CN109609199A - 零碳排放的煤气化热电联供工艺 - Google Patents
零碳排放的煤气化热电联供工艺 Download PDFInfo
- Publication number
- CN109609199A CN109609199A CN201910038240.3A CN201910038240A CN109609199A CN 109609199 A CN109609199 A CN 109609199A CN 201910038240 A CN201910038240 A CN 201910038240A CN 109609199 A CN109609199 A CN 109609199A
- Authority
- CN
- China
- Prior art keywords
- vapor
- coal
- coal gasification
- gasification
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/80—Other features with arrangements for preheating the blast or the water vapour
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/82—Gas withdrawal means
- C10J3/84—Gas withdrawal means with means for removing dust or tar from the gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/86—Other features combined with waste-heat boilers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1603—Integration of gasification processes with another plant or parts within the plant with gas treatment
- C10J2300/1612—CO2-separation and sequestration, i.e. long time storage
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1678—Integration of gasification processes with another plant or parts within the plant with air separation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1687—Integration of gasification processes with another plant or parts within the plant with steam generation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明提供零碳排放的煤气化热电联供工艺,加压空气进入空分装置,液氧用于燃烧发电,液氮膨胀汽化发电;带压输送的煤粉和高压氧气进入气化炉气化,生成高温燃气,换热净化后送往发电系统;与换热后高压燃气与氧气和循环水蒸气共同进入燃气轮机燃烧推动压气机和发电机高速旋转,压气机压缩空气到0.5‑0.8MPa,发电机产生电力;高温燃烧生产蒸汽,部分用作循环水蒸气,部分用作供热;换热后烟气再与液氧和液氮换热冷却,冷却后烟气脱水和蒸馏分离CO2,部分水加压返回生成高压蒸汽循环用于燃气轮机燃烧控温,CO2产品外售。
Description
1.技术领域
本发明提供零碳排放的煤气化热电联供工艺,属于煤化工领域。
2.背景技术
煤炭是价格便宜但是污染和CO2排放都很高的能源,开发煤炭高效清洁低碳化利用技术一直是世界各国政府与产业共同努力的目标。
IGCC(Integrated Gasification Combined Cycle)即整体煤气化联合循环发电系统,是把洁净的煤气化技术与高效的燃气──蒸汽联合循环发电系统结合起来,先把煤气化,然后推动燃机做功,同时配备汽轮机余热发电,也就是“用煤做原料的燃气电厂”。在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高;而污染物的排放量仅为常规燃煤电站的1/10,脱硫效率可达99%,二氧化硫排放在25mg/Nm3左右,远低于排放标准200mg/Nm3,氮氧化物排放只有常规电站的15%~20%,耗水只有常规电站的1/2~1/3。因此与传统煤电技术相比,IGCC将煤气化和燃气-蒸汽联合循环发电技术集成具有发电效率高、污染物排放低,二氧化碳捕集成本低等优势,是目前国际上被验证的、能够工业化的、最具发展前景的清洁高效煤电技术。
传统IGCC由两部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置);第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。一般的IGCC工艺过程为:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氯化物、粉尘、重金属等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,驱动燃气透平压缩气体和发电,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机做功,最后烟气超低排放。目前在全球范围内,除美国、荷兰、西班牙、日本等国家已建成的5座IGCC 电站,中国华能天津IGCC示范电站是全球第6座IGCC电站,美国印地安纳州的Edwardsport 电站是全球第7座IGCC电站,美国密西西比州的kemper电站为在建的第八座IGCC电站。另外还有近20座用于多联产的IGCC装置。但现有IGCC技术存在着着进一步提高压气机压缩比困难、流程复杂、CO2捕集利用成本高、高耗水、发电效率有待进一步提高、排烟温度高、NOx减量困难、热电联供调节幅度小、投资高等缺陷。
3.发明内容
本发明的目的就是为了克服传统IGCC技术存在的不足而提供零碳排放的煤气化热电联供工艺,既解决现有IGCC技术高耗水和发电效率低难题;又可大幅度降低压气机的负荷、实现低成本CO2捕集利用、无NOx排放和常温排烟,大幅度提高发电效率;还可简化流程、降低投资,提高热电联供的调节范围。
本发明的技术方案:
本发明的目的是通过空气分离的液氧用于煤气化和燃气发电、液氮用于膨胀发电与制冷、高温煤气和高温烟气余热用于汽轮机发电、水蒸气返回燃气轮机进料用于循环控温、液氧用于汽轮机发电的冷却剂以及烟气冷却剂分级冷却脱水和液体CO2蒸馏回收提纯等的系列技术耦合来提高IGCC发电效率和供热调节能力,实现煤炭无NOx污染、低水消耗、零碳排放的清洁高效发电,简化流程、降低投资。其特征是0.5-0.8MPa加压空气进入空气分离装置进行空气分离得到液氧和液氮,1.5Mpa以上的泵送加压液氧换热汽化用于煤气化和燃烧发电,泵送的加压液氮换热膨胀汽化发电;带压输送的煤粉和高压氧气以及水蒸气进入煤气化炉发生气化反应,生成的高压高温燃气通过废热锅炉进行余热回收后,进行精除尘脱硫脱氯脱重金属的净化并送往发电系统,高温水蒸气部分用作循环水蒸气、部分用作煤气化炉;高压净化燃气与1.5Mpa以上的高压氧气和循环水蒸气共同进入燃气轮机燃烧膨胀推动压气机和发电机高速旋转,压气机压缩空气到0.5-0.8MPa,发电机产生电力;高温燃烧烟气再通过废热锅炉生产水蒸气,部分水蒸气用作循环水蒸气,部分水蒸气用作供热;换热后低温烟气再与液氧和液氮分级冷却脱水和蒸馏分离CO2,部分脱出水通过水泵加压得到高压水返回生成高压水蒸汽,剩余水外排。
空气分离为深冷空分、变压吸附分离与深冷分离组合的梯级空分、膜分离与深冷分离组合的梯级空分中的一种。
煤气化所用气化炉为气流床气化炉、循环流化床和分级热解气化复合气化炉中的一种。
氧气与循环水蒸气的质量比为1:5-30。
煤气化压力为1.0-10Mpa。
本发明将实施例来详细叙述本发明的特点。
4.附图说明
附图1为本发明的工艺示意图。
附图的图面设明如下:
1、空分装置 2、煤仓 3、气化炉 4、废热锅炉 5、发电机 6、氧气预热器 7、高压水泵 8、净化器 9、燃气轮机 10、液氮-空气换热器 11、氮气涡轮发电机 12、烟气蒸馏塔 13、压气机 14、二级液氮换热器 15、第二液氧换热器 16、液氮泵 17、液氧泵
下面结合附图和实施例来详述本发明的工艺特点。
5.具体实施方式
实施例,0.5-0.8MPa加压空气进入空气分离(1)装置进行空气分离得到液氧和液氮,液氧泵(17)泵送的1.5Mpa以上加压液氧换热汽化用于煤气化和燃烧发电,液氮泵(16)泵送的加压液氮换热膨胀汽化发电;煤仓(2)中带压输送的煤粉和高压氧气以及水蒸气进入煤气化炉(3)发生气化反应,生成的高压高温燃气利用废热锅炉(4)进行余热回收后,在净化器(8)进行精除尘脱硫脱氯脱重金属的净化并送往发电系统,高温水蒸气部分用作循环水蒸气、部分用作煤气化炉;高压净化燃气与1.5Mpa以上的高压氧气和循环水蒸气共同进入燃气轮机(9)燃烧膨胀推动压气机(13)和发电机(5)高速旋转,压气机(13) 压缩空气到0.5-0.8MPa,发电机(5)产生电力;高温燃烧烟气再通过废热锅炉(4)生产水蒸气,部分水蒸气用作循环水蒸气,部分水蒸气用作供热;换热后低温烟气再通过二级液氮换热器(14)和第二液氧换热器(15)与液氧和液氮分级冷却脱水后,通过蒸馏塔(12) 分离回收CO2作为产品外售,部分脱出水通过水泵(7)加压得到高压水、剩余水外排。
空气分离为深冷空分、变压吸附分离与深冷分离组合的梯级空分、膜分离与深冷分离组合的梯级空分中的一种。
煤气化所用气化炉为气流床气化炉、循环流化床和分级热解气化复合气化炉中的一种。
氧气与循环水蒸气的质量比为1:5-30。
煤气化压力为1.0-10Mpa。
本发明的液氧和液氮换热次序可以调换。
根据Aspen模拟结果,零碳排放的煤气化热电联供发电工艺与传统整体煤气化联合发电技术相比,压气机压缩比越高,新工艺优势越明显。
本发明所提供的零碳排放的煤气化热电联供工艺,按Aspen模拟结果,通过空分装置液氧液氮低能耗泵送加压将目前压气机压缩由2.8MPa左右降到0.5-0.8MPa,使燃气轮机用于压气机的能量消耗由30%-40%降到了10%左右;煤气化后的高温高压燃气废热锅炉生产蒸汽分别用于煤气化和燃气轮机调温,然后净化后用于燃气轮机发电,合理的梯级利用了燃气的显热与化学能,降低了燃气净化难度,提高了燃气的发电效率;烟气排烟温度由目前140℃左右降到30℃左右,能量回收率大大提高,烟气易于低成本脱水分离得到CO2,CO2捕集能耗大幅度降低;燃气轮机水蒸气循环控温和烟气低温脱水可回收利用大大降低了煤电耗水量,加之煤气化干法排渣节水率将高达90%以上,特别适合西北缺水地区;燃气提前精除尘脱硫脱氯脱重金属净化、燃气轮机氧气助燃和水蒸气循环控温,避免了目前燃煤电厂烟气的NOx排放、大幅度减少了烟尘和SOx的排放,综合发电效率大于60%,实现了煤炭清洁高效发电,供热比例拓展为0-50%,投资与传统整体煤气化联合发电装置相比降低20%以上。
Claims (5)
1.零碳排放的煤气化热电联供工艺,其技术特征是0.5-0.8MPa加压空气进入空气分离装置进行空气分离得到液氧和液氮,1.5Mpa以上的泵送加压液氧换热汽化用于煤气化和燃烧发电,泵送的加压液氮换热膨胀汽化发电;带压输送的煤粉和高压氧气以及水蒸气进入煤气化炉发生气化反应,生成的高压高温燃气通过废热锅炉进行余热回收后,进行精除尘脱硫脱氯脱重金属的净化并送往发电系统,高温水蒸气部分用作循环水蒸气、部分用作煤气化炉;高压净化燃气与1.5Mpa以上的高压氧气和循环水蒸气共同进入燃气轮机燃烧膨胀推动压气机和发电机高速旋转,压气机压缩空气到0.5-0.8MPa,发电机产生电力;高温燃烧烟气再通过废热锅炉生产水蒸气,部分水蒸气用作循环水蒸气,部分水蒸气用作供热;换热后低温烟气再与液氧和液氮分级冷却脱水和蒸馏分离CO2,部分脱出水通过水泵加压得到高压水返回生成高压水蒸汽,剩余水外排。
2.根据权利要求1所述的零碳排放的煤气化热电联供工艺,其特征在于空气分离为深冷空分、变压吸附分离与深冷分离组合的梯级空分、膜分离与深冷分离组合的梯级空分中的一种。
3.根据权利要求1所述的零碳排放的煤气化热电联供工艺,其特征在于煤气化所用气化炉(3)为气流床气化炉、循环流化床和分级热解气化复合气化炉中的一种。
4.根据权利要求1所述的零碳排放的煤气化热电联供工艺,其特征在于氧气与循环水蒸气的质量比为1:5-30。
5.根据权利要求1所述的零碳排放的煤气化热电联供工艺,其特征在于煤气化压力为1.0-10MPa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910038240.3A CN109609199B (zh) | 2019-01-15 | 2019-01-15 | 零碳排放的煤气化热电联供工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910038240.3A CN109609199B (zh) | 2019-01-15 | 2019-01-15 | 零碳排放的煤气化热电联供工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109609199A true CN109609199A (zh) | 2019-04-12 |
CN109609199B CN109609199B (zh) | 2020-07-21 |
Family
ID=66017536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910038240.3A Active CN109609199B (zh) | 2019-01-15 | 2019-01-15 | 零碳排放的煤气化热电联供工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109609199B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114893266A (zh) * | 2022-06-13 | 2022-08-12 | 中国科学院工程热物理研究所 | 煤及超临界水气化发电系统及发电方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1096343A (zh) * | 1993-04-27 | 1994-12-14 | 气体产品与化学公司 | 用空分装置产生的氮作为燃气轮机空压机供给冷却剂 |
CN1521446A (zh) * | 2003-01-27 | 2004-08-18 | 中国科学院工程热物理研究所 | 内外燃煤一体化联合循环发电系统及发电方法 |
CN101287893A (zh) * | 2005-08-05 | 2008-10-15 | 西门子公司 | 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法 |
JP2010121461A (ja) * | 2008-11-17 | 2010-06-03 | Ihi Corp | 二塔式ガス化装置による複合発電方法及び装置 |
US20140130509A1 (en) * | 2012-11-13 | 2014-05-15 | Raymond Francis Drnevich | Combined gasification and power generation |
CN106285944A (zh) * | 2016-09-13 | 2017-01-04 | 中国华能集团公司 | 一种利用空分系统储能的igcc电站调峰装置及方法 |
CN106401749A (zh) * | 2016-10-11 | 2017-02-15 | 中国华能集团清洁能源技术研究院有限公司 | 一种基于igcc的近零排放燃煤发电系统及方法 |
CN106497609A (zh) * | 2016-12-13 | 2017-03-15 | 中国华能集团清洁能源技术研究院有限公司 | 带co2捕集的igcc系统中气化炉煤粉输送系统及方法 |
CN107165688A (zh) * | 2017-05-19 | 2017-09-15 | 北京迈未科技有限公司 | 一种利用燃气和蒸汽联合发电的设备及方法 |
CN108644017A (zh) * | 2018-05-31 | 2018-10-12 | 武汉理工大学 | 基于热集成的零碳排igcc发电系统及方法 |
-
2019
- 2019-01-15 CN CN201910038240.3A patent/CN109609199B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1096343A (zh) * | 1993-04-27 | 1994-12-14 | 气体产品与化学公司 | 用空分装置产生的氮作为燃气轮机空压机供给冷却剂 |
CN1521446A (zh) * | 2003-01-27 | 2004-08-18 | 中国科学院工程热物理研究所 | 内外燃煤一体化联合循环发电系统及发电方法 |
CN101287893A (zh) * | 2005-08-05 | 2008-10-15 | 西门子公司 | 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法 |
JP2010121461A (ja) * | 2008-11-17 | 2010-06-03 | Ihi Corp | 二塔式ガス化装置による複合発電方法及び装置 |
US20140130509A1 (en) * | 2012-11-13 | 2014-05-15 | Raymond Francis Drnevich | Combined gasification and power generation |
CN106285944A (zh) * | 2016-09-13 | 2017-01-04 | 中国华能集团公司 | 一种利用空分系统储能的igcc电站调峰装置及方法 |
CN106401749A (zh) * | 2016-10-11 | 2017-02-15 | 中国华能集团清洁能源技术研究院有限公司 | 一种基于igcc的近零排放燃煤发电系统及方法 |
CN106497609A (zh) * | 2016-12-13 | 2017-03-15 | 中国华能集团清洁能源技术研究院有限公司 | 带co2捕集的igcc系统中气化炉煤粉输送系统及方法 |
CN107165688A (zh) * | 2017-05-19 | 2017-09-15 | 北京迈未科技有限公司 | 一种利用燃气和蒸汽联合发电的设备及方法 |
CN108644017A (zh) * | 2018-05-31 | 2018-10-12 | 武汉理工大学 | 基于热集成的零碳排igcc发电系统及方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114893266A (zh) * | 2022-06-13 | 2022-08-12 | 中国科学院工程热物理研究所 | 煤及超临界水气化发电系统及发电方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109609199B (zh) | 2020-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109441574B (zh) | 用于调峰的近零碳排放整体煤气化联合发电工艺 | |
CN1330855C (zh) | 利用再循环工作流体的先进混杂式煤气化循环 | |
AU2008304752B2 (en) | Turbine facility and power generating apparatus | |
CN104033890B (zh) | 一种集成化学链高温空分制氧的富氧燃烧煤粉锅炉及co2捕集方法 | |
CN109372636B (zh) | 一种零碳排放的三循环整体煤气化燃料电池发电系统及方法 | |
CA2816412C (en) | Heat integration in co2 capture | |
KR101693865B1 (ko) | 탄소 포획 냉각 시스템 및 방법 | |
CN105823074A (zh) | 氮氧化物零排放富氧节能燃烧系统 | |
CN102628401B (zh) | 一种煤基燃料近零排放发电系统及方法 | |
CN106914117B (zh) | 适应于水泥窑烟气中二氧化碳连续捕集及发电的装置 | |
KR101586105B1 (ko) | 이산화탄소를 제거하는 화력 발전소 | |
CN106497609A (zh) | 带co2捕集的igcc系统中气化炉煤粉输送系统及方法 | |
CN109611171A (zh) | 零碳排放的整体煤气化-超临界co2联合循环发电工艺 | |
CN101550846B (zh) | 利用垃圾填埋气的化学链式燃烧发电工艺及系统 | |
CN114151785A (zh) | 燃煤锅炉碳基富氧燃烧及co2捕集与利用工艺 | |
CN205640978U (zh) | 氮氧化物零排放富氧节能燃烧系统 | |
CN107165688A (zh) | 一种利用燃气和蒸汽联合发电的设备及方法 | |
CN109609199A (zh) | 零碳排放的煤气化热电联供工艺 | |
CN108979768A (zh) | 加压富氧流化床驱动的超临界二氧化碳联合有机朗肯循环发电系统 | |
CN110218583B (zh) | 一种采用脱硫后变换工艺的整体煤气化燃料电池发电系统及方法 | |
CN109350988B (zh) | 一种co2液化过程与深冷空分耦合的igfc发电系统及方法 | |
CN109724070B (zh) | 一种增压富氧燃煤系统和方法 | |
CN102341509B (zh) | 高炉煤气利用过程中从高炉煤气分离回收二氧化碳的方法 | |
CN109945557A (zh) | 一种基于生物质能的制冷系统及工艺 | |
CN211045602U (zh) | 一种采用高温净化的高效整体煤气化燃料电池发电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |