CN1239533A - 直接位于燃气轮机上游的合成气膨胀机 - Google Patents

直接位于燃气轮机上游的合成气膨胀机 Download PDF

Info

Publication number
CN1239533A
CN1239533A CN98801387A CN98801387A CN1239533A CN 1239533 A CN1239533 A CN 1239533A CN 98801387 A CN98801387 A CN 98801387A CN 98801387 A CN98801387 A CN 98801387A CN 1239533 A CN1239533 A CN 1239533A
Authority
CN
China
Prior art keywords
gas
synthetic gas
fuel
synthetic
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN98801387A
Other languages
English (en)
Inventor
F·C·加赫克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Development Corp
Original Assignee
Texaco Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Development Corp filed Critical Texaco Development Corp
Publication of CN1239533A publication Critical patent/CN1239533A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • F05D2220/722Application in combination with a steam turbine as part of an integrated gasification combined cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/212Heat transfer, e.g. cooling by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Industrial Gases (AREA)

Abstract

本发明改善了用作为燃气轮机(12)燃料的合成气进行燃烧以生产动力的可靠性,这种改善是通过直接在燃气轮机的上游设置合成气膨胀机(48)实现的。通过附加的来自膨胀机的动力输出以及通过减少或消除用于控制氮气氧化的空气分离单元的氮气压缩,使效率增加。

Description

直接位于燃气轮机上游的合成气膨胀机
发明领域
本发明涉及通过部分氧化烃类燃料生产燃料气并且在燃气轮机中燃烧这种燃料气以生产动力的改进技术,更具体地说,本发明涉及高效整体气化总体循环(“IGCC”)方法,该方法在各段中加入气体冷却步骤,并且该方法是在高压下操作以从冷却的燃料气中使热量最大程度地用于动力生产。发明背景
目前,全世界均采用急冷动力生产体系通过燃料气化以生产动力。在这种系统中,通过用含游离氧的气体对烃类燃料进行部分氧化生产出包含H2、CO、CO2和H2O的原料合成气或合成燃料气,该过程通常是在温度调节剂存在下,于急冷式气化反应器中进行的。
所产生的合成气通过在水中急冷产生一种急冷的饱和合成气物流,其温度通常为约450-550°F,压力通常为约700-1500psia。此类方法更为详细的描述参见US 5,345,756(Jahnke等),该文献引入本文作为参考。
所产生的合成气通常在酸气除去单元中进行纯化,所述单元采用物理或化学溶剂以从气体物流中除去H2S和COS。然后,将纯化后的合成气作为燃料气加至带有温度调节剂如氮气的燃气轮机的燃烧器中。发明概述
本发明直接在燃气轮机的上游设置一个合成气膨胀涡轮机或膨胀机,从而改善了作为用于燃气轮机燃料的合成气进行燃烧以生产动力的可靠性和效率。来自膨胀机的附加动力输出以及通过减少或消除来自用于控制氮氧化物的空气分离单元的氮气压缩可增加效率。附图简述
图1为一种实施方案的流程示意图,该实施方案中采用来自燃气轮机的释放空气作为燃烧器中用于部分燃烧合成气的氧源。
图2为包括选择性脱硫系统的图1实施方案的流程示意图。
图3为另一种实施方案的流程示意图,该实施方案采用来自空气分离单元的高压氧气作为燃烧器中用于部分燃烧合成气的氧源。
图4为另一种实施方案的流程示意图,其中,合成气通过在热回收蒸汽发生器的管中与燃气轮机废气进行热交换而将合成气加热。
相应的参考数字表明在各附图中的相应部分。优选实施方案说明
按照本发明,合成气膨胀机或膨胀涡轮机直接位于燃气轮机的上游。进入膨胀机的合成气混合物在约800-约1000°F。由于进入膨胀机的气体处于高温下,因此,在热合成气进入燃气轮机之前,可从热合成气的体积膨胀中得到大量的动力,从而大大改善动力生产循环中的效率。从膨胀机排出的燃料气依然是热的,并且这些未能通过膨胀机转化成动力的热量被直接带入燃气轮机中,在此回收热量。
在本发明的一个实施方案中,在进入燃气轮机的燃烧器段之前,将热空气的排出物流从燃气轮机的压缩器排放中除去。通过使热空气的排出物流与其它加工物流进行热交换,或者通过任一种可有效实现的其它冷却措施而将其冷却。
在冷却后,空气物流可用水饱和,并压缩至约1000-约1200psig。即使空气物流吸收水将增加压缩机的负荷,空气物流也可用水或氮气饱和以改善循环效率。
或者,空气或气体物流可被饱和或可第二压缩机下游接受附加的饱和。然而,此时,气体物流由于压缩的热量而被加热,采用饱和器效果不好。
另一种可选择的情形是,部分来自燃气轮机的空气可加至空气分离单元,该单元能减少空气分离单元空气压缩器的尺寸和动力。进而,可对来自空气分离单元的氮气进行压缩并送至燃气轮机中或送至膨胀机上游的合成气或空气中以增加动力输出并减少燃气轮机中氮氧化物(NOx)的形成。
参看附图1,来自酸性气体去除单元(未示出)的高压低硫(sweet)合成气2进入合成气饱和器4中,在该饱和器中用水6饱和,并以饱和的合成气物流8排出。合成饱和器4也备有水出口9。
从燃气轮机12中排出压力为约200-300psig及温度为约500-800°F的热释放空气物流10,将其通过第一换热器14,在此,它释放出热量给进入锅炉的进料水物流16,形成高压蒸气物流18。冷却后的空气物流20从换热器14中排出,进入第二换热器22中,在此,空气物流进一步被冷却并以进一步冷却的空气物流24排出。选择性地,冷却后的空气物流24的一部分13可循环至空气分离单元。燃气轮机12也备有空气入口11。
冷却后的空气物流24进入第三换热器30中,在此,其进一步被冷却,并以冷却后的空气物流32排出,进入空气饱和器34中,在此,空气被经管线36进入的水饱和。饱和器备有水出口37。
饱和后的合成气38从空气饱和器34排出,进入第二压缩机40中,在此,其从约200-300psig被压缩至约1000-1200psig,该压力是气化器的典型操作压力,并以压缩后的空气物流42排出,与合成气物流26一起进入燃烧器28中。
饱和后的合成气物流8通过换热器22,在此,其与通过的空气进行热交换,并作为加热后的饱和合成气物流26排出,并进入燃烧器28中,在此进行燃烧。
中间冷却器(未示出)可选择性地与第二压缩机40一起使用。但是,由于压缩的热量进入燃烧器28,并且,额外的动力被转化成燃烧值,高压缩比且无级间冷却可能是可行的。
需要指出,压缩后的空气物流42与合成气物流26一起进入燃烧器28中,并进行燃烧,产生在高温下的燃烧产物与过量合成气的混合物。
通常,仅合成气26的一部分,大约占合成气总量1-5%的合成气物流在燃烧器28中进行燃烧。而高压合成气的大部分则经管线44旁路通过燃烧器28,并与排出燃烧器28的燃烧气体29混合,形成约1000°F的燃烧气体29与合成气44的混合物46。
燃烧器28的燃烧室中的温度可通过调节旁路通过燃烧器28的物流44中合成气的量来改变。如果合成气通过燃烧器28的量较小,则可获得使未混合气体蒸气29的温度特别高。
然后,混合气体物流46进入膨胀机48中,该膨胀机与发电机50连接。由于合成气加热改善了循环的效率,来自膨胀机48的大量动力可易于被发动机50接收。从膨胀机48排出的气体52将依然很热,温度约250-700°F。热气体52可用作燃气轮机12的燃料。因此,来自气体46未通过膨胀机48转化为动力的热量将作为燃料气52中的热量排放至燃气轮机12中,通过发动机54回收。
通过适当地控制系统的操作过程,可使进入膨胀机48的燃料气52保持在足够低的BTU/标准立方英尺(BTU/SCF)上,以减少氮氧化物(N0x)的产生,同时,保持足够的热值在约80-150BTU/SCF,以确保在燃气轮机12中有效且效率很高地燃烧。
通过控制在膨胀机48中通入气体物流46之前用于在燃烧器28中对合成气26的一部分进行预燃烧的空气量和通过控制加至进入空气饱和器34的高压空气中的饱和水36的用量,可控制燃料气52的热值。选择性地,氮气或合成气物流可在进入膨胀机之前加至燃料物流中,或者在膨胀机的下游通过连接燃气轮机12的选择性管线58加至燃料物料中。
图2为高温脱硫实施方案,其中,来自燃烧器28及旁路合成气物流44合并后的燃烧气体46进入高压脱硫系统中,该系统由铁酸锌或类似物质的床层60和62组成,通过管线64排出脱硫后的物流。
进入高温脱硫系统的燃烧气体46已通过本领域技术人员公知的常规低温脱硫方法脱除了大部分的硫。这一类常规方法大多包括COS水解步骤以使脱硫率增加约1-2%。
采用本发明所述的高温脱硫系统将会消除对COS水解的需求,并能除去最后的痕量硫。由于脱硫系统仅需脱除最后痕量的硫,因此,与从合成气中脱除所有硫的系统相比,高温脱硫系统的尺寸可非常小。此外,来自用经管线66引入的蒸气和氧气对床层60和62再生的酸性气体可经管线68返回气化器(未示出)中,消除了对任何附加硫回收处理的需要并使间歇加工或对脱硫床进行再生更为方便地进行。
图3为采用纯氧气而非氧气和空气作为氧化剂以使合成气进行部分燃烧以增加温度的简化过程。在图1中所公开的排放空气的加工系统被来自空气分离单元(未示出)的高压氧气代替,高压氧气通过管线70加至燃烧器28中,并与来自酸性气体脱除单元或合成气饱和器4的部分高压合成气26一起燃烧。来自合成气饱和器4的高压脱硫合成气8进入换热器14中并经管线26排出,并进入燃烧器28中。
该实施方案的优点是,氧气易于在升高的压力下以来自被加至气化器的氧气的侧流或滑流得到。该实施方案也可用于改进现有的高压气化动力系统。
图4显示了仅通过热交换对合成气进行加热的另一种方式,从而避免在燃烧器28中进行部分燃烧。该实施方案是用于将合成气加热至高温的最有效的配置。用水饱和的合成气物流8进入热回收蒸气发生器80中,在此它被由燃气轮机12排出的热废气82间接加热。
合成气8的加热优选这样来进行,即使合成气通过热回收蒸气发生器80中的管子,与使蒸气过热的方式类似,虽然也可采用间接加热。由于可从燃气轮机废气得到高温,合成气易于被加热至约700-1000°F,根本无需燃烧合成气,合成气以物流84存在。
与用氧气使部分合成气燃烧的方案相比,采用直接来自热回收蒸气发生器80的热量在膨胀机48中对合成气进行加热是更为有效的,并可消除与氧气生产相关的能量需求。由于采用了直接位于燃气轮机12上游的膨胀机48,这使得该实施方案与膨胀机48位于冷却线路中部需要非常长合成气传输管线的方案相比更实际可行。
因此,膨胀机48可直接位于燃气轮机12的上游被加热的合成气管线84上。这消除了为冷却膨胀机废气的需求,并使成本降低。
膨胀机48的入口温度优选设置成可使排出燃料气52的废气温度为550°F,并允许对进入燃气轮机12的燃料气52采用标准高温燃料控制阀。通常,对于加至膨胀机48的被加热合成气进料84来说,要求进料温度为约800-1000°F。加至膨胀机48的进料84可通过所述手段进行预加热,包括用蒸气或其它加工物流进行热交换以达到约550°F。
加热至约800°F或以上的温度所需的其余热量则通过在燃烧器28中氧气或空气于合成气中燃烧完成,或者通过在热回收蒸气发生器80中进行热交换完成。
合成气饱和器4可用氮气饱和器代替。对于给定的整体空气分离单元设计而言,燃料气和氮气物流几乎具有相同的流速,这种变化对成本没有什么影响。
膨胀机可与氮气压缩机连接并驱动该压缩机,这消除了对电动机的要求,并消除了相关的电力费用和效率损失。
本发明具有以下若干优点:本发明可提供低BTU/SCF燃料,可控制该燃料的最佳BTU含量,从而提供有效燃烧和最小NOx;本发明可以消除对氮气压缩机的需求,由空气分离单元控制BTU含量,消除了对压力较低的惰性气体进行压缩的需求。本发明还在膨胀前消除以来自气体中的硫,改善了膨胀单元的可靠性并降低了投资成本;本发明使进入膨胀机的气体温度最大化,从而产生动力最多,并改善了使用膨胀机时整个循环过程的效率;本发明也可采用标准压力空气分离单元设计或管路氧气,允许进行有效气化动力生产;当加入高温脱硫单元时,本发明还可减少硫释放至ppm级。
当需要保持对动力循环尽可能小的影响时,系统可成旁路设置。在旁路模式中,蒸气注入可用于保持低NOx生产,合成气燃料可直接从合成气饱和器进入燃烧器。

Claims (10)

1、一种用于增加动力生产单元效率的系统,其中,通过在气化器中对烃燃料进行部分氧化反应生产在升高温度和压力下的合成气,其中,合成气用作动力生产单元中的燃料以产生动力,其改进之处是,该系统包括直接在动力产生单元的上游设置高温气体膨胀机。
2、根据权利要求1的系统,还包括在高温气体膨胀机上游的合成气饱和器、热交换装置和燃烧器。
3、根据权利要求1的系统,还包括至少一个与来自动力产生单元的空气源连接的换热器,空气饱和器和压缩机。
4、根据权利要求2的系统,还包括用于从排出燃烧器的气体中除去硫的高温脱硫系统。
5、根据权利要求1的系统,其中,动力产生单元为燃气轮机。
6、一种用于增加动力产生系统效率的方法,其中,通过在气化器中对烃燃料进行部分氧化反应生产在升高温度和压力下的合成气,其中,在燃气轮机中,合成气用作动力生产单元中的燃料以产生动力,其中,所述的合成气在用作所述燃气轮机的燃料之前被清洁和冷却,其改进之处是,在将合成气用作燃气轮机的燃料之前,通过在膨胀单元中减少合成气的压力以使合成气的体积膨胀,并通过与膨胀单元连接的发动机从合成气的膨胀中得到动力,所述发动机与膨胀单元直接相连。
7、根据权利要求6的方法,其中,部分合成气在膨胀前被部分燃烧。
8、根据权利要求6的方法,其中,在膨胀前所述的部分燃烧的合成气与未燃烧的部分合成气混合。
9、根据权利要求8的方法,其中,在进行部分燃烧前从合成气中将那部分未燃烧的合成气分离开。
10、根据权利要求6的方法,其中,部分燃烧的合成气物流进行高温脱硫处理。
CN98801387A 1997-09-12 1998-09-02 直接位于燃气轮机上游的合成气膨胀机 Pending CN1239533A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US5874797P 1997-09-12 1997-09-12
US60/058,747 1997-09-12
US09/139,917 1998-08-26
US09/139,917 US6061936A (en) 1997-09-12 1998-08-26 Synthesis gas expander located immediately upstream of combustion turbine

Publications (1)

Publication Number Publication Date
CN1239533A true CN1239533A (zh) 1999-12-22

Family

ID=26737989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98801387A Pending CN1239533A (zh) 1997-09-12 1998-09-02 直接位于燃气轮机上游的合成气膨胀机

Country Status (12)

Country Link
US (1) US6061936A (zh)
EP (1) EP0964986B1 (zh)
JP (1) JP3462222B2 (zh)
KR (1) KR100394915B1 (zh)
CN (1) CN1239533A (zh)
AU (1) AU733814B2 (zh)
BR (1) BR9806240A (zh)
CA (1) CA2271660C (zh)
DE (1) DE69825868T2 (zh)
ES (1) ES2230717T3 (zh)
TW (1) TW384350B (zh)
WO (1) WO1999014473A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422993A (zh) * 2012-05-17 2013-12-04 通用电气公司 用于产生富氢燃料的系统和方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314715B1 (en) 1999-06-03 2001-11-13 General Electric Co. Modified fuel gas turbo-expander for oxygen blown gasifiers and related method
US6998098B2 (en) 2002-11-11 2006-02-14 Conocophillips Company Removal of gases from a feed
CA2659278A1 (en) * 2006-07-28 2008-01-31 William S. Rollins Iii High efficiency integrated gasification combined cycle power plant
US7739875B2 (en) * 2006-08-07 2010-06-22 General Electric Company Syngas power systems and method for use thereof
US8163047B2 (en) * 2007-01-10 2012-04-24 General Electric Company Methods and apparatus for cooling syngas in a gasifier
US7670574B2 (en) * 2007-01-19 2010-03-02 General Electric Company Methods and apparatus to facilitate cooling syngas in a gasifier
US7749290B2 (en) * 2007-01-19 2010-07-06 General Electric Company Methods and apparatus to facilitate cooling syngas in a gasifier
US7861509B2 (en) 2007-01-23 2011-01-04 General Electric Company Methods and systems for gas turbine syngas warm-up with low emissions
US8506660B2 (en) * 2007-09-12 2013-08-13 General Electric Company Nozzles for use with gasifiers and methods of assembling the same
DE102008026267A1 (de) 2008-06-02 2009-12-03 Uhde Gmbh Modifizierter Gas- und Dampfturbinenprozess mit integrierter Kohledruckvergasung
EP2230389A1 (de) * 2009-01-26 2010-09-22 Siemens Aktiengesellschaft Synthesegasbrennstoffsystem sowie ein Verfahren zum Betrieb eines Synthesegasbrennstoffsystems
US8268896B2 (en) * 2009-08-07 2012-09-18 Gas Technology Institute Co-production of fuels, chemicals and electric power using gas turbines
US8992640B2 (en) 2011-02-07 2015-03-31 General Electric Company Energy recovery in syngas applications
NL2014786B1 (en) * 2015-05-11 2017-01-26 Dahlman Renewable Tech B V Method and systems for treating synthesis gas.
RU2600924C1 (ru) * 2015-06-19 2016-10-27 Общество с ограниченной ответственностью "Научно-исследовательский центр "Полимерные соединения" Способ получения фармацевтической композиции эритромицина
WO2017036431A1 (en) * 2015-08-31 2017-03-09 Otevřel Marek Equipment for gas turbine output increasing and efficiency improvement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2592749A (en) * 1947-01-16 1952-04-15 Rateau Soc Gas turbine engine associated with a gas producer under pressure
US4199933A (en) * 1973-12-22 1980-04-29 Bbc Brown Boveri & Company Limited Power plant with pressurized-gas generator
DE2437782C3 (de) * 1974-08-06 1981-01-08 Steag Ag, 4300 Essen Verfahren zum Anfahren einer Gasturbinen-Anlage zur Stromerzeugung aus Brenngas von einem Kohle-Druckvergaser
US4733528A (en) * 1984-03-02 1988-03-29 Imperial Chemical Industries Plc Energy recovery
DE59008773D1 (de) * 1990-09-10 1995-04-27 Asea Brown Boveri Gasturbinenanordnung.
GB9105095D0 (en) * 1991-03-11 1991-04-24 H & G Process Contracting Improved clean power generation
US5220782A (en) * 1991-10-23 1993-06-22 Bechtel Group, Inc. Efficient low temperature solvent removal of acid gases
US5345756A (en) 1993-10-20 1994-09-13 Texaco Inc. Partial oxidation process with production of power

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422993A (zh) * 2012-05-17 2013-12-04 通用电气公司 用于产生富氢燃料的系统和方法

Also Published As

Publication number Publication date
AU733814B2 (en) 2001-05-24
BR9806240A (pt) 2000-03-28
CA2271660A1 (en) 1999-03-25
KR20000068968A (ko) 2000-11-25
AU9216798A (en) 1999-04-05
EP0964986A4 (en) 2002-01-09
WO1999014473A1 (en) 1999-03-25
JP2001506344A (ja) 2001-05-15
EP0964986B1 (en) 2004-08-25
DE69825868T2 (de) 2005-01-05
CA2271660C (en) 2002-04-09
EP0964986A1 (en) 1999-12-22
US6061936A (en) 2000-05-16
ES2230717T3 (es) 2005-05-01
DE69825868D1 (de) 2004-09-30
KR100394915B1 (ko) 2003-08-19
TW384350B (en) 2000-03-11
JP3462222B2 (ja) 2003-11-05

Similar Documents

Publication Publication Date Title
CN1239533A (zh) 直接位于燃气轮机上游的合成气膨胀机
CN101016490B (zh) 一种处理包含氢及二氧化碳的气体混合物的方法
CN100365246C (zh) 增强热力效率和污染控制供电系统的操作方法
US4468923A (en) Process and plant for generating electrical energy
US20070137191A1 (en) Advanced high efficiency, ultra-low emission, thermochemically recuperated reciprocating internal combustion engine
CA2816412C (en) Heat integration in co2 capture
CA2136817A1 (en) A process for recovering energy from a combustible gas
CN101899329B (zh) 用于处理包括不希望的排放气体的流的系统和方法
WO2006107209A1 (en) Low co2 thermal powerplant
CN1045156A (zh) 结合式气化混合循环发电站操作机动性的改善
JPH08261013A (ja) 複合サイクル発電プラント及びその効率を向上させる方法
JP2004530097A (ja) Co2放出の少い発電機及び関連方法
KR101693865B1 (ko) 탄소 포획 냉각 시스템 및 방법
CN102371107B (zh) 用于酸性气体去除的系统
CN106224099A (zh) 一种双燃料热电联供注水正逆燃气轮机联合循环系统
EP0686231B1 (en) New power process
JPH05500848A (ja) 動力プラント、および既存動力プラント改装方法
JPH09317407A (ja) 重質油焚き複合発電設備
CN1273208C (zh) 生产氢气的设备和使用该设备生产氢气的方法
WO2003029625A1 (en) Method and arrangement for using an internal combustion engine
JP2002004948A (ja) 炭化水素を原料とした動力発生装置および方法
CN109609199A (zh) 零碳排放的煤气化热电联供工艺
CN118481831A (zh) 联合循环机组发电系统及其烟气脱碳方法
CN118481830A (zh) 基于生物质气化的联合循环机组发电系统及方法
CN118855590A (zh) 具有燃料电池和碳捕获系统的燃烧系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1023612

Country of ref document: HK