CN1229567C - 井中无线通信和控制的扼流电感器及在管路中的布置方法 - Google Patents

井中无线通信和控制的扼流电感器及在管路中的布置方法 Download PDF

Info

Publication number
CN1229567C
CN1229567C CNB018055680A CN01805568A CN1229567C CN 1229567 C CN1229567 C CN 1229567C CN B018055680 A CNB018055680 A CN B018055680A CN 01805568 A CN01805568 A CN 01805568A CN 1229567 C CN1229567 C CN 1229567C
Authority
CN
China
Prior art keywords
choke coil
current
pipeline structure
pipeline
impedance device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018055680A
Other languages
English (en)
Other versions
CN1406311A (zh
Inventor
罗纳德·M.·巴斯
伊尔亚·E.·伯切科
罗伯特·R.·博奈特
小费莱德利克·G.·卡尔
约翰·M.·赫斯克
威廉·M.·艾基
乔治·L.·斯特杰米尔
哈罗德·J.·文尼戈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1406311A publication Critical patent/CN1406311A/zh
Application granted granted Critical
Publication of CN1229567C publication Critical patent/CN1229567C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift
    • E21B43/123Gas lift valves
    • E21B43/1235Gas lift valves characterised by electromagnetic actuation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/003Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings with electrically conducting or insulating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/066Valve arrangements for boreholes or wells in wells electrically actuated
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/08Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/16Control means therefor being outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Pipeline Systems (AREA)
  • Near-Field Transmission Systems (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Control By Computers (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Earth Drilling (AREA)

Abstract

在石油井中一种铁磁扼流圈形式的电流阻抗器件,其中跨过扼流圈产生一个电压电位,以供电井中的器件和传感器并且与其通信。石油井包括一个套管井孔,有一个油管柱定位在套管内并且在套管内纵向延伸。一个可控制气举阀、传感器、或其它器件联接到管道上。阀传感器、或其它器件从表面供电和控制。把管道、套管、或衬管用作导体借助于接地地线从表面发送通信信号和功率。例如,把交流电流沿套管引导到其中电流遇到扼流圈的分支。套管一般借助于水泥与地电气隔离,而分支在接地地线处终止。

Description

井中无线通信和控制的扼流电感器及在管路中的布置方法
技术领域
本发明涉及铁磁扼流圈在石油井中的使用,其中跨过扼流圈产生电压电位,以便供电井中的器件和传感器并且与其通信,把井的另外常规和预存在的金属结构用作主要导电路径。在一个方面,它涉及通过使用至少一个未供电感应扼流圈、使用形成在管道结构中的电路向井的井孔中的井下器件提供功率和/或通信。
背景技术
已经发明几种方法把井下的可控制阀和其它器件和传感器放置在井中的油管柱上,但所有这种已知器件典型地使用沿油管柱的电缆以便与器件和传感器通电和通信。不希望和在实际中难以使用沿油管柱或与油管柱一体或在管与壳体之间的环形中隔开的电缆,因为在这样一种系统中存在多种失效机理。在井孔内的其它通信方法在美国专利No.5,493,288;5,576,703;5,574,374;5,467,083;5,130,706中描述。
美国专利6,070,608描述了用在油井中的表面控制气举阀。致动阀的方法包括电液、液压、及气液。传感器把可变节流口的位置和临界流体压力中转到表面上的仪表板。然而,当描述如何把电提供给井下传感器和阀时,把电功率/信号发出到阀/传感器的装置描述成一个连接在井下阀/传感器与在表面处的控制仪表板之间的导线管。美国专利6,070,608没有专门描述或表示从井下器件到表面的电流路径。导线管在图中表示为标准导线管,即一根有各根导线保护在其中的延伸管,从而管道提供物理保护,而其中的导线提供电流路径。但这种标准导线管可能难以在较大深度处、对于偏斜井往返地、对于具有多个横向分支的井沿多个分支、及/或与线圈产生管平行地定线。因此,需要一种向井下器件提供电力和通信信号的系统和方法,而不需要填充有导线和沿生产油管侧架线的分离导线管。
美国专利No.4,839,644描述了一种用于在带有油管柱的套管钻井中的无线双向通信的方法和系统。然而,这种系统描述了一种使用在套管与管道之间的环隙来耦合在波导TEM模式中的电磁能量的井下环形天线。该环形天线使用电磁波耦合,这需要在套管与管道之间的环隙中的基本上非导电流体(如,精制的重油)和一个环形空腔及井口绝缘体。因此,在美国专利No.4,839,644中描述的方法和系统是昂贵的,具有与到套管中的盐水泄漏有关的问题,及难以用作用于井下双向通信的方案。
诸如泥浆脉冲遥测技术(美国专利No.4,648,471;5,887,657)之类的其它井下通信方案已经表现出在低数据速率下的成功通信,但作为其中需要高数据速率或不希望具有井下复杂、泥浆脉冲遥测技术设备的通信方案,具有有限的用途。已经偿试其它井下通信方法,见美国专利No.5,467,083;4,739,325;4,578,675;5,883,516;及4,468,665以及井下永久传感器和控制系统:美国专利No.5,730,219;5,662,165;4,972,704;5,941,307;5,934,371;5,278,758;5,134,285;5,001,675;5,730,219;5,662,165。
通常的做法是,通过把流体从每个井中输送到一个其中收集它们并且在传输到诸如精制厂之类的下游处理厂之前可以初始处理的中央设施,操作在油田内的多个井。希望提供由该中央油田设施控制井的能力,但这在实际中几乎不做,因为通过常规方法,这样一种能力要求动力和信号线贯穿油田分布。这样一种基础结构招致对于安装和对于维护的成本,并且动力和信号线易受元件或车辆通过的损坏,及也会遭受破坏和偷盗。
因此,如果管道、套管、衬管及安装在井中或作为诸如收集管线之类的辅助表面设施的其它导体,能用于通信和动力导体以控制和操作在石油井中的井下器件和传感器,则是在石油井操作方面的显著进步。
感应扼流圈已经和敏感仪器一起使用以防冲击和寄生电压。例如,大多数个人计算机为了这种保护使某类扼流圈包括到其交流电源线和视频信号电缆中。这样的保护扼流圈对其打算目的工作良好,但不会操作以限定一个功率或通信电路。
根据权利要求1和17的前言的器件和方法由欧洲专利申请EP0964134得知。在已知器件和方法中,一个感应扼流圈绕油井的生产油管布置。已知扼流圈装有一根电缆,它绕一个铁磁心缠绕,该电缆把电功率供给到井下器件。绕铁心的这样一种电缆的绕组是昂贵的,并且当通过井降低管道时电缆可能容易损坏,及容易过热和失效。
这里引用的所有参考资料通过参考到法律允许的最大程度而包括。对此程度参考资料可能不完全包括在这里,它通过参考背景目的和指示熟悉本专业的技术人员的知识而包括。
发明内容
根据本发明的方法和器件的特征在于权利要求要求1和17的特征化特征。
以上概述的问题和需要大部分通过按照本发明带有诸如感应扼流圈的一个或多个电流阻抗器件的石油井解决和满足。广义地讲,石油井包括有一个油管柱定位在套管内并且在其中纵向延伸的套管钻井。一个可控制阀、传感器、或其它器件联接到管道上。阀、传感器、或其它器件从表面供电和控制。通信信号和功率从表面传送,把管道、套管、或衬管用作导体。例如,把交流电流向下引导到一个其中电流碰到一个扼流圈的点。跨过扼流圈产生的电压电位用来供电通信调制解调器、阀、电子器件及靠近扼流圈的传感器。
更详细地说,一个表面计算机包括一个调制解调器,把交流信号给予诸如管道和/或套管之类的导电导管。交流信号跨过扼流圈产生一个电位,并且电源产生一个直流电压以供电一个连接的可控制阀、传感器、或其它器件。最好,套管或衬管在地面终止,并且用作大地回路导体,尽管可以使用独立接地导线或其它导体。在一个气升井的一个最佳实施例中,供电器件包括一个可控制阀,该可控制阀调节气体在管道环隙与内部之间的通过。
在增强形式中,石油井包括一个或多个井下传感器,这些传感器最好与井下功率和和模块接触,并且与表面计算机通信。像温度、压力、声学、阀位置、流量、及压差表之类的传感器便利地用在多种情况下。传感器向调制解调器供给测量,以便传输到表面或直接到操作一个井下器件,如用来控制流经阀的气体的可控制阀,的可编程接口控制器。
本发明的电流阻抗器件以最佳形式包括铁磁性材料的感应扼流圈。这样的铁磁扼流圈联接到一个导体(管道、套管、衬管等)上,对于电流流动起串联阻抗的作用。在一种形式中,绕井下管道放置铁磁扼流圈,并且把用于功率和通信信号的交流给予靠近表面的管道、套管或衬管。围绕管道、套管或衬管的井下扼流圈产生一个用来供电一个可控制阀或传感器并且与其通信的一个电位。
在另一种形式中,表面计算机经一个表面主调制解调器和管道或套管联接到多个支线上,每个支线带有一个井下伺服调制解调器以操作在支线中的一个可控制阀。表面计算机能从各种源,如井下传感器,接收测量、油输出的测量、及在每个支线中的流体流动的测量。使用这样的测量,计算机能计算每个可控制阀的最佳位置,更具体地说,来自每个支线的流体生产的最佳量。辅助增强是可能的,如控制输入到在表面处的井中的压缩气体量、控制表面活化剂注入系统、及从相同油田的各个其它井中接收生产和操作测量以优化油田的生产。
这样一种石油井的构造设计成尽可能与常规构造方法类似。就是说,井完井过程包括在井孔内凝结成套管或衬管、把生产油管放置在套管或衬管内并且一般与这样的套管或衬管同心、及把一个封隔器放置在生产区上方以控制在管道与套管或衬管之间的环隙中的流体通过。完成的井包括一个与管道、套管或衬管同心的扼流圈。在凝结之后,套管部分与地隔离。油管柱穿过套管和封隔器,并且与生产区联通。在靠近扼流圈的油管柱的截面中,传感器或操作器件联接到油管柱上。在一种最佳形式中,使用用来接收一个导线可插入和可检索传感器或器件的侧室心轴。借助于这种配置,一个可控制气举阀或传感器外罩可以插入在侧室心轴中。要不然,这样一个可控制气举阀或传感器外罩可以直接永久地联接到管道上(即“管道输送”)。一个功率和通信模块使用跨过扼流圈产生的电压电位,以供电阀、传感器、及调制解调器。
能插入一个传感器和通信箱,而不必包括一个可控制气举阀或其它控制器件。就是说,一个带有压力、温度或声学传感器、电源、及一个调制解调器的电子模块插入在一个侧室心轴中,以便使用管道和套管导体与表面计算机通信。要不然,这样的电子模块可以直接安装在管道上,并且不会配置成导线可替代的。如果直接安装到管道上,则一个电子模块或器件仅可以通过拉动整个油管柱替代。在另一种形式中,靠近井口的绝缘管道截面可以用来保证电气隔离。
在一个宽广方面,本发明涉及一种在石油井中特别有用的电流阻抗器件,包括一个铁磁材料的圆柱扼流圈,该圆柱扼流圈带有一个在其中纵向延伸和适于在其中接收石油井圆柱导体的环形孔。多种修改当然是可能的,使这样的铁磁扼流圈适用于套管、管道、衬管、和集管及在石油井中用在井下的其它导体,并且也适用于诸如收集管线之类的表面管路。
附图说明
在阅读如下详细描述时和在参照附图时,本发明的其它目的和优点将成为显然的,在附图中:
图1是按照本发明的方法包括感应扼流圈和有关通信、测量及控制箱的石油井的示意图;
图2与图1有关,并且表示图1的井的电气等效电路;
图3a与图1有关,并且表示图1的扼流圈之一的整体组件;
图3b与图3a有关,并且详细表示用在图3a的扼流圈组件的构造中的元件;
图4a是布置在管道与套管之间的扼流圈的纵向横截面;
图4b是布置在管道与套管之间、图4a的扼流圈的轴向横截面;
图4c是管道和套管外部的扼流圈的纵向横截面;
图4d是在管道和套管外部的、图4c的扼流圈的轴向横截面;
图5是石油井的示意图,表明感应扼流圈的电气原理图;
图6是包括本发明的电气扼流圈的多分支石油井的示意图;
图7示意图,表示在中央油田设施与各个井口之间提供电力和通信的扼流圈的使用,把收集管线用作传输路径;
图8表示按照本发明另一个实施例的井,其中多个扼流圈使用一种串联功率配置把功率提供给井下电气模块;
图9表示按照本发明另一个实施例的系统,其中多个扼流圈使用一种并联功率配置把功率提供给井下电气模块;
图10a表示按照本发明方法的一个井,其中一个电流变压器用来把功率传输到一个井下电气模块;
图10b与图10a有关,并且更详细地表示图10a的电流变压器的构造;及
图11表示按照本发明另一个实施例的井,其中扼流圈布置在管道和套管外。
具体实施方式
转到附图,表明按照本发明的一个最佳实施例的石油井。图1表明一个包括从表面延伸的套管36并且包含管路结构34的油井。在井口处,生产油管的上部借助于一个电气隔离管道悬挂器146与下部隔离。在井内深处,在套管36与管路结构34之间的环形空隙由完井流体82占据,并且一个导电封隔器56把完井流体与生产区66液压隔离。来自生产区66的流体因而借助于通过管路结构34传输到表面。在图1中,两个感应扼流圈32的布置表示在井内深处,其每一个用来向电气箱40供电。这些箱实现通信、测量、及控制功能的任意组合以有助于生产操作。
套管36一般是常规的,即它典型地在完井期间在井孔中的截面中凝结。类似地,油管柱是常规的,包括在每个管道段的每个端处由螺纹联接器接合的细长管状生产管路。
仍然参照图1,表明表面设备的一般布置,包括一个表面交流电源8、一个1:10电流比值功率变压器11、及一个表面调制解调器39。功率变压器11和调制解调器39电路的一个输出侧通过一个压力密封供给76电气连接到在电气隔离接合点146下面的管路结构34段上。功率变压器11和调制解调器39电路的其它输出侧电气连接到井套管36上。
为了说明目的,图1表示用来供电和控制一个气举阀40的每个箱。为此目的,箱的适当实现包括:一个2:15伏特功率变压器31;和一个主印刷电路板(PCB),包括一个伺服调制解调器33和其它电气元件,以供电和控制气举阀,并且与传感器接口,这些传感器可以由箱支持,以测量局部物理或化学变量,如环隙压力、管道压力、流体成分等。在箱内的调制解调器与在表面处的调制解调器通信,允许数据从每个箱传输到表面,并且允许指令从表面通过以控制气举阀。
尽管图1表明其中在井中操作两个井下模块的情形,但容易明白,相同的原理可以用来提供任意数量的井下模块。这在其中在拆卸气举井之前在环隙中存在导电完井流体的用途中可能是有用的。当扼流圈浸在导电流体中时,每个扼流圈工作得不足以在其相应器件处产生一个电压电位。由于在拆卸过程期间逐渐除去导电流体,所以当相应扼流圈已不浸在导电流体中时,每个器件能接收功率和/或通信(因而是可控制的)。因此,由于导电流体液位在拆卸期间下降,所以器件依次变得可控制,这可能有助于更可控制的拆卸或分离过程。因此,本发明在井拆卸、分离或生产的所有操作中是有用的。
在隔离悬挂器146与感应扼流圈32之间的管路结构34和套管36的部分可以看作一条功率和通信路径。典型地,这样一种配置不允许交流功率或电信号通到井上或井下,把管道用作一个导体而把套管用作另一个导体。然而,感应扼流圈32的布置改变提供一种系统和方法的井金属结构的电气特性,以把交流功率和通信信号通到井的井孔上或其下。在一般意义上,术语“管路结构”用来指示管道、套管、悬挂器、衬管、立管或各种金属导体的任一种,该管路结构通常在地下,但在地表面的应用也是可能的。“无线”是指常规绝缘导电体的缺乏,如专用绝缘导线;管道、套管、或其它管路结构不认为是导线导体。
感应扼流圈32由在交流功率频率和调制解器通信载波频率下具有高磁导率的材料制造。
参照图2,可以分析这条功率和通信路径的电气等效电路。套管和管道形成用于功率和通信信号的主要传输路径。套管由导体101代表。管道由导体102代表。电阻器18代表由套管和管道提供的组合分布电阻,并且典型地具有1欧姆的量级。扼流圈阻抗由电感器32代表。在交流功率的频率下,由每个扼流圈提供的无功阻抗具有2欧姆的量级。
仍然参照图2,表面调制解调器整体39由用于其接收机的电阻器12、和用于其发射机的交流源14代表。在表面处的交流功率输入由交流源16代表。与每个扼流圈有关的井下电子箱由功率转换器和调制解调器整体122代表,包括用于功率转换器的和调制解调器接收器的电阻体106、及用于调制解调器发射机的交流源108。电路由具有可忽略小电抗的金属封隔器56完成。
从图2看到,井下箱通过由扼流圈在管道上产生的、由沿管道通过扼流圈的电流通过创建的反EMF引起的交流电压供电。扼流圈设计成由通过它们的交流产生约2伏特,并且在经电源输入变压器联接的功率调节电路中、按照用于这种交流至直流功率转换和调节电路的标准实践,把这种交流转换成直流。这种直流功率典型地以约15伏特供给到箱传感器、调制解调器、控制电路,并且10瓦特的量级典型地适用于供电这些井下子系统。
参照图3a和3b,可以描述适当扼流圈的构造。用于给定用途的扼流圈沿其长度(L)可以划分成多件。换句话说,沿扼流圈轴60把扼流圈134的多个子部分叠置在一起,如图3a和3b中所示,提供与具有一个大长度(L)扼流圈相同的效果。一个接一个叠置在顶部上的多个子部分134起一系列阻抗的作用,它们叠加在一起提供与具有与集合子部分相同的铁磁材料总长度的单个扼流圈相同的总阻抗。
参照图3b,表明适当扼流圈组件的细节,尽管对于熟悉本专业的技术人员显而易见的是,可选择设计是可行的。管路结构34包括类型316不锈钢,并且典型地具有3.5英寸的外径和10英尺的长度。生产油管部分的每端供有New VAM阳螺纹,通过其附加常规生产油管的配对部分。(New VAM是Vallourec Mannesman Oil & Gas France的注册商标,并且定义适用于该目的的螺纹形式)。在扼流圈部分的上部和下部未端处是具有内径3.55英寸、长度2英寸、及壁厚四分之一英寸的焊接环50。在焊接环之间的管路结构34的部分覆盖有0.020英寸壁厚的PTFE热缩管道20,并因而管道20位于生产油管部分与所有扼流圈子部分134的内壁之间。扼流圈组件的每端供给有一个加工的塑料定心夹具114。一种适当的可加工塑料是聚醚醚酮(PEEK),这是一种可从多个商业源得到的商品材料。
扼流圈子部分134由诸如坡莫合金(Permalloy)之类的高磁导率铁磁合金的缠绕60板叠层形成(坡莫合金是Western Electric公司的注册商标)。坡莫合金是具有镍含量在范围35%至90%中的镍/铁合金,并且作为来自多个商业源的商品材料可得到。适当的合金包括86%的镍/14%的铁,并且叠层是0.014英寸厚和2.35英寸宽,从而每个扼流圈部分的最终尺寸是3.6英寸的内径、5.45英寸的外径、在扼流圈轴60的方向上为2.35英寸。十五个这样扼流圈部分叠置,以形成适用于通常功率频率50或60赫兹的总扼流圈组件。在高达几百赫兹的功率频率下,层叠的铁磁合金能用于扼流圈部分的建造,如在标准变压器设计实践中那样,和以上描述的那样。要求层叠以减小涡流损失,这种损失否则会降低扼流圈的有效性。对于50,000的绝对导磁率操作在60赫兹下的材料,用于2表皮深度的要求层叠厚度是0.8毫米(0.031英寸),这是现实和实际的。
在每个扼流圈部分之间的是一个具有内径3.6英寸、外径5.45英寸、及厚度0.030英寸的聚四氟乙烯(PTFE)垫片136。在所有扼流圈拧到管道上之后,扼流圈的整个部分覆盖有0.020英寸壁厚的PTFE热缩管道138。不锈钢杆51是覆盖有聚乙烯(PE)热缩管道的0.125英寸直径,并且沿完成扼流圈组件的长度延伸。它附加到上部焊接环10上,并且穿过定心夹具114中的孔。其下端电气连接到在扼流圈组件下面的电气箱的输入上。
由扼流圈提供的阻抗是一个关键实施问题,由于这确定对于经扼流圈的泄漏将失去供给到管路上的总功率的多少比例、和多少比例适用于供电安装在管路隔离部分中的器件和与其通信。由于由电感器呈现的阻抗随频率增大,所以交流功率频率用在理论分析和可选择扼流圈配置的测试中,因为这通常等于或低于通信频率。
图4a-d指示用在扼流圈设计分析中的变量。图4a(纵向剖面)和4b(轴向剖面)表明其中扼流圈放置在管路结构34与套管36之间的环隙58内的情形。图4c(纵向剖面)和4d(轴向剖面)表明其中扼流圈放置在套管36外的情形。用于分析的基础在两种情形下相同,但重要的是,实现在设计分析中使用的电流值(I)是由扼流圈链接的净电流。在其中扼流圈布置在环隙中的情况下(图4a和b),电流是单独在管道上的电流。当扼流圈布置在套管外时(图4c和d),电流是在套管和管道上的独立电流的向量和。因而,如果这些电流相等但在相位上相反,则对于表示在图4c和4d中的配置不会有净扼流效果。
定义变量和物理单位的独立集是:
L=扼流圈的长度,米;
a=扼流圈的内半径,米;
b=扼流圈的外半径,米;
r=离扼流圈轴的距离,米;
I=r.m.s,通过扼流部分的净电流,安培;
ω=泄漏电流的角频率,弧度每秒;
m=在半径r处扼流圈材料的绝对导磁率,等于自由空间的绝对导磁率(4π×10-7亨利每米)乘以扼流圈磁性材料的相对导磁率。
通过定义,ω=2πf,其中f=赫兹为单位的频率。
在离开电流I的距离r处,以亨利每米为单位的r.m.s自由空间磁场H由下式给出:
H=I/2pr。
场H关于扼流圈轴是圆形对称的,并且能看作绕该轴形成圆的磁力线。
对于扼流圈材料内的一点,以泰斯拉为单位的r.m.s磁场B由下式给出:
B=mH=μI/2πr。
以韦伯为单位包含在扼流圈体内的r.m.s磁通F由下式给出:
F=∫BdS
其中S是图4b和4d中所示以平方米为单位的扼流圈的横截面面积,并且在面积S上积分。在扼流圈的长度(L)上从扼流圈的内半径(a)至扼流圈的外半径(b)进行积分,我们得到:
F=μLI ln(b/a)/2π。
其中ln是自然对数函数。
以伏特为单位由磁通F产生电压由下式给出:
V=ωF=2πf F=μLIf ln(b/a)
注意对于扼流圈元件内和外半径(a)和(b)的恒定值,反电动势(V)与扼流圈的长度(L)成正比。因而通过改变扼流圈的长度,对于给定电流能产生任何希望的反电动势。
插入代表性值:
μ=50,000×(4π×10-7),L=1米,I=10安培,f=60赫兹。
a=0.045米(3.6英寸内径),b=0.068米(5.45英寸外径):
那么产生的反电动势V=2.6伏特
表示这样一种扼流圈在产生要求井下电压方面是有效的,并且当真实和安全电流和电压施加在管道上并且从井口传输到井下设备时的确如此。这个例子也揭示用于功率分布的这种方法具有在低电压和较高电流下操作的特性,并且为此目的,对导体之间或对地的小电流泄漏量不敏感。
图5更详细地表明用来在图1井中的管道和套管上实现功率和调制解调器通信信号的传输的电气连接和接口器件。在图5中,表面和井下调制解调器基本上类似,并且它们的接收机和发射机经电气箱和跨过用于井下箱的扼流圈的一个数据变压器联接,并且在套管与在用于表面调制解调器的扼流圈30下面的管道之间。用于每个井下箱40的功率经一个功率变压器联接到一个全波整流二极管桥上,如图5中所示,并且来自整流桥的直流用来供电井下调制解调器和其它设备,如用于布置在每个井下箱40中的电机和/或传感器的接口控制器。表面调制解调器提供在计算机与在每个井下箱40内的调制解调器之间在任一个方向上通信的装置。因而提供一个装置,借助于其计算机可以把命令传输到井下控制器件,如机械化流动控制阀,和用于从井传感器接收数据的计算机。调制解调器一般是宽带数字型的,这可从多个标准设备供应者得到,尽管它们也可能是窄带和/或模拟调制解调器以降低成本,其中在特定情况下较低的数据速率是可接收的。(注意,这里所应用的术语“调制解调器”不限于把计算机连接到公共电话切换网络上的典型销售的那些,而是包括适于在布线通信通道上发信号的任何双向数据通信器件。)
图6对于有多分支完井作为一个井孔延伸、套管36从表面64和在深处分支成带有是主井孔套管36的延伸的套管或衬管的分支88的井的情形表明一个最佳实施例。当然,本发明可以应用于所有类型的常规多分支完井,如其中仅使用衬管,或在打开孔中具有管道等。在图6中,管路结构34对于每个分支类似地分支成管道。在这个例子中,每个分支供有一个详细表示在图6中的测量、通信和控制组件40。这个模块由跨过控制模块31产生的电压供电,如参照图1-3和5以前描述的那样。
仍然参照图6,交流功率从表面设备38内的交流电源沿管路结构34供给。由于分支在生产层内终止,所以越过控制模块31的每个分支生产油管部分与形成流体紧密地电气接触,并因而远离主井孔有效地接地,如由接地连接72表示的那样。这种接地回路用来完成在表面设备与井下模块之间的电路。
扼流圈30提供在井口处,起对于在管道与套管之间经由管道悬挂器54的电流流动的一个阻抗的作用,这否则提供在管道与套管之间的短路。为了实现相同目的并且如在图1中表明的那样,一个绝缘管道接合点146可以代替图5的扼流圈30。一个感应扼流圈32在深处提供在最低分支连接点下面的主井孔管道部分上。这个感应扼流圈32防止沿管路结构34供给的电流损失,从而它适用于供电在分支中的模块。
在到达一个分支时,施加在表面处的管道上的交流遇到控制模块31,控制模块31起阻抗的作用。因此,在管道部分上产生一个电压电位,其中它通过每个控制模块31,并且这个电位可以用来供电电子器件。
特别是,每个模块40供电传感器120,如压力、流量、温度、声谱、产生的流体成分等,并且把数据从传感器通信到表面。类似地,模块40供电在电子模块110控制下由电机124驱动的一个控制阀126,电子模块110接收从在表面设备38内的表面调制解调器经由井下调制解调器122发送的控制命令。这样一种阀可以用来调节流入和流出每个分支88的流体。因为在每个分支上的每个模块、器件、和传感器分别是可从表面寻址的,所以由表面能独立地操作或监视每个这样的器件或传感器。在这样一种多分支完井中,有必要和希望在生产期间在每个分支中独立地控制流体流动。在每个分支中的流量、流体组成、压力、温度等的知识是有价值的,以优化生产效率。
图7表明在其中希望远离井口定位表面功率和设备的情况下使用本发明方法的一个实施例。布置在中心现场设施201处的功率和通信元件包括集油管道134、一个扼流圈30、一个交流电源8、由其输入阻抗12代表的调制解调器接收机、及由其交流发生器14代表的调制解调器发射机。功率和调制解调器元件的一侧接地72,而另一侧连接到一根集油管道134上。
仍然参照图7,集油管道134从中央设施201延伸到井口位置202。在进口处,集油管供有扼流圈30,并且一根电缆140经绝缘馈通线76把功率和通信交流传输到井上部扼流圈下面的生产油管。借助于这种装置,功率和通信交流不需要在生产油管的部分上通过,其中生产油管通入井中。在标准井构造实践中,管路结构34的这部分在其中套管36穿过管道悬挂器54的点处电气连接到套管36上,并且在这种情况下,需要分离的电气连接140。如果非标准构造实践是可接收的,那么电气隔离管道接合点和馈通线的使用可以消除对分离导体140和其有关扼流圈的需要。
在井内的深度204处,管路结构34安装有一个感应扼流圈32和一个电气箱110。这些如参照图1和2描述的那样、借助于来自由井下接地连接7实现的井下设备的回路连接起作用。
对于熟悉本专业的技术人员显然,感应扼流圈对交流电流流动提供阻抗的效果,能以各种方式采用,作为用于沿井的金属“管路结构”的功率和通信提供和分布的可选择实施例。
图8表示按照本发明一个可选择实施例的石油井用途。这个实施例类似于第一实施例(见图1),但表明在上部与下部扼流圈30、32之间的任何位置处能有与器件40有关的多个控制模块31。这个实施例在其中在气举井拆卸之前在环隙中存在导电流体82的用途中可能是有用的。当扼流圈浸在导电流体82中时,每个控制模块31、32工作得不足以在其相应器件40处产生电压电位。由于导电流体82由拆卸过程逐渐除去,所以当其相应扼流圈(31或32)已不浸在导电流体中时,每个器件40能接收功率和/或通信(因而是可控制的)。因此,当导电流体液位在拆卸期间下降时,器件40依次成为可控制的,这能有助于实现一个更可控制的拆卸过程。在表示在图8中的配置中,由控制模块31产生的电位串联相加,以确定在井口处由表面设备38经导体44必须施加的电压。
图9示意表明与图8类似的、安装有多个井下电气控制、测量和通信模块40的井。在这个实施例中,用于每个箱的功率从在管路结构34与套管36之间由扼流圈30和32产生的电压导出。与图7实施例的串联连接相反,在图9的实施例中,对于井下模块40的电气连接是并联的。因此在这个实施例中,在井口处由表面设备38经导体44必须施加的电压保持相同,而与井下模块的数量无关,但必须供给的电流与井下模块的数量成比例。该实施例是不能实行的,只要导电流体在下部感应扼流圈32上方的环隙中存在,但它具有井口电位保持较低并因此安全与井下模块数量无关的优点。
图10a和10b表示按照本发明另一个可选择实施例的石油井用途。这个实施例与表明在图1中的实施例有关,但根据电流变压器90的使用采用一种用来把功率提供给井下模块的可选择方法。所以,图10a表明一种当把管路结构用作用于电路的电流路径部分时用来把电功率提供给器件40的可选择方法。在管路结构34内的交流电流流动起变压器90的初级绕组的作用,并且在电流变压器的次级绕组92中感应次级电流流动。该次级电流能用来把电功率和/或通信提供给电气连接到变压器90上的器件40。以类似方式,电流变压器也可以用来联接在电子模块40内在管道与调制解调器之间的双向通信信号,从而可以建立在表面设备与井下模块之间的通信。
图10b表示图10a的电流变压器90的细节。变压器90包括一个这样缠绕的圆柱形铁磁心94,从而绕组92的主长度一般平行于管道96的轴,按照用于这样一种变压器的常规实践。有效的是,管路结构34起这样一个变压器90的初级绕组的作用,绕管道轴96轴向对称地创建一个圆形磁场,管道轴96与变压器轴对齐。该磁场在次级绕组92中感应电流,并且该电流适用于供电在器件40内的电气或电子设备,器件40电气连接到电流变压器次级绕组92上。对于变压器90,几何形状、匝数、长度、及材料能依据应用需要而改变。尽管图10a仅表示单个电流变压器90和有关的电气模块40,但可以有沿管路结构34布置的多个这样的器件,使每个电流变压器分别供电其有关电气模块和提供双向通信信号的联接。
如果在电流变压器高度上方的环隙58中存在导电流体82,则这样的导电流体起在管道与套管之间一条导电路径的作用,并且在变压器90中几乎不会感应次级电流。在气举井的情况下,然后在拆卸过程期间,环隙流体液位由提升气体的内流逐渐降低。因而在安装有多个电流变压器和井下模块的这样一种井中,当拆卸过程前进时,在井中在逐渐较低的点处的模块变得供电并且成为可控制的,以便有助于拆卸过程的控制。
图11表示按照本发明另一个可选择实施例的石油井用途,其中希望把功率提供给在井套管外的井下测量、控制和通信模块。也见图4c和4d。在这个实施例中,用来携带电流的管路结构由管路结构34和套管36一起组成。电气回路包括接地地线72。所以,管路结构34和套管36必须基本上与地72电气绝缘。在套管36与接地地线72之间的水泥依据水泥类型能提供某种绝缘。而且,在套管36与水泥70之间、在水泥70与地72之间、或在两个位置中能使用非导电衬管或涂层。特别是,在套管外部上的通常腐蚀控制涂层通常提供在套管与地之间的显著程度的电气隔离。靠近表面使用绝缘体84以把管路结构34和套管36与地72电气隔离开。这个实施例的电磁原理保持与以前实施例中的相同,如参照图4c和4d分析的那样,由此表明,图11的扼流圈30的效果把阻抗提供给在管路结构34和套管36中的电流流动,并因此在扼流圈上方的套管部分与相对于扼流圈下面的套管部分之间产生电位差。重要的是注意,管路结构34对于供给在套管上的电流不能用作回路电流路径,因为这种回路电流然后链接扼流圈,这会成为不能实行的。接地地线回路路径不会链接扼流圈,并因此是需要的。因而本发明的这个实施例是把管路结构34和套管36用作电路中电气路径部分实现把电功率和/或通信提供给井下器件40的目的的又一种途径。

Claims (17)

1.一种用来确定在管路结构(34)中的时间变化电流路线的电流阻抗器件,包括一个包容所述管路结构(34)一部分的感应扼流圈(32),其特征在于,一个井下器件(40)电气连接到在所述感应扼流圈(32)一侧与所述感应扼流圈(32)另一侧之间的所述管路结构(34)上,并且当时间变化电流经由和沿着所述管路结构(34)的所述部分传输时,跨所述感应扼流圈(32)产生一个电压电位,从而所述电流的一部分流经所述器件(40)。
2.根据权利要求1所述的电流阻抗器件,其中所述感应扼流圈(32)一般是圆柱形状,有一个一般圆柱形井孔穿过其形成,所述井孔适于在其中接收所述管路结构(34)的所述部分。
3.根据权利要求1所述的电流阻抗器件,进一步包括基本上覆盖所述感应扼流圈(32)的表面的绝缘壳(138)。
4.根据权利要求1所述的电流阻抗器件,其中所述感应扼流圈(32)包括一种铁磁材料。
5.根据权利要求1所述的电流阻抗器件,其中所述感应扼流圈(32)具有在1,000-150,000范围内的相对导磁率。
6.根据权利要求1所述的电流阻抗器件,其中管路结构(34)包括带有分布在井的到少一个分支(88)内的两个或多个控制模块(31)的石油井。
7.根据权利要求6所述的电流阻抗器件,其中所述管路结构包括用于井的一个油管柱的至少一部分,并且沿油管柱传输时间变化电流。
8.根据权利要求6所述的电流阻抗器件,其中所述管路结构包括用于井的井套管(36)的至少一部分,并且沿井套管(36)部分传输时间变化电流。
9.根据权利要求1所述的电流阻抗器件,其中管路结构包括一个在炼油厂内的管路,并且有两个或多个感应扼流圈(32)分布在管路的至少一个分支内。
10.根据权利要求1所述的电流阻抗器件,其中电气回路包括接地地线(72)的至少一部分。
11.根据权利要求10所述的电流阻抗器件,其中所述电气回路包括导电流体(82)的至少一部分。
12.根据权利要求1所述的电流阻抗器件,其中所述器件包括一个适于控制电气连接到其上的至少一个辅助电子元件和与其通信的控制模块(31)。
13.根据权利要求1所述的电流阻抗器件,其中所述器件包括一个电气可控制和电气致动阀。
14.根据权利要求1所述电流阻抗器件,其中所述器件包括一个用于数据获得的传感器。
15.根据权利要求1所述的电流阻抗器件,进一步包括:
一个电绝缘体(84),布置在所述管路结构(34)的所述第一端处,所述绝缘体(84)在所述管路结构(34)与所述电气回路之间,从而所述管路结构与沿所述第一端的所述电气回路电气绝缘。
16.根据权利要求1所述的电流阻抗器件,进一步包括一个计算机系统(39),适于经所述电路向所述器件(40)发送数据和从其接收数据。
17.一种操作带有一个布置在地中的管路结构(34)的石油井的方法,包括步骤:
提供一个感应扼流圈(32),其联接到井下管路结构(34)上并以包容关系布置在管路结构(34)上;
向管路结构(34)联接时间变化电流;
禁止时间变化电流远离感应扼流圈(32)流动,从而跨感应扼流圈(32)产生一个电压电位;
把器件(40)联接到靠近感应扼流圈(32)的管路结构(34)上;及
借助于所述电压电位操作所述器件(40)。
CNB018055680A 2000-01-24 2001-01-19 井中无线通信和控制的扼流电感器及在管路中的布置方法 Expired - Fee Related CN1229567C (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US17799900P 2000-01-24 2000-01-24
US17800000P 2000-01-24 2000-01-24
US60/178,000 2000-01-24
US60/177,999 2000-01-24
US18638000P 2000-03-02 2000-03-02
US18637600P 2000-03-02 2000-03-02
US60/186,380 2000-03-02
US60/186,376 2000-03-02

Publications (2)

Publication Number Publication Date
CN1406311A CN1406311A (zh) 2003-03-26
CN1229567C true CN1229567C (zh) 2005-11-30

Family

ID=27497255

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018055680A Expired - Fee Related CN1229567C (zh) 2000-01-24 2001-01-19 井中无线通信和控制的扼流电感器及在管路中的布置方法

Country Status (14)

Country Link
EP (1) EP1252416B1 (zh)
CN (1) CN1229567C (zh)
AT (1) ATE299986T1 (zh)
AU (1) AU765859B2 (zh)
BR (1) BR0107820B1 (zh)
CA (1) CA2398289C (zh)
DE (1) DE60112041T2 (zh)
EA (1) EA004215B1 (zh)
MX (1) MXPA02007180A (zh)
MY (1) MY123570A (zh)
NO (1) NO322163B1 (zh)
NZ (1) NZ520416A (zh)
OA (1) OA12213A (zh)
WO (1) WO2001055555A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6817412B2 (en) 2000-01-24 2004-11-16 Shell Oil Company Method and apparatus for the optimal predistortion of an electromagnetic signal in a downhole communication system
US6679332B2 (en) 2000-01-24 2004-01-20 Shell Oil Company Petroleum well having downhole sensors, communication and power
US6633164B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Measuring focused through-casing resistivity using induction chokes and also using well casing as the formation contact electrodes
US6633236B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
US6758277B2 (en) 2000-01-24 2004-07-06 Shell Oil Company System and method for fluid flow optimization
US6662875B2 (en) 2000-01-24 2003-12-16 Shell Oil Company Induction choke for power distribution in piping structure
US6715550B2 (en) 2000-01-24 2004-04-06 Shell Oil Company Controllable gas-lift well and valve
US6868040B2 (en) * 2000-03-02 2005-03-15 Shell Oil Company Wireless power and communications cross-bar switch
US20030035205A1 (en) * 2001-08-20 2003-02-20 Zisk Edward J. Fiber optic sensor signal amplifier
CA2476787C (en) * 2004-08-06 2008-09-30 Halliburton Energy Services, Inc. Integrated magnetic ranging tool
US7436184B2 (en) * 2005-03-15 2008-10-14 Pathfinder Energy Services, Inc. Well logging apparatus for obtaining azimuthally sensitive formation resistivity measurements
GB0505855D0 (en) * 2005-03-22 2005-04-27 Expro North Sea Ltd Signalling downhole
US7951286B2 (en) 2006-04-26 2011-05-31 Shell Oil Company Using an impressed current cathodic protection system to power electrical appliances
GB2461064A (en) * 2008-06-18 2009-12-23 Expro North Sea Ltd Flow line electric impedance generation
ATE545050T1 (de) 2008-06-18 2012-02-15 Expro North Sea Ltd Steuerung von unterirdischen sicherheitsventilen
US9091144B2 (en) * 2012-03-23 2015-07-28 Baker Hughes Incorporated Environmentally powered transmitter for location identification of wellbores
RU2528771C2 (ru) * 2012-08-31 2014-09-20 Общество с ограниченной ответственностью Научно-производственная фирма "ГОРИЗОНТ" (ООО НПФ "ГОРИЗОНТ") Способ передачи информации из скважины по электрическому каналу связи и устройство для его осуществления
US9303507B2 (en) 2013-01-31 2016-04-05 Saudi Arabian Oil Company Down hole wireless data and power transmission system
CO7270142A1 (es) * 2013-11-19 2015-05-19 Serinpet Ltda Representaciones Y Servicios De Petroleos Válvula cheque con masa inercial para bombas de cavidades progresivas
AU2015253516B2 (en) 2014-05-01 2018-02-01 Halliburton Energy Services, Inc. Casing segment having at least one transmission crossover arrangement
BR112016025543B1 (pt) 2014-05-01 2022-08-02 Halliburton Energy Services, Inc Método para controlar produção multilateral e sistema de controle de produção multilateral
RU2649994C9 (ru) 2014-05-01 2018-06-25 Халлибертон Энерджи Сервисез, Инк. Способ межскважинной томографии и системы, использующие участок обсадной трубы по меньшей мере с одним устройством передачи и приема данных
CN104047581A (zh) * 2014-05-28 2014-09-17 苏州市职业大学 一种基于声纳的自动化采油分割器系统
US9810059B2 (en) 2014-06-30 2017-11-07 Saudi Arabian Oil Company Wireless power transmission to downhole well equipment
WO2016149811A1 (en) * 2015-03-20 2016-09-29 Cenovus Energy Inc. Hydrocarbon production apparatus
US11906336B2 (en) 2018-01-31 2024-02-20 Hydroacoustics Inc. Pumpjack production well including venturi fluid sensor and capacitive flow sensor
WO2019157155A1 (en) * 2018-02-07 2019-08-15 Hydroacoustics Inc. Oil recovery tool and system
US11821293B2 (en) 2018-02-07 2023-11-21 Hydroacoustics. Inc. Oil recovery tool and system
CN108708712A (zh) * 2018-04-08 2018-10-26 阜新市石油工具厂 一种油管与套管组成的通讯调控工艺方法
CN110857621B (zh) * 2018-08-15 2022-03-01 中国石油天然气股份有限公司 自动分层找卡水、采油系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2943979C2 (de) * 1979-10-31 1986-02-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Anordnung zur Übertragung von Meßwerten von mehreren entlang einer langgestreckten Unterwasserstruktur hintereinander geschalteten Meßstellen auf eine Zentralstation
GB2083321A (en) * 1980-09-03 1982-03-17 Marconi Co Ltd A method of signalling along drill shafts
AT397833B (de) * 1991-06-03 1994-07-25 Universale Grundbau Datenübertragungsverfahren für grab- und erdbohrgeräte sowie für bohrlochförderungseinrichtungen
US5995020A (en) * 1995-10-17 1999-11-30 Pes, Inc. Downhole power and communication system
GB9801010D0 (en) * 1998-01-16 1998-03-18 Flight Refueling Ltd Data transmission systems
GB2338253B (en) * 1998-06-12 2000-08-16 Schlumberger Ltd Power and signal transmission using insulated conduit for permanent downhole installations

Also Published As

Publication number Publication date
BR0107820B1 (pt) 2009-01-13
AU2680801A (en) 2001-08-07
ATE299986T1 (de) 2005-08-15
CA2398289C (en) 2009-03-24
DE60112041T2 (de) 2006-04-13
EP1252416A1 (en) 2002-10-30
EA004215B1 (ru) 2004-02-26
NZ520416A (en) 2004-02-27
NO20023499D0 (no) 2002-07-23
EA200200797A1 (ru) 2003-02-27
MY123570A (en) 2006-05-31
AU765859B2 (en) 2003-10-02
CN1406311A (zh) 2003-03-26
OA12213A (en) 2006-05-09
BR0107820A (pt) 2004-07-06
WO2001055555A1 (en) 2001-08-02
NO20023499L (no) 2002-09-11
CA2398289A1 (en) 2001-08-02
EP1252416B1 (en) 2005-07-20
MXPA02007180A (es) 2003-01-28
DE60112041D1 (de) 2005-08-25
NO322163B1 (no) 2006-08-21

Similar Documents

Publication Publication Date Title
CN1229567C (zh) 井中无线通信和控制的扼流电感器及在管路中的布置方法
US6662875B2 (en) Induction choke for power distribution in piping structure
US7055592B2 (en) Toroidal choke inductor for wireless communication and control
US6958704B2 (en) Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
EP1899574B1 (en) Well having inductively coupled power and signal transmission
EP1451445B1 (en) A device and a method for electrical coupling
EP0964134B1 (en) Power and signal transmission using insulated conduit for permanent downhole installations
RU2130112C1 (ru) Система для введения нагнетательной текучей среды в поток углеводородной жидкости
CA2152521C (en) Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits
US6509557B1 (en) Apparatus and method for heating single insulated flowlines
CA2402203C (en) Oilwell casing electrical power pick-off points
AU2001247280A1 (en) Oilwell casing electrical power pick-off points

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051130

Termination date: 20130119