NW u=32,则No w=182。
正交覆盖方法的覆盖与底层Walsh代码间之关系亦类似于部分正交覆盖方法的情况。其差异来自正交覆盖方法对每个覆盖信道会消耗三个Walsh代码。换言之,第21式仍可适用,不过对于三个底层载波的覆盖来说,由覆盖系统所支持的覆盖信道数为No w/3。例如,NW u=32,则No w=182,可容纳182/3≈60个覆盖信道。
对于大体上为正交的覆盖方法,覆盖与底层用户间Walsh代码的协调如下。对于三个载波的覆盖来说,假设每个覆盖信道使用Walsh代码Wn1 M、Wn2 M、Wn3 M。那么如果Walsh代码m被底层系统所使用,而0<n≤M/2,则覆盖系统不使用n1=m或是n1=m+M、n2=m或是n2=m+M、n3=m或是n3=m+M的Walsh代码。反过来说,如果Walsh代码n1、n2、n3被覆盖系统所使用,而如果0<n1≤M/2,那么底层系统不使用m=n1的Walsh代码;否则,如果M/2<n1≤M,则底层系统不使用m=n1-M的Walsh代码;如果0<n2≤M/2,那么底层系统不使用m=n2的Walsh代码;否则,如果M/2<n2≤M,则底层系统不使用m=n2-M的Walsh代码;以及如果0<n3≤M/2,那么底层系统不使用m=n3的Walsh代码;否则,如果M/2<n3≤M,则底层系统不使用m=n3-M的Walsh代码。
图9说明底层发射机900可与图8的覆盖发射机搭配使用。图示的底层发射机900对应于具有三个底层载波与一个覆盖载波的系统,因为覆盖片码速率为三倍于底层片码速率。为简洁起见,图示的底层发射机900可支持一个底层信道,而图8的覆盖发射机800可支持一个覆盖信道,真实系统将在覆盖载波上具有多个覆盖信道,而在底层载波上具有多个底层信道。
用户信息比特dU(t)以9.6kbps速率抵达,然后输入1/2速率FEC编码器902,并以19.2kbps速率产生输出。该数据接着由块交织器904进行交织处理,以便防止因多路径衰落所造成的突发错误。经方框906处的QPSK变换后,码元速率成为9.6kbps。接着,将产生的信息以128比特Walsh代码于方框908处进行调制,产生1.2288Mcps的Walsh片码速率。然后由复数扩展单元910以底层PN序列将该信号展开,产生1.2288Mcps的输出片码速率。注意到同步单元816可允许复数扩展单元910合适地将覆盖传输同步于覆盖传输。该信号于是在914A及914B处加以调制,合并为底层信号sU(t)。
有一项对于底层发射机900与覆盖发射机800很重要的要求,那就是覆盖片码速率必须为底层片码速率的整数倍。如图8与图9的例子即满足该项要求,其中,覆盖发射机的PN序列时钟三倍于底层发射机的PN序列时钟,即3.6864Mcps对1.2288 Mcps。
部分正交覆盖方法与正交覆盖方法均需要在底层与覆盖系统之间保持严格的定时。举例来说,为建立底层与覆盖系统之间的正交性,底层与覆盖系统的定时必须保持在片码时段的很小一部分的范围内。否则,例如当底层与覆盖系统的定时并未对齐,相差一个或更多片码时段,则效能即降低至非正交覆盖方法的水准。保持底层与覆盖系统之间严格定时的最直接方法,就是底层与覆盖发射机综合至单个基站单元中,从而使得两者的片码时钟被同步。如此,即可严格保持底层与覆盖两个系统之间的定时。然而,如图2B所示,如果严格定时在基站单元之间保持,则底层与覆盖发射机亦可设置于分开的基站单元中。
图10说明一依据本发明的同步单元100构造实施例。该同步单元100包括了时钟产生电路1002,以产生PN覆盖时钟(例如图8的3.6864 Mcps速率)。PN覆盖时钟会被图8的复数扩展单元814以及同步单元的覆盖频率比值除法器1004接收。在本例中,覆盖频率比值除法器1004将覆盖PN时钟除以3,以产生提供给图9的复数扩展单元910的底层PN时钟。
图11则说明为接收传输与对传输进行扩展以提取覆盖通信而构造的移动电台Rake接收机1100。对于本处所述的任何覆盖方法,都不需要对相应于底层系统的移动电台进行修改。不过,相应于该覆盖系统的移动电台是为接收由覆盖系统所发送的信号而设计的。移动电台也包括公知的元件,例如耦接到天线(本图未示出)的射频单元。Rake接收机1100耦接至射频单元,并且接收输入信号r(n)。由Rake接收机1100所产生的输出信号x’(n)被移动电台内的另外的处理设备(未示出)接收,以完成通信路径。由于这些元件均属公知,故于此不再赘述。
Rake接收机1100第一个搜寻指1102首先会以覆盖PN数码与输入信号r(n)相关。对于部分正交覆盖方法的情况来说,覆盖PN代码会被底层PN序列减缩。而对于正交覆盖方法来说,覆盖PN数码就是底层PN序列。经PN序列相关器与PN序列相关后,信号被提供给串行-并行转换器1102,接着用Walsh代码相关器藉适当的Walsh代码(即那些应用在发射机的代码)建立相关性,然后在加法方框1106处作加法运算以及在并行-串行转换器1108处作并行-串行转换操作。接着,把产生的信号与来自Rake接收机1100其他的搜寻指1110、1112的信号合并即产生x’(n)。
图12说明与一覆盖频道共享中心频率的底层频道的效能。曲线1202表示在非正交覆盖系统内的底层信道效能,曲线1204表示在部分正交覆盖系统内的信道效能,而曲线1206则表示在完全正交覆盖系统内的信道效能。对于覆盖系统来说,调整发射机及接收机滤波器,使之三倍于底层滤波器的带宽。显示出中央覆盖信道(即,对于覆盖载波没有频率偏移的信道)的效能图。如同前述,相对于非正交覆盖,部分正交与大体上正交的操作均获得了实质的增益。
图13说明覆盖信道效能,该信道具有相对于中心频率覆盖信道的偏移值。曲线1302表示非正交覆盖系统的信道效能,而曲线1304表示部分正交覆盖系统的信道效能。
至于相对于覆盖信道具有频道偏移的底层信道来说,如第9式所述,具有一个额外的且会影响效能的频率项。该频率偏移为特定系统需求的函数。举例来说,该偏移值约为240KHz(实际为1.2288MHz+240KHz)。其净影响为,在底层接收机处原本设计为正交的覆盖片码,如今会因此频率项而被调制。注意到当两个不同的Walsh代码相乘时,Walsh函数组在乘法运算下是闭合的。
因这一公知的性质,由一覆盖Walsh信道对另一覆盖Walsh信道所产生的干扰,即可从观察得到的Walsh函数,经过与所要的Walsh函数相关后,并且观察接收机扩展操作之后的余值测量出来。如下列归一化后的第22式所示:
干扰=sum{Wi·cos(2πmT″cΔf)},m={0 1 2…127},
                                                第22式该式指出余弦函数表示Walsh代码i的调制,sum表示的相加以及去扩展运算的剩余部分。总干扰由因其他Walsh代码信道所生的干扰总和所组成。经对该式求值运算后,其结果显示对大部分的Walsh信道来说,其所造成的影响有限。
本发明对于各种修改及替代形式相当敏感,故以附图及详细描述例子的方式来说明特定的实施例。然而应明了,该附图及详细描述的范例并不打算把本发明局限于揭示的特殊形态;相反地,本发明可涵盖所有符合权利要求书所确定的落入本发明精神与范畴内的修改、等价物与替换物。

Claims (32)

1.一种应用于CDMA无线通信系统的基站,可支持至多个移动电台的底层传输与直接扩展覆盖传输,其特征在于,所述基站包括:
接收要送交多个所述移动电台的通信的接口;
接收通信的底层部分并产生所述底层传输的底层单元;
接收通信的覆盖部分并产生所述覆盖传输的覆盖单元;
至少一个可透过至少一架天线将所述底层传输与所述覆盖传输发送给多个所述移动电台的射频单元;以及
所述底层单元与所述覆盖单元产生所述覆盖传输,从而它们至少部分正交于所述底层传输。
2.如权利要求1所述的基站,其特征在于,所述基站还包括耦接至所述底层单元与所述覆盖单元的同步单元,它使得所述覆盖传输大体上同步于所述底层传输。
3.如权利要求1所述的基站,其特征在于,所述覆盖传输部分正交于底层传输。
4.如权利要求1所述的基站,其特征在于,所述覆盖传输大体上正交于所述底层传输。
5.如权利要求1所述的基站,其特征在于,所述覆盖传输的伪噪声序列被所述底层传输的伪噪声序列减缩,以产生一部分的正交性。
6.如权利要求1所述的基站,其特征在于,所述覆盖传输的Walsh代码正交于所述底层传输的Walsh代码。
7.如权利要求1所述的基站,其特征在于,所述覆盖单元以底层伪噪声序列扩展所述覆盖传输,以产生一部分的正交性。
8.如权利要求1所述的基站,其特征在于,所述覆盖传输的片码速率为所述底层传输的片码速率的整数倍。
9.一种CDMA无线通信系统,可支持至多个移动电台的底层传输和直接扩展覆盖传输,其特征在于,所述CDMA无线通信系统包括:
基站控制器;
耦接至基站控制器的多个基站;
多个基站的底层基站,它包括:
基站控制器接口,它接收欲送给多个所述移动电台的底层通信;
耦接至接收所述底层通信并产生所述底层传输的基站控制器接口的底层单元;以及
接收所述底层传输,并可透过天线将所述底层传输发送给多个所述移动电台的射频单元;
多个基站的覆盖基站,它包括:
基站控制器接口,它接收欲送给多个所述移动电台的覆盖通信;
耦接至接收所述覆盖通信并产生所述覆盖传输的基站控制器接口的覆盖单元;以及
接收所述覆盖传输,并可透过天线将所述覆盖传输发送给多个所述移动电台的射频单元;以及
所述覆盖基站产生所述覆盖传输,从而它们至少部分正交于所述底层基站产生的所述底层传输。
10.如权利要求9所述的CDMA无线通信系统,其特征在于,所述系统还包括耦接至所述覆盖基站与所述底层基站的同步单元,使得所述覆盖传输大体上同步于底层传输。
11.如权利要求9所述的CDMA无线通信系统,其特征在于,所述覆盖传输部分正交于所述底层传输。
12.如权利要求9所述的CDMA无线通信系统,其特征在于,所述覆盖传输大体上正交于所述底层传输。
13.如权利要求9所述的CDMA无线通信系统,其特征在于,所述覆盖传输的伪噪声序列被所述底层传输的伪噪声序列插合,以产生一部分的正交性。
14.如权利要求9所述的CDMA无线通信系统,其特征在于,所述覆盖传输的Walsh代码正交于底层传输的Walsh代码。
15.如权利要求9所述的CDMA无线通信系统,其特征在于,所述覆盖单元以底层伪噪声序列将所述覆盖传输扩展,以产生一部分的正交性。
16.如权利要求9所述的CDMA无线通信系统,其特征在于,所述覆盖传输的片码速率为所述底层传输的片码速率的整数倍。
17.如权利要求9所述的CDMA无线通信系统,其特征在于,所述系统还包括耦接至所述基站控制器的移动通信交换中心。
18.如权利要求9所述的CDMA无线通信系统,其特征在于,多个所述移动电台中的一些移动电台支持所述底层传输;多个所述移动电台的其他移动电台支持所述覆盖传输。
19.一种在对多个移动电台提供服务的CDMA无线通信系统中与多个所述移动电台进行通信的方法,其特征在于,所述方法包括以下步骤:
接收欲送给多个所述移动电台的通信;
将所述通信划分为覆盖通信与底层通信;
将所述底层通信转换为底层传输;
将所述覆盖通信转换为覆盖传输,所述覆盖传输至少部分正交于所述底层通信;
将所述底层传输与所述覆盖传输发送给多个所述移动电台。
20.如权利要求19所述的方法,其特征在于,所述覆盖传输的发送大体上同步于所述底层传输的发送;
21.如权利要求19所述的方法,其特征在于,所述覆盖传输部分正交于所述底层传输。
22.如权利要求19所述的方法,其特征在于,所述覆盖传输大体上正交于所述底层传输。
23.如权利要求19所述的方法,其特征在于,所述覆盖传输的伪噪声序列被所述底层传输的伪噪声序列减缩,以产生一部分的正交性。
24.如权利要求19所述的方法,其特征在于,所述覆盖传输的Walsh代码正交于所述底层传输的Walsh代码。
25.如权利要求19所述的方法,其特征在于,所述覆盖单元以所述底层伪噪声序列将所述覆盖传输扩展,以产生一部分的正交性。
26.如权利要求19所述的方法,其特征在于,所述覆盖传输的所述片码速率为所述底层传输片码速率的整数倍。
27.一种应用于CDMA无线通信系统的移动电台,所述系统可支持底层传输与至少部分正交于所述底层传输的直接扩展覆盖传输,其特征在于,所述移动电台包括:
用以接收所述底层传输与所述覆盖传输的天线;
耦接至所述天线并用以接收所述底层传输与所述覆盖传输的射频单元;
接收所述底层传输与所述覆盖传输,并且将所述底层传输与所述覆盖传输进行去扩展,以提取覆盖通信的Rake接收机。
28.如权利要求27所述的移动电台,其特征在于,所述Rake接收机包括:
伪噪声相关器,它对所述底层传输与所述覆盖传输以覆盖伪噪声序列进行相关,以提取底层通信;
Walsh代码相关器,它利用覆盖Walsh代码将底层传输进行相关,而所述覆盖Walsh代码正交于至少一个底层Walsh代码,以提取欲送给移动电台的通信。
29.如权利要求28所述的移动电台,其特征在于,所述Rake接收机包括多个Rake搜寻指,每个搜寻指均含有伪噪声相关器与Walsh代码相关器。
30.如权利要求28所述的移动电台,其特征在于,所述覆盖伪噪声序列部分正交于对应的所述底层伪噪声序列。
31.如权利要求27所述的移动电台,其特征在于,所述覆盖传输大体上正交于所述底层传输。
32.如权利要求27所述的移动电台,其特征在于,所述覆盖传输的片码速率为所述底层传输片码速率的整数倍。
CNB988072920A 1997-07-17 1998-07-17 码分多址直接扩展覆盖系统及其操作方法 Expired - Fee Related CN1135764C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US5288297P 1997-07-17 1997-07-17
US06/052,882 1997-07-17
US7502798P 1998-02-18 1998-02-18
US60/075,027 1998-02-18

Publications (2)

Publication Number Publication Date
CN1264511A true CN1264511A (zh) 2000-08-23
CN1135764C CN1135764C (zh) 2004-01-21

Family

ID=26731205

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988072920A Expired - Fee Related CN1135764C (zh) 1997-07-17 1998-07-17 码分多址直接扩展覆盖系统及其操作方法

Country Status (9)

Country Link
US (1) US6285669B1 (zh)
EP (1) EP1031201A4 (zh)
JP (1) JP2004503949A (zh)
CN (1) CN1135764C (zh)
AU (1) AU8409498A (zh)
BR (1) BR9810594A (zh)
CA (1) CA2294507A1 (zh)
MX (1) MXPA00000621A (zh)
WO (1) WO1999004525A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546860A (zh) * 2012-07-17 2014-01-29 索尼公司 信息处理设备、通信系统和信息处理方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885691B1 (en) 1999-08-02 2005-04-26 Lg Information & Communications, Ltd. Scrambling codes and channelization codes for multiple chip rate signals in CDMA cellular mobile radio communication system
US6882631B1 (en) * 1999-09-13 2005-04-19 Qualcomm Incorporated Method and apparatus for overlaying two CDMA systems on the same frequency bandwidth
US7920870B1 (en) * 1999-12-30 2011-04-05 Telefonaktiebolaget Lm Ericsson (Publ) System and method for adaptive configuration of cell structure based on the position of mobile stations
AU2001252897A1 (en) * 2000-03-09 2001-09-17 Raytheon Company Frequency domain direct sequence spread spectrum with flexible time frequency code
US7020225B2 (en) * 2001-01-19 2006-03-28 Qualcomm Inc. Frequency searcher and frequency-locked data demodulator using a programmable rotator
US7035663B1 (en) * 2001-10-30 2006-04-25 Sprint Communications Company, L.P. Wireless telecommunications overlay system
US7123934B1 (en) 2002-02-15 2006-10-17 Sprint Communications Company L.P. Telecommunications overlay system
US20040160922A1 (en) 2003-02-18 2004-08-19 Sanjiv Nanda Method and apparatus for controlling data rate of a reverse link in a communication system
US7155236B2 (en) 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8705588B2 (en) * 2003-03-06 2014-04-22 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
US7492809B2 (en) * 2003-08-19 2009-02-17 Nokia Corporation Blind speech user interference cancellation (SUIC) for high speed downlink packet access (HSDPA)
US8364185B2 (en) * 2005-04-18 2013-01-29 Samsung Electronics Co., Ltd. Method and system for synchronizing a clock for an adjacent network to a clock for an overlay network
US9119214B2 (en) * 2012-04-18 2015-08-25 Bae Systems Information And Electronic Systems Integration Inc. Coordinated optimization of underlay network communication for efficient use of spectrum
US9768860B2 (en) * 2012-09-07 2017-09-19 Agency For Science, Technology And Research Method and system for high bandwidth and low power body channel communication
CN105991159B (zh) * 2015-02-13 2019-07-02 中兴通讯股份有限公司 数据传输方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2267627B (en) * 1992-05-27 1996-01-03 Roke Manor Research Improvements in or relating to radio communication systems
US5793757A (en) * 1996-02-13 1998-08-11 Telefonaktiebolaget L M Ericsson (Publ) Telecommunication network having time orthogonal wideband and narrowband sytems
US5805567A (en) * 1996-09-13 1998-09-08 Lucent Technologies Inc. Orthogonal modulation scheme
US5956345A (en) * 1996-09-13 1999-09-21 Lucent Technologies Inc. IS-95 compatible wideband communication scheme
US6081536A (en) * 1997-06-20 2000-06-27 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546860A (zh) * 2012-07-17 2014-01-29 索尼公司 信息处理设备、通信系统和信息处理方法

Also Published As

Publication number Publication date
CN1135764C (zh) 2004-01-21
BR9810594A (pt) 2000-09-12
AU8409498A (en) 1999-02-10
EP1031201A4 (en) 2004-09-29
EP1031201A1 (en) 2000-08-30
JP2004503949A (ja) 2004-02-05
WO1999004525A1 (en) 1999-01-28
US6285669B1 (en) 2001-09-04
CA2294507A1 (en) 1999-01-28
MXPA00000621A (es) 2002-08-12

Similar Documents

Publication Publication Date Title
CN1135764C (zh) 码分多址直接扩展覆盖系统及其操作方法
CN1157014C (zh) 码分多址传输系统与该系统中的发送机及其运作方法
US6185246B1 (en) System and method for orthogonal spread spectrum sequence generation in variable data rate systems
CN1065700C (zh) 分叉同相和90°相差扩展频谱信道信号传输方法和装置
CN1237746C (zh) 多层载波离散多音通信技术
CN1310440C (zh) 窄带时分双工码分多址移动通信系统的功率控制装置和方法
CN100592649C (zh) 在无线通信系统中使用的用户单元和方法
CN1096159C (zh) 带分布式接收机的多用户通信系统
CA2097066C (en) Cdma microcellular telephone system and distributed antenna system therefor
US5751761A (en) System and method for orthogonal spread spectrum sequence generation in variable data rate systems
CN1080053C (zh) 用于在ds-cdma通信系统中数字组合信道信息的方法和装置
CN1087534C (zh) 使用码分和时分的多址通信系统和方法
CN1123179C (zh) 用于可变速率数字数据传输的方法和装置
CN1186892C (zh) 采用正交波形使多个发射机能够共享单个cdm信道
US20030108089A1 (en) Method for transmitting wideband signals via a communication system adapted for narrow-band signal transmission
EP2096891A1 (en) method and apparatus using a multi-carrier forward link in a wireless communication system
CN1413403A (zh) 通过导频辅助相干解调的turbo编码信号解调系统及方法
CN1196273C (zh) 减少cdma通信系统中峰值均值比的方法和设备
CN1554206A (zh) Cdma通信系统中时间共享信道化码的方法和设备
JP2000115130A (ja) スペクトル拡散通信システムにおいてウォルシュシフトキ―イングを使用する方法及び装置
CN1113369A (zh) 一个cdma通信的方法和系统
CN1337105A (zh) 采用具有非互相关区域的码序列组的cdma通信方式
JPH0918447A (ja) Walsh符号発生装置、信号送信装置及び信号受信装置
CN1567795A (zh) 通信方法及通信系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee