CN1228001A - 高频接收装置 - Google Patents

高频接收装置 Download PDF

Info

Publication number
CN1228001A
CN1228001A CN99101265.8A CN99101265A CN1228001A CN 1228001 A CN1228001 A CN 1228001A CN 99101265 A CN99101265 A CN 99101265A CN 1228001 A CN1228001 A CN 1228001A
Authority
CN
China
Prior art keywords
circuit
frequency
signal
detection
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99101265.8A
Other languages
English (en)
Other versions
CN1167236C (zh
Inventor
鹫见重治
足立宪司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1228001A publication Critical patent/CN1228001A/zh
Application granted granted Critical
Publication of CN1167236C publication Critical patent/CN1167236C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • H03D7/166Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature using two or more quadrature frequency translation stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2202/00Aspects of oscillators relating to reduction of undesired oscillations
    • H03B2202/08Reduction of undesired oscillations originated from the oscillator in circuit elements external to the oscillator by means associated with the oscillator
    • H03B2202/082Reduction of undesired oscillations originated from the oscillator in circuit elements external to the oscillator by means associated with the oscillator by avoiding coupling between these circuit elements
    • H03B2202/084Reduction of undesired oscillations originated from the oscillator in circuit elements external to the oscillator by means associated with the oscillator by avoiding coupling between these circuit elements through shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Superheterodyne Receivers (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本发明涉及的高频接收装置,用生成与希望接收的标准频率大致相等频率的RF无调制波的PLL合成器构成的检波用振荡电路与I/Q检波电路同时进行选台和检波,第1发明为了解决振荡RF波从输入端子泄漏干扰其他装置的问题,在检波用振荡电路与RF电路之间设置信号隔离手段。第2发明为了解决接收信号的频率产生与标准频率的误差导致误码率变坏的问题,设置误差检测电路。两发明都能抑制有害电波的泄漏,使误码率好转,提高选台性能,使装置简化、小型化、低价格化。

Description

高频接收装置
本发明涉及对用电视信号等进行数字式调制的高频信号进行检波的高频接收装置。
以往,接收利用电视信号等进行数字式调制的高频信号(RF信号)、例如1-2GHz频带的高频信号并进行检波的高频接收装置,如图11所示,经接收天线从高频输入端子301输出的高频信号用RF电路302放大后输入混频电路303,与本机振荡电路304的输出信号混频,该本机振荡电路304的输出信号的输出频率是与上述高频信号相同的RF频带,并且与希望接收频道的频率保持一定的频率差而改变输出频率,这样将希望接收的频道变换为中频信号(IF信号)、例如400MHz频带的信号以进行选台。而该中频信号用IF电路305放大(IF放大)和经过带通滤波(IF BPF)等之后,与输出频率为IF频带的检波用振荡器307的输出信号一起输入I/Q检波电路306,进行正交检波,然后分别从输出端子308a及308b取出所谓I信号及Q信号。(当然,本说明书所说的I及Q信号不是NTSC制式所说的色差信号的意思,而是对相位相差90°的载波进行调制的调制信号的意思)。该已有例的装置由于高频信号一度变换为中频信号(下称降频法),因此即使本机振荡电路304的振荡信号从高频输入端子301泄漏,由于该频率与高频信号偏离中频的频率,所以对于具有相同的接收频带的其他接收机没有干扰,但从图11可知,混频电路和振荡电路分别需要两个,如303、306和304、307。无论如何高频接收装置复杂化了,设计和制造上存在着问题。因此,提出了不使用降频法而使用输出频率与高频信号中希望接收频道的频率大致相等的检波用振荡电路同时进行选台与检波的方法(下称直接检波法),使装置简化和小型化,但是这种方法存在的问题是,检波用振荡电路的振荡信号从高频输入端子泄漏,对具有相同接收频带的其他接收机有干扰,目前尚无克服这一难题的实例。
又,在使用消费者用的接收系统接收12GHz频带的卫星广播时,降频法的本机振荡电路和直接检波法的检波用振荡电路的输出信号根据广播的标准频率由PLL频率合成器正确且稳定地生成,而在12GHz频带的接收天线单元,通常不能进行像PLL频率合成器那样正确且稳定的向1~2GHz频率的频率变换,因此高频输入信号的频率相对于通常的标准频率有若干偏离,产生频率误差。图12是利用直接检波法具有对上述频率误差进行补偿功能的高频接收装置,是与QPSK调制的高频信号对应的装置。在这一迄今为止使用的装置的例子中,检波用振荡电路404的输出频率(下面使用“输出信号频率”的意思。另外,所谓振荡频率的情况下,不仅有通过作为信号通路的输出口输出的信号,还有包括从电路内部向空间辐射的信号的意思)被设定为与用PLL频率合成器404a根据基准振荡器408的输出频率选台的输入信号的标准频率一致,但是实际上有可能即使高频信号有频率误差也是固定不变的,而在后级的误码率变坏。检测电路404的输出经过低通滤波器406a及406b被输入A/D变换器409a及409b,用时钟再生电路412再生的时钟信号变换为数字信号.然后,采用在第1复数乘法器411用频率误差检测电路414的输出信号对上述频率误差进行补偿的结构,防止了误码率的变坏。再在其后为不使代码间发生干涉,经过滚降滤波器410a及410b,在第2复数乘法器415中与时钟再生电路412及载波再生电路413一起重放时钟信号及载波信号,另一方面,数据检测电路417从该输出信号检测数据,从输出端子418a及418b分别作为时钟信号及数据信号输出。又,图12的虚线420内的各电路成为1块芯片的LSI。但是,在这样的已有的装置中,需要复数乘法器411那样的对频率误差进行补偿用的电路,不仅高频接收装置变得复杂,设计和制造上成问题,而且只用上述复数复法器411对上述频率误差进行补偿,其运算位数必须十分多,结果问题是使误码率恶化。
如上所述,已有的高频接收装置即使在降频法的情况下和在直接检波法的情况下都导致装置复杂、庞大,价格昂贵,在性能上也存在有害电波泄漏、误码率差等问题。本发明的高频接收装置不仅能够简单、小型、价格低廉,而且能够有助于减少有害电波的泄漏,改善误码率,提高选台性能等,具有种种优点。
本发明的目的在于解决上述问题。第1目的在于提供以简便手段抑制检波振荡电路的振荡信号从高频输入端子泄漏、且装置简单、从型及低价格的高频接收装置,在该高频接收装置中采用对数字调制的高频信号同时进行选台及检波的直接检波法。第2目的在于提供不需要以往必需的频率误差补偿用复数乘法器、不仅改善误码率及提高选台性能、而且装置简单、小型及低价格的高频接收装置。
本发明为了达到第1目的,其特征在于,用检波用振荡电路生成与RF输入端子(即高频输入端子)输入的数字式调制RF信号中希望接收的信号频率大致相等的频率的无调制波,把这一输出信号与经上述输入端子及RF电路放大的上述RF信号输入I/Q检波电路,以便同时进行选台和检波,并输出检波过的I及Q原信号(所谓原信号意思是未经后级信号处理的信号),同时为了抑制所述振荡电路的振荡信号(区别于上述输出信号。意味着通过输出信号的输出12输出的信号,又,所谓振荡信号包含这样的意思,即不仅包含通过作为信号通路的输出口输出的信号,还包含从电路内向空间辐射的信号)利用向本来的信号通路以外的通道即空间辐射而向所述输入端子泄漏,在所述RF电路与所述振荡电路之间具备物理上的和/或电气上的信号隔离手段(下面,在本说明书中所谓“物理上”意味着涉及电路的空间中、平面上、直线上的可视位置,不同于“电气上”的意思。)
又,本发明的一种形态,其特征在于,将所述I/Q检波电路作为所述信号隔离手段,同时将上述I/Q检波电路放在当中,在一边在物理上配置所述RF电路和所述输入端子,在另一边在物理上配置所述振荡电路,使所述两个电路之间在物理上保持距离,以此减少因所述振荡电路的振荡信号向空间辐射而进入所述RF电路的电场的大小,抑制所述振荡输出信号向所述输入端子的泄漏。又,将容纳上述各电路的金属壳体的水平剖面做成大致为四方形,如果靠近一个侧面依照所述RF电路、所述I/Q检波电路、所述振荡电路的顺序在物理上配置这3个电路,则所述筐体侧面起到与所述各电路接近的接地面的作用,同时能够防止所述振荡电路的输出寄生阻抗增加,抑制所述振荡电路的输出向空间辐射,其结果是,可以抑制通过所述RF电路从所述输入端子的泄漏。再有,由于所述振荡电路的输出信号还能够通过向前述各电路供电的直流电源发生泄漏,因此至少可以利用将所述RF电路的电源端子与所述振荡电路的电源端子分别设置的方法,能够防止所述振荡电路的振荡信号通过提供所述直流电源的导线进入所述RF电路、从而从所述输入端子泄漏的弊病。
还有,本发明的另一形态,其特征在于,在所述筐体内,利用在所述RF电路和所述振荡电路之间在物理上配置金属隔板,可以把这两个电路的空间分割开,防止所述振荡电路的振荡信号向空间辐射进入所述RF电路,抑制所述振荡电路的振荡信号通过所述RF电路从所述输入端子泄漏的情况。
又,本发明的再一个形态,其特征在于,在中间层设置接地面的多层印刷电路板的一面形成所述RF电路的印刷电路图形,而在另一面形成所述振荡电路的印刷电路图案,使其共用所述接地面,借助于此,即使所述振荡电路的振荡信号向空间辐射,但所述接地面起到电屏蔽板的作用,能够防止其进入所述RF电路,抑制向所述输入端子泄漏的情况。
又,本发明的再一个形态,其特征在于,将单层印刷电路板的表面区域分割为2部分,在1个区域的表面设置所述RF电路,同时在另一区域的背面设置所述振荡电路,设置使所述RF电路与所述振荡电路的印刷电路图案的接地面之间形成电气短路的多个贯通孔,借助于此,可以防止在所述接地面电气隔离的情况下所述振荡电路的输出寄生阻抗变大、而向空间辐射的弊病,也就是说,可以加大上述两个电路在电气上(高频上)的隔离程度,抑制所述振荡电路的振荡信号从所述输入端子泄漏的情况。
又,本发明的再一个形态,其特征在于,在所述振荡电路与向其供给直流电源的端子之间设置抑制所述振荡电路的振荡输出信号的低通滤波器,以此抑制所述振荡电路的信号通过所述RF电路从所述输入端子泄漏的情况.
在下面,为了达到上述第2个目的,本发明的又一形态,其特征在于,将像在接收12GHz频带的卫星广播时那样的输入RF输入端子的具有频率误差的RF信号和以例如压控石英振荡器(VCXO)为基准振荡信号源的PLL频率合成器构成的检波用振荡电路的输出信号一起输入I/Q检波电路得到I、Q原信号,再利用低通滤波器、A/D变换器、滚降滤波器(roll off filter)、复数乘法器对所述I、Q原信号进行信号处理之后,利用频率误差检测电路生成与所述频率误差的大小相应的数字输出信号值,再将通过D/A变换器得到的输出信号作为所述基准振荡信号源的控制电压,控制其输出频率使得所述频率误差进行补偿,借助于此使所述PLL频率合成器内的锁相环确立同步,以对所述频率误差进行补偿。在本发明中,基准振荡器的输出频率受到频率误差检测电路的输出信号的控制,其结果是,所述频率误差在所述I/Q检波电路得到补偿,因此得到了良好的误码率,同时不需要像以前那样的运算位数多的频率误差补偿用复数乘法器,能够使装置简单、小型、低价格。另外,利用所述复数乘法器后接的数据检测电路得到的解调数字信号从2个输出端子取出到外部,同时上述信号处理所需要的时钟信号及载波信号分别利用所述复数乘法器和时钟再生电路及载波再生电路从所述I/Q检波电路得到的I及Q信号抽取、再生。
又,本发明的一个实施形态,其特征在于,由时钟再生电路再生的时钟信号与所述误差检测电路的输出信号生成所述基准振荡信号,另外,不需要基准振荡器,用简单的结构就能够得到良好的误码率。
又,本发明的另一个实施形态,其特征在于,在所述输入端子的输入信号频率的频率误差超过预先规定的值Δf、而本装置的同步尚未确立的情况下,以与该Δf值对应的间隔Δv,依次将所述频率误差检测电路的输出信号值变更后输出,直至同步确定,并依次变更基准信号振荡器的控制电压,也就是对所述检波用振荡电路的输出频率进行无遗漏的搜索动作直至同步确定,以进行选台。又,其特征还在于,由于所述检波用振荡电路的输出频率与基准振荡器的控制电压的关系因输入信号的频率而不同,因此在所述输入信号的频带较宽等情况下,如果能够对于每一预先选台的频率变更所述输出信号值后输出,则可以谋求选台高速化。还有,其特征还在于,在所述输入信号的频率误差超过与所述基准振荡信号频率可变范围对应的所述检波用振荡电路的输出信号频率可变范围的情况下,也可以变更所述输出信号值并且变更所述PLL频率合成器的计数器值,以变更所述检波用振荡电路的输出频率,能够适应对于所述输入信号的更大的频率误差。
还有,本发明的另一形态,其特征在于,也可以设置具有读取所述基准振荡信号的频率、并生成对其进行修正的输出信号的功能的频率误差修正电路,即使在所述基准振荡器的频率相对于控制电压的特性偏离标准特性的情况下也能够适应,因此所述基准振荡器的精度要求可以不那么严格也行。又,其特征还在于,也可以使用所述误差修正电路的输出信号,修正所述误差检测电路的输出信号值,因此能够正确进行频率误差修正。又,其特征还在于,也可以使用所述误差修正电路的输出信号,变更所述PLL频率合成器的计数器值,以变更所述检波用振荡电路的输出频率,因此对大的频率误差也能够修正。
本发明在用上述构成对数字式调制的高频输入信号不使用降频法的直接检波法中,通过在RF电路和检波用振荡电路之间施加物理上的和/或电气上的信号隔离手段的方法,可以抑制所述振荡电路的振荡信号从所述高频输入端子泄漏的情况,防止对其他接收机的干扰。又,能将所述高频输入信号的频率误差作为频率误差检测电路的输出信号值,以此控制所述检波用振荡电路的输出频率,对频率误差进行补偿,借助于这一手段,以往一向需要的的频率误差补偿用的复数乘法器不仅可以不要,而且由于该复数乘法器是误码率不佳的重要原因,因此可以改善误码率,也可以提高各种选台性能。任何一种方法都具有能够使装置简单、小型、低价格的效果。
图1是本发明实施例1的高频接收装置的方框图。
图2是本发明实施例2的高频接收装置的方框图。
图3是本发明实施例3的高频接收装置的主要部分剖面图。
图4是本发明实施例4的高频接收装置的主要部分剖面图。
图5是本发明实施例5的高频接收装置的方框图。
图6是本发明实施例6的高频接收装置的方框图。
图7是本发明实施例7的高频接收装置的方框图。
图8(a)是本发明实施例6及7的高频接收装置基准振荡器的控制电压与输出频率的关系图。
图8(b)是本发明实施例6及7的高频接收装置基准振荡器的控制电压与检波振荡器的频率变化范围的关系图。
图9是本发明实施例8的高频接收装置的方框图。
图10(a)是本发明实施例8的高频接收装置基准振荡器的控制电压与输出频率的关系图。
图10(b)是本发明实施例8的高频接收装置基准振荡器的控制电压与检波振荡器的频率变化范围的关系图。
图11是已有的一个高频接收装置例的方框图。
图12是已有的另一个高频接收装置例的方框图。
下面使用附图对本发明的实施例加以说明。
实施例1
图1是本发明实施例1的高频接收装置的方框图。表示接收12GHz频带卫星广播的用户使用的机顶盒(STB)所用的调谐单元兼解调部。在图1中,从安装在金属壳体105的一个纵侧面105a上的RF输入端子101输入1-2GHz(正确地说是950-2150MHz)频带的数字式调制RF信号。该信号的12GHz频带的卫星广播电波由接收天线降频为所述频率(RF),由同轴电缆传送到屋内的所述机顶盒(STB),输入至端子101,该信号的功率电平在大约-70~-20dBm范围内。该信号在与端子101直接连接的RF电路102中首先由RF放大器102A放大,再以连接其后的带有自动增益控制(AGC)功能的RF放大器102b放大到一定的信号功率电平,输入I/Q检波器103。另外,放大器102a的输出信号的一部分还输出到RF输出端子101a,也可以级联连接到其他STB。检波用振荡电路104是所谓PLL频率合成器,在图1中,为了说明的方便,将前置频率倍减器、相位比较器、各种计数器、基准振荡器等作为PLL合成器104a(下面将“PLL频率合成器”省略为“PLL合成器”)以1个方框表示,与低通滤波器(也称为“环路滤波器”)104b、VCO(压控振荡器)104c、缓冲放大器104d三个部分一起在图中分为4个部分表示。(在本说明书中将该检波用振荡电路适当分为3~4个部分。例如将基准振荡器作为另一部分,或使缓冲放大器包含于PLL合成器,由于在附图中表示很清楚,理应不会发生混乱。)接收人希望接收的频道是利用STB内部的微控制器从所述RF信号将选台所需要的信号传送到本装置,在该振荡器104生成与该接收通道的中心频率一致的无调制RF信号,输入检波电路103。又设置放大电路104d,以便不使VCO104c因受作为其负载电路的检波电路103的影响而变得不稳定,另外不使本身的振荡输出信号的反射而对包含本身在内的振荡电路104产生不良影响。如上所述,输入检波电路103的RF信号及RF振荡输出信号分别2等分,一部分RF振荡输出信号依据I/Q检波的原理利用移相器103c移相90度后输入混频器103a和103b,进行I/Q检波。其结果是,作为混频器103a及103b的输出信号,得到作为未处理的基带原信号的I及Q信号,为了去除检波时产生的多余的高频分量等,经过截止频率为30MHz的低通滤波器106a及106b从检波输出端子107a及107b输出。在如上所述的结构中,首先,由于混频器103a、103b使用平衡式混频器,因此,振荡电路104的输出信号从所述平衡式混频器103a、103b的所述RF信号的输入口的流出可以抑制在20dB左右,I/Q检波电路103本身起到电气式信号隔离手段的作用,但是即使抑制到这样的程度,由于所述振荡电路104的振荡信号向空间辐射,进入RF电路,所以不改进仍不能解决本发明的问题。因此,将所述I/Q检波电路置于当中在一边配置所述RF电路和所述输入端子,而在另一边配置所述振荡电路,在物理上使所述两电路保持距离,以此能够减小所述振荡电路的振荡信号向空间辐射而进入所述RF电路的电场的大小,可以抑制所述振荡输出信号向所述输入端子泄漏的情况,解决上述问题。
又,如果靠近水平剖面大致为四边形而且容纳上述各电路的金属壳体105的一个侧面105a将RF电路102、检波电路103、振荡电路104三个电路依照这一顺序进行物理配置,则筐体侧面105a作为接近所述各电路的接地面起作用,同时可以防止振荡电路104的输出寄生阻抗变高,也可以抑制振荡电路104的振荡信号向空间辐射,其结果是,可以抑制通过RF电路102从所述输入端子101泄漏的情况。
又,通往上述各电路的电源端子分别设置端子112、113、114,作为向电路102、103、104分别提供直流电源的端子,因此可以防止在将它们共用的情况下振荡电路104的振荡信号通过连接各电路之间的电源导线经过所述RF电路102向输入端子101泄漏的弊病。而且这些电源端子为了防止所述振荡信号的进入必须与振荡电路104在物理上保持较大的距离,因此被设置于振荡电路104所在侧面105a的相对的侧面105b。
实施例2
图2是本发明实施例2的高频接收装置的方框图。在图2中,金属隔板120处于构成本装置的印刷电路板上的所述RF电路102与所述检波用振荡电路104之间,在物理上配置在这两个电路的各自的印刷电路的接地部分上,因此作为这两个电路的接地面起作用,同时具有电屏蔽效果。因此,利用该隔板120,将振荡电路104的振荡信号中向空间辐射的部分遮挡住,不向RF电路一侧泄漏,也可以抑制向连接于RF电路102的输入端子101的泄漏。又由于有对上述两个电路的电屏蔽,可以将两个电路的物理距离做得小,能够使装置小型化,同时也可以使设计有较大的自由度。
实施例3
图3是本发明实施例3的高频接收装置的主要部分剖面图。在图3中,印刷电路板130是在中间层设有接地面131的多层印刷电路板,其一面130a上分别形成及安装所述RF电路102的印刷电路图案及电路零件,在另一面130b上分别形成及安装所述所述检波用振荡电路104的印刷电路图案及电路零件。利用这样共用接地面131,可以加大所述两个电路之间在电气上的(高频的)隔离程度,即使振荡电路104的振荡信号向空间辐射,由于接地面131起到电屏蔽板的作用,也能够防止其进入RF电路102,可以抑制其向输入端子101的泄漏。又,由于印刷电路板使用多层的印刷电路板,因此能够使装置更进一步小型化,同时也可以使设计有较大的自由度。
实施例4
图4是本发明实施例4的高频接收装置的主要部分剖面图。单层印刷电路板140的表面区域一分为二,一个区域的表面140a上设置所述RF电路102,同时在另一区域背面140b设置所述检波用振荡电路104,设置将所述RF电路102与所述检波用振荡电路103的印刷电路图案的接地面之间电气短路的多个贯通孔141,借助于此,在所述接地面在电气上隔离开的情况下,可以防止振荡电路104的输出寄生阻抗变高而向空间辐射的弊病,也就是说可以使所述两个电路在电气上(高频的)隔离的程度加大,可以抑制振荡电路104的振荡信号通过RF电路102从输入端子101泄漏的情况。
实施例5
图5是本发明实施例5的高频接收装置的主要部分方框图。在图5中,由于振荡电路104与直流电源供电端子114之间连接着隔断振荡电路104的输出信号的低通滤波器150,因此能够防止振荡电路104的输出信号通过直流电源进入RF电路102,其结果是,可以抑制通过RF电路102泄漏到输入端子101的情况。
实施例6
图6是本发明实施例6的高频接收装置的方框图。是用于接收12GHz频带卫星广播的STB中的装置。从RF输入端子201输入的RF输入信号经I/Q检波、由低通滤波器206a及206b作为基带原信号输出为止的信号处理过程与实施例1相同,故将其省略。但是在图6中,信号隔离手段、缓冲放大器、电源端子省略,基准振荡器208与PLL合成器204a分开图示。基准振荡器208是通常的压控石英振荡器(VCXO),如下面所述,在振荡电路204中,由PLL合成器204a、低通滤波器204b、VCO(压控振荡器)204c生成的检波用振荡电路的输出信号成为原信号。所述基带原信号与时钟再生电路的时钟信号一起被输入A/D变换器209a及209b,变换为数字信号后,利用对噪声等引起的代码之间的干涉的抑制以抑制误码率的恶化用的滚降滤波器(roll offfilter)210a及210b进行频带限制。这滤波器210a及210b的输出信号,由于包含所希望的数字信号,同时还包含RF输入信号和振荡电路204的输出信号和差频分量,因此将这些信号输入复数乘法器211,由该乘法器211和载波再生电路213形成锁相环,抽取稳定的载波信号(RF输入信号的载波)进行再生。又,时钟信号也使用该乘法器211的输出信号,利用时钟信号再生电路212进行抽取、再生。该乘法器211的输出信号被输入至数据检测电路217,作为所希望的数字信号从数字输出端子218a及218b分别作为时钟信号及编码数据串输出。另一方面,误差检测电路214根据该乘法器211的输出信号生成与所述误差频率相应的数字输出信号值并输出,该输出信号值被D/A变换器215变换为模拟信号后,作为基准振荡器208的控制电压被反馈,以改变基准振荡器208的输出频率使所述频率误差变小,最终,同步得以确立,所述频率误差得到补偿。下面用具体数据的例子加以说明。以FREF表示基准振荡器208的输出频率,以N、A、R(均为正整数而且N>A)分别表示PLL结合器204a的程序计数器、吞食计数器(swallow counter)、参考计数器的分频比,取前置频率倍减器的分频比为64,则已知检波器用振荡电路204的输出频率FLO由下式(1)表示。
            FLO=(N×64+A)×FREF/R    ……(1)
现在设FREF为4.0MHz,RF输入信号的频率为950MHz,与标准频率一致,在这样的情况下,亦即没有频率误差的情况下,如果把所述计数值的组合(N、A、R)分别设定为(59、24、16),则FLO为950MHz,本接收装置同步。下面,在RF输入信号的频率上升+1MHz,即成为951Mhz时,误差检测电路214检测出频率上升的大小,通过D/A变换器215,如下式(2)所示控制基准振荡器208的频率,结果,FLO为951MHz,在N、A、R值固定于上述数值不变的情况下本接收装置同步。
         FREF=4.0042105Mhz    ……(2)
也就是说,频率误差得到补偿,图12中的以往需要的频率误差补偿用复数乘法器411不再需要。其结果是,能够实现即使不使用已有的复数乘法器411也能够有良好的误码率特性的高频接收装置,同时由于不使用该复数乘法器,可以省去这部分,谋求简单化、小型化和降低价格。
图7是本发明实施例7的高频接收装置的方框图,与图6不同的是,设置脉冲计数器216代替基准振荡器208和D/A变换器215。计数器216以时钟信号为依据生成基准振荡信号的原信号,作为计数器216的输出信号,而且利用误差检测电路214的输出信号使该原信号产生必要的频率移位,具有代替实施例6的基准振荡器208和D/A变换器215的功能。作为基准振荡信号的计数器216的输出信号频率为4.0MHz,当RF输入信号为950MHz时,PLL结合器204a的计数值N、A、R与实施例6相同,当RF输入信号上升+1MHz达到951MHz时,误差检测电路214检测出频率上升的大小,对计数器216的生成频率进行控制,使其只上升该大小的值,其结果是,变成上述式(2)所示的频率,本接收装置的同步得以确立。因此,本实施例也能够在N、A、R值固定于上述数值不变的情况下只对计数器216的生成频率进行控制,以对RF输入信号的频率误差进行补偿,其结果是,能够实现即使没有以往需要的、频率误差补偿用的复数乘法器411也有良好的误码率特性的高频接收装置,同时由于不使用该复数乘法器和基准振荡器208、D/A变换器215,可以省去这些部分,谋求简单化、小型化和降低价格。
图8(a)和(b)分别表示上述实施例6的基准振荡器的输出频率及检波用振荡电路204输出频率相对于基准振荡器208的控制电压的关系,用实际数值说明在前述实施例6及本实施例7的装置中在RF输入信号频率偏大的情况下同步动作如何进行,也就是频率误差输出电路214的输出信号值和PLL结合器204a的计数值的变更以怎样的过程进行。这里,由于在本实施例7中,不使用上述实施例6的基准振荡器208,因此在下述说明中如果将横轴的控制电压换成误差检测电路214的输出信号值(正确地说是D/A变换器的输出信号值),则关于实施例6的说明也适用于实施例7。在图8(a)中,直线250表示图6的基准振荡器208的控制电压与输出频率的关系的一个例子,图8(b)的虚线270和实线260分别表示在RF输入信号的频率为950MHz和2150MHz的情况下所述控制电压和振荡电路204的输出频率可变范围的关系。在图8(a)中,当基准振荡器208的控制电压为6±3VDC时,其输出频率为4.0MHz±16KHz,为了使其中心频率4.0MHz与振荡电路204的输出频率950MHz对应,只要将PLL结合器204a的计数值的组合(N、A、R)如上所述分别设定为(59、24、16)即可。在这种情况下,根据上式(1),振荡电路204的输出频率的可变范围为950±3.8MHz,如图8(b)的虚线270所示。同样,在2150MHz的情况下,如果计数值的组合(N、A、R)设定为(134、24、16),则所述可变范围为2150±8.6MHz,如图8(b)的实线260所示。在接收12GHz频带的卫星广播的情况下,可能发生输入STB的RF信号的频率大大偏离标准频率、例如偏离达5MHz的情况,作为通常的用户装置,要求即使在这样的情况下也能够接收。但是,误差检测电路214能够检测频率误差的频率范围Δf因数字式调制方式而不同,例如在QPSK和8PSK的情况下,设RF接收信号的符号率记为f(Mbps),则Δf分别为下式(3)所示。
对于QPSK,Δf=±fs/8(MHz)    ……(3)
对于8PSK,Δf=±fs/16(MHz)    ……(4)
例如,在调制方式为QPSK,被选台的RF接收信号FRF的标准频率为2150MHz、有未知值的频率误差的情况下,STB首先取所述控制电压为6VDC,振荡电路204的输出频率FLO设定为2150MHz。也就是说,在图8(b)中,从实线260的中心点260a开始同步动作。如果RF接收频率不处于点260a起±Δf范围内,不确立同步,则STB接着将误差检测电路214的输出信号变更后输出,经过D/A变换器将其送到基准振荡器208,将所述控制电压从与点260a对应的6VDC变更为与FLO移位+Δf的点260b对应的控制电压(6+ΔV)VDC后,再度进行同步动作。尽管如此,如果RF接收频率不处于点260b起±Δf范围内,不确立同步,则将所述输出信号值变更后输出,这一次将所述控制电压设定为与从点260a起使FLO向同上次方向相反的方向移位-Δf的点260c对应的控制电压(6-ΔV)VDC后,再度进行同步动作。尽管如此,如果RF接收频率还是不处于点260c起±Δf范围内,不确立同步,则以点260d、点260e的顺序重复相同的动作,直到同步确立。如果在点260e还不确立同步,则在图8(b)的实线260上的上限到下限之间不存在RF接收频率,因此下面将改变PLL结合器204a的计数值,重新设定振荡电路204的输出频率FFO,变成从点260a起移位+8.6MHz的点260f,即2150+8.6MHz,同时重新变更所述误差检测电路214的输出信号值后输出,即所述控制电压也设定为原先的值,然后进行同步动作。若在那时候还不确立同步,则振荡电路204的输出频率FLO变成从点260a移位-8.6MHz的点260g,再同样进行。利用这样的方法最终能够达到同步点,即使是超过图8(b)的实线260的上限或是下限的频率也能够实现同步。在接收信号FREF的标准频率为950Mhz的情况下,也同样以点260a为开始点,同样以点270b、点270c、点270d、点270e的顺序进行同步动作,如果在点270e不确立同步,其后的动作也与上面所述相同。如上所述,将误差检测电路214的输出信号值依次变更后输出,使得能够以所述Δv的间隔无遗漏地进行扫描,借助于此可以可靠地到达同步点,能够更加正确地进行选台,另外在这种情况下,所述控制电压的扫描间隔Δv由图8(b)的虚线260及实线270可知,取决于振荡电路204的输出频率FLO,也就是取决于接收频率FRF(图8(b)所示的Δv是FRF为2150MHz的情况,950MHz时比这大,结果Δv成为FRF或FLO的函数),因此,如果对每一个接收频率改变所述Δv,改变所述输出信号值后输出,则能够以更高速度达到同步点,进一步若不仅变更误差检测电路214的输出信号值,还变更PLL结合器204a的计数值,由能够适应更大的频率误差。
实施例8
图9及图10分别为本发明实施例8的高频接收装置的方框图及其说明图,与实施例6不同之处是其构成中增加了频率误差修正电路230。该误差修正电路230具有的功能是,从基准振荡器208接收一部分输出信号,以该输出频率为依据改变误差检测电路214的计数值和PLL结合器204a的计数值。图10(a)的虚线280是基准振荡器208的输出频率及其控制电压的标准特性,而实际上如实线281所示,往往由于构成零部件的离散等原因而显示出偏离标准特性的特性。在图10(a)中,误差修正电路230具有的功能是暂时将误差检测电路214的输出信号值变更后输出,取D/A变换器215的输出电压、即基准振荡器208的控制电压为6VDC,由自己检测出与标准特性280的频率差5KHz,将误差检测电路214的输出信号值偏移、输出,使所述控制电压降低的大小为图中282所示的电压差分Δvx,该误差修正电路230是能够有效地等效地实现虚线280标准特性的电路。
图10(b)表示振荡电路204的输出频率FLO与所述控制电压的关系,在该图中虚线290对应于基准振荡器208的特性是以图10(a)的虚线280表示的标准特性的情况。在基准振荡器208的特性偏移低所述Δvx的情况下,利用误差修正电路230,改变PLL结合器204a的计数值,将其组合(N、A、R)从(134、24、16)变成(134、35、16),代替上面所述的以误差检测电路214进行控制,使D/A变换器215的输出电压、即基准振荡器208的控制电压进行偏移,以此可以有效地得到与图10(b)的虚线290的标准特性大致等效的特性292。还有,图10(b)的实线291的特性,在将PLL结合器204a的计数值按照上面所述进行设定的情况下,和最与实际基准振荡器208特性近似的特性对应。如上所述,借助于设置误差修正电路230,由于能够使用其输出信号对所述基准振荡信号的频率进行修正,因此基准振荡器的频率精度即使比以往低也可以,另外还可以进行正确的频率误差修正、
如上所述,本发明的高频接收装置从图1到图10给出了理想的实施例并进行了详细说明,如所说明那样,在不将数字式调制的高频输入信号暂时变换为中频的方法即直接检波法中,采用上述信号隔离手段及基准振荡信号的上述频率控制手段,解决了抑制检波用振荡信号向外部泄漏和对高频输入信号的频率误差的补偿等技术问题,有助于减少有害电波的泄漏,使误码率减少,提高选台性能,同时能够谋求装置的简单化、小型化、低价格化。

Claims (16)

1.一种高频接收装置,其特征在于,具备
输入数字调制RF信号的RF输入端子、
通过该输入端子输入所述RF信号的RF电路、
输入该RF电路的输出信号的I/Q检波电路、
生成RF无调制波并输入至所述I/Q检波电路的检波用振荡电路,以及
输出所述I/Q检波电路的检波输出信号的I/Q输出端子,
在所述RF电路与所述检波用振荡电路之间设置抑制所述RF无调制波从所述RF输入端子向外部泄漏的信号隔离手段。
2.根据权利要求1所述的高频接收装置,其特征在于,
所述信号隔离手段是所述I/Q检波电路,并且将所述I/Q检波电路放在当中,在一侧配置所述RF电路,在另一侧配置所述检波用的振荡电路,在物理上保持距离,以此防止向空间辐射的所述检波用振荡电路的振荡信号进入所述RF电路。
3.根据权利要求2所述的高频接收装置,其特征在于,靠近水平剖面大致为四边形的金属壳体的一侧面在物理上保持距离依照所述RF电路、所述I/Q检波电路、所述检波用振荡电路的顺序配置这3个电路。
4.根据权利要求3所述的高频接收装置,其特征在于,在所述筐体的另一侧面至少分别设置所述RF电路的电源供给端子和所述检波用振荡电路的电源供给端子。
5.根据权利要求1所述的高频接收装置,其特征在于,所述信号隔离手段是金属隔板,并且在所述RF电路和所述检波用振荡电路之间配置所述金属隔板,在物理上保持距离,以此防止向空间辐射的所述检波用振荡电路的振荡信号进入所述RF电路。
6.根据权利要求1所述的高频接收装置,其特征在于,作为所述信号隔离手段,是在中间层具有接地面的多层印刷电路板的一面形成所述RF电路,而在另一面形成所述检波用振荡电路。
7.根据权利要求1所述的高频接收装置,其特征在于,作为所述信号隔离手段,是将单层印刷电路板的表面区域分割为2部分,在1个区域的表面形成所述RF电路的印刷电路图案,同时在另一区域的背面形成所述检波用振荡电路的印刷电路图案,设置使所述RF电路与所述检波用振荡电路的印刷电路图案的接地面之间形成电气短路的多个贯通孔。
8.根据权利要求1所述的高频接收装置,其特征在于,作为所述信号隔离手段,是在所述检波用振荡电路与其电源供给端子之间电气连接低通滤波器。
9.一种高频接收装置,其特征在于,具备
输入数字调制RF信号的RF输入端子、
通过该输入端子输入所述RF信号的I/Q检波电路、
生成RF无调制波并输入至所述I/Q检波电路的检波用振荡电路、
用于生成决定所述检波用振荡电路输出信号频率的基准振荡信号的基准振荡信号源、
设置在所述RF输入端子与所述检波用振荡电路之间的信号隔离手段、
输入所述I/Q检波电路的输出信号的A/D变换器、
输入该A/D变换器的输出信号的复数乘法器、
输入该复数乘法器的输出信号的数据检测电路、
输出该数据检测电路的输出信号的数据输出端子、
用所述复数乘法器的输出信号、检测所述RF信号与检波用振荡电路的输出信号之频率误差的频率误差检测电路,以及
包含将所述检波用振荡电路与所述基准振荡信号源两输出信号的相位加以比较、并对所述检波用振荡电路的输出信号频率进行控制以补偿所述频率误差的锁相环的PLL频率合成器,
用所述频率误差检测电路的输出信号值控制所述基准振荡信号的频率。
10.根据权利要求9所述的高频接收装置,其特征在于,所述基准振荡信号源是根据由所述复数乘法器的输出信号再生的时钟信号与所述频率误差检测电路的输出信号生成所述基准振荡信号的脉冲计数器。
11.根据权利要求9所述的高频接收装置,其特征在于,在所述频率误差超过所述数字调制方式决定的、所述频率误差检测电路能够检测的范围,而且所述锁相环的同步尚未确立的情况下,利用依次变更所述频率误差检测电路的输出信号值的方法变更所述检波用振荡电路的输出信号频率,使所述锁相环确立同步。
12.根据权利要求11所述的高频接收装置,其特征在于,对于每一个利用所述I/Q检波电路与所述检波用振荡电路选台得到的所述RF信号的频率,将所述频率误差检测电路的输出信号值变更后输出。
13.根据权利要求11所述的高频接收装置,其特征在于,在所述频率误差超过与所述基准振荡信号频率可以改变的范围对应的所述检波用振荡电路的输出信号频率可以改变的范围的情况下,变更所述PLL频率合成器的计数器值
14.根据权利要求9所述的高频接收装置,其特征在于,所述频率误差修正电路具备读取所述基准振荡信号的频率、并对所述基准振荡信号的频率进行修正的功能。
15.根据权利要求14所述的高频接收装置,其特征在于,使用所述频率误差修正电路的输出信号,变更所述频率误差检测电路的输出信号值。
16.根据权利要求14所述的高频接收装置,其特征在于,使用所述频率误差修正电路的输出信号,变更所述PLL频率合成器的计数器值。
CNB991012658A 1998-01-23 1999-01-22 高频接收装置 Expired - Fee Related CN1167236C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP011094/98 1998-01-23
JP1109498 1998-01-23
JP011094/1998 1998-01-23

Publications (2)

Publication Number Publication Date
CN1228001A true CN1228001A (zh) 1999-09-08
CN1167236C CN1167236C (zh) 2004-09-15

Family

ID=11768419

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991012658A Expired - Fee Related CN1167236C (zh) 1998-01-23 1999-01-22 高频接收装置

Country Status (4)

Country Link
US (1) US6668025B1 (zh)
EP (1) EP0932252B1 (zh)
CN (1) CN1167236C (zh)
DE (1) DE69930681T2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385832C (zh) * 2001-12-21 2008-04-30 汤姆森特许公司 多射频信号转换装置和用于确定射频信号输入结构的方法
CN102474497A (zh) * 2009-07-30 2012-05-23 松下电器产业株式会社 符号率检测器和接收装置
CN103001630A (zh) * 2011-09-08 2013-03-27 阿尔卑斯电气株式会社 相位同步电路以及电视信号接收电路
CN112467376A (zh) * 2018-06-11 2021-03-09 深圳迈睿智能科技有限公司 具有抗干扰设置的天线及其制造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747409B2 (ja) 2000-11-09 2011-08-17 ソニー株式会社 受信装置
JP2002325028A (ja) * 2001-04-26 2002-11-08 General Res Of Electronics Inc 周波数走査形受信機
US20030060160A1 (en) * 2001-09-21 2003-03-27 Xiaojuen Yuan Subharmonic carrier-canceling baseband/K upconverter system
JP3092726U (ja) 2002-09-11 2003-03-28 アルプス電気株式会社 テレビジョンチューナ
US6982670B2 (en) * 2003-06-04 2006-01-03 Farrokh Mohamadi Phase management for beam-forming applications
US7787829B1 (en) * 2003-12-23 2010-08-31 Cypress Semiconductor Corporation Method and apparatus for tuning a radio receiver with a radio transmitter
US7376408B2 (en) * 2004-08-10 2008-05-20 Sony Ericsson Mobile Communications Ab Reduction of near field electro-magnetic scattering using high impedance metallization terminations
US7746922B2 (en) * 2005-12-07 2010-06-29 Cypress Semiconductor Corporation Apparatus and method for frequency calibration between two radios
US7899137B2 (en) * 2006-10-12 2011-03-01 Mediatek Inc. Mobile communication system with integrated GPS receiver
US8749038B2 (en) * 2008-01-25 2014-06-10 Azurewave Technologies, Inc. Substrate module having an embedded phase-locked loop, integerated system using the same, and fabricating method thereof
CN103326190B (zh) * 2013-06-03 2016-03-02 华为终端有限公司 射频同轴连接器的屏蔽结构及具有该屏蔽结构的机顶盒
US9510289B1 (en) * 2015-11-05 2016-11-29 Silicon Laboratories, Inc. In system calibration of wake up timer
EP3672070A1 (en) * 2018-12-19 2020-06-24 Nxp B.V. Communications device and method for operating a communications device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2192104A (en) * 1986-06-27 1987-12-31 Philips Electronic Associated Superheterodyne radio receiver
CH671856A5 (zh) * 1986-09-05 1989-09-29 Ascom Radiocom Ag
JP2559005B2 (ja) * 1993-01-07 1996-11-27 松下電器産業株式会社 ダブルスーパーチューナ
US5428837A (en) * 1993-01-13 1995-06-27 Anadigics, Inc. Method and apparatus for reducing local oscillator leakage in integrated circuit receivers
US5406587A (en) * 1993-02-08 1995-04-11 Zenith Electronics Corporation Error tracking loop
JP3153711B2 (ja) * 1994-07-27 2001-04-09 シャープ株式会社 アップダウンチューナ
KR0157531B1 (ko) * 1995-07-14 1998-11-16 김광호 텔레비젼신호 수신기에서 디지탈 반송파 복구 장치 및 방법
US5901184A (en) * 1997-06-18 1999-05-04 Lsi Logic Corporation Extended range voltage controlled oscillator for frequency synthesis in a satellite receiver
US6445907B1 (en) * 1998-04-16 2002-09-03 Hughes Electronics Corporation Method and system for remote diagnostics of a satellite receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385832C (zh) * 2001-12-21 2008-04-30 汤姆森特许公司 多射频信号转换装置和用于确定射频信号输入结构的方法
CN102474497A (zh) * 2009-07-30 2012-05-23 松下电器产业株式会社 符号率检测器和接收装置
CN103001630A (zh) * 2011-09-08 2013-03-27 阿尔卑斯电气株式会社 相位同步电路以及电视信号接收电路
CN112467376A (zh) * 2018-06-11 2021-03-09 深圳迈睿智能科技有限公司 具有抗干扰设置的天线及其制造方法
CN112467376B (zh) * 2018-06-11 2024-02-27 深圳迈睿智能科技有限公司 具有抗干扰设置的天线及其制造方法

Also Published As

Publication number Publication date
DE69930681T2 (de) 2006-08-31
DE69930681D1 (de) 2006-05-18
EP0932252A3 (en) 1999-12-08
CN1167236C (zh) 2004-09-15
EP0932252A2 (en) 1999-07-28
US6668025B1 (en) 2003-12-23
EP0932252B1 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
CN1167236C (zh) 高频接收装置
KR100230713B1 (ko) 디지털 위성 방송 수신기
US8060049B2 (en) Integrated low-if terrestrial audio broadcast receiver and associated method
US5325401A (en) L-band tuner with quadrature downconverter for PSK data applications
US7272374B2 (en) Dynamic selection of local oscillator signal injection for image rejection in integrated receivers
US7453527B2 (en) Highly integrated television tuner on a single microcircuit
CN1106115C (zh) 在电视信号接收机中复原数字载波的装置及方法
US7177382B2 (en) Fully integrated broadband tuner
US7831198B2 (en) Broadcast receiving apparatus
JP4083116B2 (ja) 低漏洩局部発振器システム
JPH09294088A (ja) チューナ回路
WO2001024358A1 (en) System and method for a single conversion tuner
KR20030019565A (ko) 집적된 튜너 회로
US7521974B2 (en) Translational phase locked loop using a quantized interpolated edge timed synthesizer
US20110075050A1 (en) Broadcast receiver system
KR19980018119A (ko) 디지탈 방송 수신기
KR100560192B1 (ko) 디지털방송용수신기
CN101320990A (zh) 多通道接收器及其减少干扰的方法
US20110075049A1 (en) Broadcast receiver system
CN1153359C (zh) 特别用于无线电数据处理系统的调频接收机
JP3726524B2 (ja) 高周波受信装置
KR20010091693A (ko) 국부발진기의 누설을 최소화하기 위한 직접변환 수신기 및그에 의한 신호 처리방법
JP2000286728A (ja) ダイレクトコンバージョン方式のチューナーユニット

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040915

Termination date: 20100222