CN1215673C - 光网络 - Google Patents

光网络 Download PDF

Info

Publication number
CN1215673C
CN1215673C CNB991101251A CN99110125A CN1215673C CN 1215673 C CN1215673 C CN 1215673C CN B991101251 A CNB991101251 A CN B991101251A CN 99110125 A CN99110125 A CN 99110125A CN 1215673 C CN1215673 C CN 1215673C
Authority
CN
China
Prior art keywords
light path
transmitting apparatus
optical
fiber network
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB991101251A
Other languages
English (en)
Other versions
CN1241075A (zh
Inventor
池田博树
金武达郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN1241075A publication Critical patent/CN1241075A/zh
Application granted granted Critical
Publication of CN1215673C publication Critical patent/CN1215673C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0206Express channels arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0057Operations, administration and maintenance [OAM]
    • H04J2203/006Fault tolerance and recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供一种光网络,并提高光学传输线路(例如光纤)的使用效率。该波分多路复用传输光网络至少包括多个发送设备和连接这些发送设备的多个光路,且其中预定发送光的波长被分配给光路,且具有开销信息的一种发送帧至少被用于进行数字发送。所述多个光路包括以直链形式连接所述多个发送设备的光路。由于不受光纤安装形式的影响,所以光纤可根据通信量的容量而灵活地设置。还可以使在故障时保护光路的选择具有灵活性并进行高速切换。

Description

光网络
技术领域
本发明涉及一种光网络,具体地说,本发明涉及一种采用波分多路复用传输系统或时分多路复用传输系统的光网络。
背景技术
为了提高电路服务的可靠性,最近提出了一种网络,它能够修复在光网络中发生的信号故障。这种电路故障包括传输线路的意外切断、信号降级、中继器的问题等等。这种光网络通常用于自动检测电路故障并自动进行传输线路之间的切换。这种光网络被称为“生存网络”。
此外提供了一种生存网络,它能够进行与同步网络相应的SDH系统或SONET系统的切换,以提高这种传输网络的修复能力。SDH系统是同步数字结构系统的缩写。进一步地,SONET是同步光网络的缩写。
作为其使用的一个例子,已知的有(1)一种1:N型NPS(嵌套保护切换)系统,它在多个工作线路和多个保护线路之间进行切换,(2)一种4纤型BLSR(双向线路切换环)系统,它通过工作线路和保护线路技术而连接成环形。
前一个例子在例如Fiber Network Service Survivability,1992Artech House,INC,and T1X1.5/90-132中得到描述。后一个例子在Bellcore SONET BLSR Genertic Criteria CR-1230-CORE,1993中得到描述。
图2是用于描述1:N型NPS系统的图。在图2中标号101至104分别表示传输设备。工作线路105至108分别表示双向线路。在此描述的双向线路是由两根光纤构成的。在图2中,双向线路由表示双向的、与各标号相应的双向实线箭头表示。
图2显示的例子具有以下的连接。工作线路105与传输设备101中的终端设备112和位于传输设备102中的加入/分出多路复用器(分支插入设备)相连。该线路通过采用在发送端的光发送器并利用在接收端的光接收器与终端设备或加入/分出多路复用器相连。进一步地,工作线路105通过位于传输设备102中的加入/分出多路复用器与工作线路106相连。工作线路107与传输设备102和位于发送设备104中的终端设备相连。工作线路107由发送设备103中继。标号113表示一个中继器。即,发送设备103没有把双向线路107切换到保护线路的能力。另一方面,保护线路109至111在图2中分别用虚线表示。保护线路109至111,通过使用相应的发送设备中的加入/分出多路复用器,把所有的发送设备101至104彼此相连。各个发送设备具有把工作线路分别切换到保护线路的能力。
以下描述借助NPS系统进行切换的一个例子。将描述当在双向线路107中发生故障时如何进行切换。由于双向线路107是以发送设备102和发送设备104为终端的,这些发送设备分别具有进行线路切换的能力。因此,当在双向线路107中发生故障时,信号发送利用保护线路110和保护线路111进行。图2中显示的1:N型NPS系统根据通信量(主信号)的容量来设置工作线路,并能够在各个发送设备内选择相应的加入/分出多路复用器或中继器。
图3描述了4纤型BLSR系统。在图3中,标号201至204分别表示发送设备。工作线路221至224和保护线路211至214通过发送设备内的加入/分出多路复用器分别彼此连接成环形。各个发送设备具有把工作线路分别切换到保护线路的能力。
下面描述4纤型BLSR系统的基本操作,它与电路故障的线路切换有关。当在图3的工作线路221中发生故障时,发送设备201和202利用保护线路211进行双向线路切换,从而恢复信号。当在工作线路221和保护线路211中都发生故障时,即诸如电缆切断的故障时,采用了作为环型网络的特征的一种不同路由。即,4纤型BLSR系统借助发送设备201和202进行线路切换,从而能够用保护线路212至214来恢复信号。借助这种方式的环型来恢复信号的方法的特征,在于可以选择两个顺时针和逆时针的路由。本4纤型BLSR系统由GR-1230-CORE提供。
传统的生存网络进行线路切换以在考虑诸如电缆切断、光纤切断和光学发送-接收单元的断裂的情况下修复故障。
然而,上述1:N NPS系统需要与通信量相适应的光纤。然而,当光纤的数目不够时,系统需要额外地增大发送设备之间的光纤因而涉及大的安装费用。
上述BLSR系统具有以下的缺点。由于BLSR是1∶1的系统,必须安装与工作线路的发送容量相应的保护线路。因此,光学通信范围所需的最大通信量导致了环的总容量。当例如只有发送设备201和202之间的通信量取图3中的网络中的最大容量值时,整个环必须被置于该最大容量值和工作线路221的最大容量值。即,由于通信量集中于环上的给定部分上,产生了使用效率和经济性的问题。
由于生存网络需要与发送容量相应的光纤以满足以上所述的额外需求,光纤增大的费用和各个光纤的使用效率都成了问题。
发明内容
本申请的发明就是要解决上述问题。
本发明的第一个目的,是提供一种能够在发生故障时在不依赖于光学传输线路(例如光纤)的安装形式的情况下灵活地选择保护光路。
本发明的第二个目的,是提高光学传输线路(例如光网络中采用的光纤)的使用效率。
下面简要描述本发明的基本形式的概述。在本申请的说明书中公布的各个形式的概述将得到描述。
根据本发明的一种典型的光网络是具有至少多个发送设备的光网络,并具有连接这多个发送设备的多个光路,其中从所述多个光路中选出的至少一个光路能够被用作保护光路,且其中具有预定发送光的波长被分配给光路,以进行波分多路复用数字传输,且多个光路包括以直链形式连接多个发送设备的光路。
以下以举例的方式描述根据本发明的光网络的更具体的配置。本发明的这些各种的形式能够提供所谓的自修复光网络。
提供了具有至少多个发送设备的波分多路复用传输光网络,以及连接这些多个发送设备的多个光路,且其中多个光路被分配有预定发送光的波长,且一个发送帧具有开销信息或者一个开销,被用来进行数字发送,且多个光路包括以直链形式连接多个发送设备的光路。
即波分多路复用传输光网络的基本点,在于以直链形式连接的光路被适当构成,从而能够作为保护光路。因此,当在所谓的网状工作光路中发生故障时,它们能够借助保护光路而得到修复。根据本发明的光网络能够提供所谓的自修复光网络。
本发明能够用于波分多路复用传输系统和时分复用传输系统。
根据波分或时分选择而分配的光的光路被称为“光路”。即,光波信号的逻辑连接路径对应于该“光路”。另一方面,构成光路的物理连接通路被称为“光学传输线路”。具体地说,例如,光纤是一种典型的例子。因此,在一条光学传输线路中可存在有多个光路。即,当各个光路取决于波长的分配时,这种通信系统通常被称为“波分多路复用传输”。当各个光路根据时间分割而分配时,这种通信系统通常被称为“时分复用”。
另外,发送帧的开销表示一个区,在其中传送网络的操作和维护信息。开销中的一个自动切换字节被用来表示用于控制发送终端之间的系统切换和有关发送系统中的发送设备和中继器中的故障的报警状态的信号的传送、以及报警状态。
自动切换字节中的有关故障的切换控制信息、各个光路的故障信息、波长地址信息等,是选择光路所需的。虽然发送设备能够通过至少采用具有开销的发送帧来进行数字发送,它们具有存储装置一它构成了波长地址映象以在其中存储各个光路的光学多路复用信息,例如波长地址信息,以及各个光路的故障信息。在时分复用的情况下,各个光学多路复用信息导致了时分地址信息。
当在工作光路中发生故障时,有关故障的切换控制信息和波长地址信息,根据有关发送帧的开销中的自动切换字节的信息,而在发送设备之间传送或通信,因而相应的光路根据该切换信息、波长地址信息和故障信息,而被切换到另一个。另外,这些具体的例子将在本发明的实施例的部分中得到描述。
在光网络中,光路能够按照它们的逻辑连接而被分成工作光路和保护光路。然而,在本光网络中,各个光路本身可按照来自各个发送设备的指令,而同时扮演工作和保护的角色。工作光路是用于发送所希望的信号的光路,而保护光路可以被认为是当在各个光路中发生某种故障时使用的光路。
本发明对于目前已知的作为光网络的基本配置的典型的SONET或SDH网络是非常有用的。在SONET或SDH网络中,用于自动切换的字节被称为“APS(自动保护切换)字节”并通常包括K1和K2两个区。APS字节的细节将在后面描述。
以下给出本发明的各种形式的概述,其详细描述将在后面给出。
根据本发明的光网络的基本思想,是当在工作光路中发生故障时,包括波长地址信息的切换信息在发送设备之间得到传送,且通过采用一个保护光路而使信号得到恢复。然而,以下的形式被认为是便利其形式并进行高速方便的切换的光网络。
(1)光网络至少具有把发送设备连接成环形的保护光路。
(2)光网络至少具有把发送设备连接成直链形式的保护光路。
(3)光网络的每个光学传输线路至少包括两条或多条光路。这种形式改善了光纤的使用效率并在不依赖诸如光纤等的物理形式的情况下增强了灵活性。
(4)作为本发明的一种光网络形式,本申请的光网络包括至少两个或多个由工作光路组成的环形网络。
(5)根据本发明的波分多路复用光网络的基本操作如下:根据本发明的波分多路复用光网络是具有多个发送设备的波分多路复用生存网络,且连接多个发送设备并被分配了光波长且其中发送帧具有开销的光路被用来进行数字发送。各个发送设备具有存储装置,该存储装置构成了其中存储各个光路的波长地址信息和各个光路的故障信息的波长地址映象。当在工作光路中发生故障时,有关故障的切换控制信息和波长地址信息根据一个位于发送帧的开销中的自动保护切换字节,而在发送设备之间传送,从而使故障的工作光路根据切换信息、波长地址信息和故障信息而被切换到适当的光路。
当作为光路的工作光路和保护通路把发送设备彼此逻辑连接时,波分多路复用生存网络能够被适当地构成,从而使工作光路能够根据切换信息、波长地址信息和故障信息而分别被切换到保护光路。
(6)提供了在(1)至(5)中描述的波分多路复用生存网络,其中上述的波分多路复用生存网络的每条光学传输线路包括至少两条或多条光路。
(7)提供了如上方的(1)至(6)中描述的波分多路复用生存网络,其中切换信息包括至少工作光路的波长地址和发送设备的切换状态。
(8)提供了如上述(1)至(7)中描述的波分多路复用生存网络,其中切换信息包括至少用于最重要的工作光路的波长地址和发送设备的切换状态。
(9)提供了如上述(1)至(7)中描述的波分多路复用生存网络,其中切换信息至少包括最重要的工作光路的数目、发送切换信息的发送设备的数目、以及发送设备的切换状态。
(10)提供了如上述(1)至(7)中描述的波分多路复用生存网络,其中上述的波分多路复用生存网络至少包括由工作光路构成的两个或多个环形网络。
(11)提供了一种光网络,包括:多个发送设备;以及,把所述多个发送设备彼此相连的多个光路;其中从所述多个光路中选出的至少一个光路能够被用作工作光路或保护光路,且预定发送光的波长被分配给所述光路,以进行波分多路复用数字发送,且所述多个光路具有以直链形式连接所述多个发送设备的光路。
(12)进一步地,提供了根据第(11)项的光网络,进一步包括把所述发送设备连接成环形的光路,且其中所述把所述发送设备连接成环形的光路能够被用作保护光路。
(13)进一步地,提供了根据第(11)项的光网络,进一步包括以直链形式连接所述发送设备的光路,且其中所述以直链形式连接所述发送设备的光路能够被用作保护光路。
(14)进一步地,提供了根据第(12)项的光网络,其中多个光路把所述发送设备连接成网状,且由所述网状发送设备构成的多个光路被用作工作线路。
(15)进一步地提供了如第(13)项的光网络,其中多个光路把多个所述发送设备连接成网状,且由所述网状发送设备构成的多个光路被用作工作线路。
(16)提供了一种时分复用传输光网络,至少包括:多个发送设备;以及,把所述多个发送设备彼此相连的多个光路,其中从所述多个光路中选出的至少一个光路能够被用作工作光路或保护光路且所述多个光路被分配了预定的时分复用信号,且一个具有开销信息的发送帧被用于进行数字发送,且所述多个光路包括把所述多个发送设备连接成直链形式的光路。
(17)进一步地,提供了根据第(16)项的光网络,进一步包括把所述多个发送设备连接成环形的光路,且其中所述把所述多个发送设备连接成环形的光路能够被用作保护光路。
(18)进一步地,提供了根据第(16)项的光网络,进一步包括以直链形式连接所述多个发送设备的光路,且其中所述以直链形式连接所述多个发送设备的光路能够被用作保护光路。
(19)进一步地,提供了根据第(17)项的光网络,其中多个光路把所述发送设备连接成网状,且由所述网状发送设备构成的多个光路被作为工作线路。
(20)进一步地,提供了根据第(18)项的光网络,其中多个光路把多个所述发送设备连接成网状,且由所述网状发送设备构成的多个光路被作为工作线路。
把多个发送设备连接成网状的光路被作为工作线路这一特征,在本发明的很多其他模式下是更为有用的。
(根据本发明的光网络的切换判定步骤的典型例子)
以下是用于实施本发明的光网络中的切换信息传送的一种网络:
提供了至少具有若干个发送设备、把这些发送设备彼此相连并被分配了光波长的工作光路、以及把这些发送设备彼此相连并被分配了光波长的保护光路的波分多路复用生存网络,且其中各个发送设备具有存储装置,该存储装置构成了在其中存储各个光路的波长地址和故障信息的波长地址映象,并利用具有开销的发送帧来进行数字发送,它包括以举例的方式显示的以下切换判定步骤。
(1)步骤1:用于判定开销的自动保护切换字节是否显示了故障模式。
(2)步骤2:用于判定开销的自动保护切换字节是否指向接收它的发送设备。
(3)步骤3:用于当自动保护切换字节是指向接收它的发送设备时,启动切换操作。
(4)步骤4:用于当自动保护切换字节不是指向接收它的发送设备时,传送自动保护切换字节。
附图说明
通过以下结合附图的描述,将对本发明、本发明的这些和其他的目的和特征有更好的理解。在附图中:
图1显示了本发明的示意配置;
图2显示了一个1:N型NPS系统;
图3显示了4纤型BLSR;
图4显示了APS字节的格式的一个例子;
图5显示了本发明的波分多路复用生存网络的一个例子;
图6显示了与本发明有关的光路加入/分出多路复用器的一个例子;
图7显示了本发明的波分多路复用生存网络的另一个例子;
图8显示了本发明的波分多路复用生存网络的又一个例子;
图9显示了本发明的波分多路复用生存网络的再一个例子;
图10显示了使用本发明中采用的波长地址映象的一个例子;
图11显示了如何使用与本发明有关的波长地址;
图12通过流程图描述了本发明中采用的APS字节的处理过程;
图13显示了本发明中采用的APS字节的一个定时图例子。
具体实施方式
(发送设备的概述)
现在已经集中描述了光网络的逻辑配置。以下描述逻辑配置的具体物理配置的例子的概述。这种设备的更具体更实际的配置将在本发明的实施例的部分中给出。
根据本发明的光网络的一个例子在图5中显示。不用说,本发明并不限于这种例子。该波分多路复用生存网络包括发送设备11至14、光纤15至18、光路加入/分出多路复用器21至24、保护光路31至34、以及工作光路41、42、44-1和44-2。在图5中,光路呈现为双向光路。然而,由于在本例子中采用了同一光纤,双向光路采用了不同的光波长。
各个发送设备被适当构成,从而包含了以下的元件。图1中的标号9显示了这个例子。它至少具有(1)用于光路的发送-接收单元5和6,(2)用于光学发送的控制装置3,以及(3)通路切换装置或单元4。进一步地,控制装置3具有用作存储装置的波长地址映象2,存储装置用于存储有关光路的波长地址信息和有关光路的故障信息,并具有开销处理装置或单元1。波分多路复用生存网络借助保护光路31至34,通过光路加入/分出功能,而被连接成环形。工作光路41以发送设备11和12为终端。
各个发送设备11至14都具有光学发送-接收单元和光路的加入/分出功能。各个发送设备都具有根据功能进行光路切换的能力。这种切换是由通路切换单元4进行的。
光路加入/分出多路复用器是一种光学设备,它主要包括波分多路复用(WDM)、光学互连器、光学中继器、滤光器、光学开关或光学循环器等。这种设备对应于能够选择任意波长并提供加入(加入:插入)、分出(分出:分支)和通过的设备。
本发明的基本思想,是提供一种波分多路复用生存网络,其中当在工作光路中发生故障时,包括波长地址的切换控制信息能够在各个发送设备之间相互发送和传送,且光路切换能够根据切换控制信息来进行,从而使通过工作光路发送的信号通过备用或保护光路发送。
另外,用于在波分多路复用中发送大量光的通路,形成了光纤中的出口,如将从以下的具体例子看到的。
本申请的说明书中的术语保护光路是在发生故障时切换的光路,如上所述。即,保护光路指的是给予其备用或保护角色的光路,而不是指专门作为保护光路而固定提供的光路。因此,当在工作光路中没有故障时,保护光路也可以被用来发送信号。工作光路和保护光路从信息发送的角度看是相同的。换言之,当优先级被分配给所有的工作光路时,得到较低优先级的工作光路可被称为备用或保护光路。
即,当在给予较高优先级的工作光路中发生故障时,用于被给予较高优先级的光路的信号利用被给予较低优先级的工作光路而得到释放或修复。此时,被给予较低优先级的工作光路的信号当然不能被发送。
图1显示了本发明的示意配置。该示意配置是用于描述波分多路复用生存网络的原理的一个例子。本发明涉及的波分多路复用生存网络包括以下的组成部分。
图1显示的例子显示出一个光网络,它包括七个发送设备9。该图只显示了光路的逻辑连接。各个发送设备9通过光路7和光路8而彼此相连。在该例子中,用实线表示的光路8被用作工作光路,而用虚线表示的光路7被用作保护光路。
其典型例子在图1中显示的各个发送设备9被适当地构成,从而包括以下的组成部分。即,发送设备9至少具有(1)用于光路的发送-接收单元5和6,(2)光路切换控制装置3,以及(3)通路切换装置或单元4。进一步地,控制装置3具有用作存储装置的波长地址映象2-该存储装置用于存储有关光路的波长地址信息和有关其中的光路的故障信息—和开销处理装置或单元1。
切换开销处理装置或单元1通常包括一个CPU(中央处理机)。开销处理单元1处理开销的各种请求。即,开销处理装置1在参照各个开销中的切换信息、检测到的故障信息、存储波长地址信息等的波长地址映象中的信息时进行开销分析,以进行切换判定等。
在图1显示的例子中,发送-接收单元6对应于用于工作光路的发送-接收单元,且发送-接收单元5对应于用于保护光路的发送-接收单元。工作光路8分别通过工作光路发送-接收单元6而发送和接收。保护光路7分别通过保护光路发送-接收单元5而进行发送和接收。进一步地,光路发送-接收单元分别与通路切换装置或单元4电连接,以进行主信号之间的切换。另外,各个发送-接收单元的具体配置可以是通常所能够得到的。
光路7和8的信号具有主信号和开销。信号的配置将在后面详细描述。
现在描述各个光路中发生发送故障时各个发送设备的操作。
光路发送-接收单元5和6监测它们相应的光路7和8。当检测到发送故障时,它们把有关发送故障的信息送到位于控制装置3中的开销处理单元1。进一步地,光路发送-接收单元5和6接收位于从其他发送设备发送的信号帧中的开销信息,并将其送到开销处理单元1。开销处理单元1在参照位于各个开销中的切换信息、检测到的故障信息和存储波长地址信息的波长地址映象中的信息的同时分析开销信息,以进行切换判定,从而执行开销的处理。即,开销处理单元1根据有关位于接收的发送帧的开销中的一个APS字节的切换信息和位于与处理单元相同的节点中的光路发送-接收单元5和6通知的故障信息,进行切换判定。进一步地,开销处理单元1确定主信号是否应该被通路切换单元4切换到一个保护光路。同时,它通过访问存储网络的连接状态和故障的当前状态等的波长地址映象,进行判定,从而确定主信号是否应该被切换到保护光路。控制装置1根据通路处理单元1的判定结果向通路切换单元4发出一个切换指令。进一步地,开销处理单元1根据通路处理单元1的判定结果确定有关所要发送的APS字节的信息。波长地址映象将在后面描述。
虽然SONET或SDH网络中采用的自动保护切换字节在以上被称为APS字节,该字节通常由两个区组成:K1和K2。图4中显示APS字节的各种分配的一个具体例子。K1和K2字节各具有8位。(1)给予故障的优先级和(2)分配给工作光路的光路数目被分配给位于APS字节中的K1字节。分配给K2字节的是(1)发送节点号,(2)触发的导通和关断,(3)切换状态即一个报警表示信号(AIS)、一个远端接收故障(FERF)、桥接和切换、桥接、以及正常状态。桥接表示在发送消息的节点中的桥接的完成,且桥接和切换表示在发送消息的节点中的桥接和切换的完成。
进一步地,波长地址映象中存储(1)光路数,(2)连接节点,(3)第一优先级保护光路,以及(4)第二优先级保护光路。另外,根据光路相连的发送设备是为了(2)连接节点而指定的。第一和第二保护光路显示了给予保护光路的切换的优先级。波长地址映象的一个例子在图10中给出。现在考虑该例子中显示的光路数1。如果连接节点是AB,则它是要连接节点A和节点B。当在这种发送通路或线路中发生给定的故障时,一个优先级首先被附在作为备用或保护光路的光路AB上,且一个优先级被首先附在作为备用或保护光路的光路ADCB上。
因此开销处理单元1把处理的开销送到相应的光路发送-接收单元。开销处理单元1,根据其处理结果,动态更新波长地址映象中的数据。进一步地,开销处理单元1,根据这些结果,通过使用通路切换单元4,把用于光路的主信号切换到指定的保护光路。
现在描述整个波分多路复用生存网络中采用的光路之间进行的切换方法的各种具体例子。
实施例1
图5显示了本发明的波分多路复用生存网络的一个例子。这是其中各个发送设备通过保护光路连接成环形的一个例子。
另外,根据实施例1的光网络在原理上不依赖于节点的数目。然而,本实施例将利用一个4节点波分多路复用生存网络来描述,以便于说明。
该波分多路复用生存网络包括发送设备11至14、光纤15至18、光学分支-插入设备(即通常的光路加入/分出多路复用器)21至24、保护光路31至34、以及工作光路41、42、44-1、和44-2。
发送设备11至14每一个都具有一个光路发送-接收单元和一个光路分支和插入(加入/分出)功能。各个发送设备都能够根据这种功能进行光路切换。这种切换是由通路切换单元4进行的。在图4中,光路分别表示双向光路。然而,由于在本例子中采用了同一光纤,双向光路采用了不同的光波长。
该波分多路复用生存网络由保护光路31至34通过光路加入/分出功能而被连接成环形。工作光路41以发送设备11和12为端点。
光路加入/分出设备或多路复用器每一个都主要地包括一个波分多路复用器(WDM)、一个光学互连器、一个光学中继器、一个滤光器、一个光学开关或光学循环器等等。这对应于能够提供加入(插入:加入)和分出(分支:分出)或通过的设备。例如,从发送设备11通过工作光路41发送到发送设备12的信号首先被插入(加入到)光路加入/分出多路复用器21中的一个光路41。进一步地,该信号被允许在光路加入/分出多路复用器22通过在光纤15上的一个光路14而分支(分出),随后被连接到发送设备12。
现在描述图5显示的工作光路44-2。工作光路44-2在发送设备11和13之间传送信号。在此情况下,工作光路44-2与终端装置或发送设备11和13中的设备相连,且在各个发送设备中提供光路切换容量或能力。光纤17和18通过光路加入/分出多路复用器24而彼此相连。此时,工作光路44-2通过光路加入/分出多路复用器24。因此,工作光路44-2和发送设备14不相连。
现在描述增大光路的方法,在实施例1中,光路的数目能够通过简单地提供用于终止其中通信量已经增大的发送设备中的工作光路的装置或设备,而得到增大。
现在考虑其中发送设备11与发送设备14之间的通信量增大的情况。此时,在发送设备11和14中提供光路终止装置或设备,使标号44-1表示的工作光路增大。即,不需要额外地提供物理通路或线路。另外,光路加入/分出多路复用器21和24当然需要允许各个光路分支和插入它的功能(加入和分出它)。
因此,工作光路的增加使得可以在不用额外增加光纤的情况下增大发送容量。因此,本实施例能够减小增加入费用且在成本性能方面是优异的。当通过单个的光纤发送多个光路时,已知的波分多路复用技术(或频分多路复用技术)得到采用。
光路之间的切换方法
现在描述光路切换方法。这种是在工作光路41的信号由于例如光学发送-接收单元的断裂等而导致的故障而发生降级(信号降级)或故障(信号故障)时采用的处理方法。
在此情况下,工作光路41的信号利用保护光路而得到发送。作为此时采用的保护光路的路由,有以下两种选择。第一优先级路由是用于保护光路31的路由,且一个第二优先级路由是对应于保护光路32-33-34的路由。前者通常被称为“跨度切换”且后者通常被称为“环切换”。需要预先判定这两种切换选择哪个有利。用于两个切换路由的选择的优先级被存储在上述波长地址映象中。
上述的开销处理是通过访问当前的波长地址映象而进行的,因而光路的选择得到进行。环切换得到设定,从而使在尝试了跨度切换之后进行其尝试。在上述例子中至保护光路31的切换将首先进行。如果保护光路31不运行或由于光纤15的切断等而无法获得,则用保护光路32至34进行环切换。
当保护光路以这种方式连接成环形时,沿着顺时针或逆时针方向延伸的保护或备用路由能够得到选择,因而恢复的可获得性和效率能够得到改善。
图6显示了与本发明有关的光路加入/分出多路复用器的一个具体例子。图6显示了本发明在图5的光路加入/分出多路复用器24的具体应用。本光路加入/分出多路复用器包括波分多路复用器24-1和24-2、中继器24-3和一个光学互连器24-4。
工作光路44-2和保护光路33被送到光纤17。光路43(λ1)和33分别通过波分多路复用器24-2而与中继器24-3和光学互连器24-4相连。工作光路43(λ2)和43(λ1)和保护光路34被发送到光纤18。光路43(λ2)、43(λ1)和34通过波分多路复用器24-1。随后,光路43(λ1)与中继器24-3相连,而光路43(λ2)和34与光学互连器24-4相连。光路43(λ2)、33和34通过光学互连器而与发送设备14相连。换言之,光路43(λ1)通过光路加入/分出多路复用器24且光路33、34和43(λ2)分支出去并在光路加入/分出多路复用器24处被插入(加入和分出)。
实施例2
图7显示了根据本发明的波分多路复用生存网络的实施例2。本实施例显示了一个例子,其中各个发送设备借助保护光路而以直链形式彼此相连。另外,根据实施例2的光网络在原理上不依赖于节点的数目。
本波分多路复用生存网络包括发送设备11至14、光纤15至18、光路加入/分出多路复用器21至24、保护光路31至33、以及工作光路41-1、41-2、42和43。光路加入-分出多路复用器的具体配置与在实施例1中描述的类似。各个发送设备具有一个光路发送-接收单元和光路分支和插入(加入/分出)功能。结果,各个发送设备都能够进行光路切换。
波分多路复用生存网络经历在各个发送设备内各个发送设备的加入-分出功能,并通过保护光路31至33连接成直链形式。当发生故障时,保护光路31和32被用作工作光路41-2的替换。即,工作光路41-2共用工作光路41-1和42和保护光路31和32的使用。因此,多个工作光路之间的保护光路共享使得保护系统的费用能够得到降低。由于其他元件与实施例1中采用的类似,所以省略对它们的描述。
实施例3
图8显示了根据本发明的波分多路复用生存网络的实施例3。在实施例3中,两个光纤被用来在发送设备11和12之间进行连接。
该波分多路复用生存网络包括发送设备11至14、光纤16至20、光路加入-分出多路复用器21至24、保护光路31至34、以及工作光路41-1、41-3、42、43和44。保护光路31经过一个光纤20相连,且工作光路41-1和41-3经过一个光纤19相连。各个光路加入-分出多路复用器的配置与实施例1描述的类似。
如上所述,根据本发明的波分多路复用生存网络只取决于各个光路的连接方式,而不依赖于诸如光纤的物理介质的连接形式。换言之,由于它不依赖于各个光纤的连接形式,可以在不需要额外的安装等等的情况下采用已有的光纤。
现在考虑在光纤19中发生故障。当光纤19例如被切断时,工作光路41-1和41-3也被切断。作为它们的恢复的一个例子,考虑以下:保护光路31被用来恢复工作光路41-且保护光路32至34被用来进行环切换,从而能够恢复工作光路41-3。即,如果保护光路和工作光路通过不同的光纤进行发送,诸如光纤切断等的故障恢复的效率得到了改善。因此,根据本发明的波分多路复用生存网络能够构成一种考虑到恢复效率的网络并提供了网络构造的灵活性。
实施例4
图9显示了根据本发明的一种波分多路复用生存网络的实施例4。实施例4对应于其中各个发送设备彼此连接成环形的例子。
该波分多路复用生存网络包括发送设备11至14、光纤15至18、光路加入-分出多路复用器21至24、保护光路31至34、工作光路41-1、41-2、42-1、42-2、43-1、43-2、44-1和44-2。
在实施例4中,工作光路41-1、42-1、43-1和44-1通过发送设备11至14连接成环形。类似地,工作光路41-2、42-2、43-2和44-2也通过发送设备11至14连接成环形。因此,能够借助工作光路构成环形网络。在本实施例中,两个环形网络是借助工作光路形成的。各个工作光路通过采用同一光纤而在各个发送设备之间发送。进一步地,各个环形网络也可以设计成使工作光路通过不同的光纤而发送。
a.光路切换系统
以下利用本实施例描述用于实施光路切换的一种光路切换系统。数字发送通常是以帧为单位进行的,且各个发送帧的开销由同步数字结构(SDH)或同步光网络(SONET)等等来标准化。开销内的一个自动保护切换字节(APS字节)是用于自动切换控制的。该APS字节具有两个字节:所谓的“K1字节”和“K2字节”。
当切换是由本波分多路复用生存网络进行时,需要发送包括光路的故障状态、其波长地址信息和有关切换状态之信息的切换信息。切换信息的具体内容可至少包括“故障的重要性”、“光路号”、“发送节点号”以及“切换状态”。“故障的重要性”对应于有关各个光路的故障状态的信息。“光路号”和“发送节点号”分别对应于各个光路的波长地址信息。“切换状态”对应于有关各个发送设备的切换状态的信息。“信号类型”将得到定义,以允许更为灵活的切换。
“故障重要性”表明了用于在光路之间进行切换的优先级,它根据通信量的重要性以及根据错误率等的量度的信号恶化程度来确定。当在多个光路中发生故障时,切换优先级被用来确定重要性。“光路号”表示了用于在工作光路与保护光路之间进行鉴别的信息。“发送节点号”代表表示已经从其发送了切换信息的节点(光学发送设备)的信息。“切换状态”代表表示已经发送了切换信息的节点的切换状态。“信号类型”代表表示用于切换开始触发或用于只为切换开始的目的而进行信息传送的信号。通过保护光路发送的K1和K2字节被用于这种切换信息的传送。
b.APS字节的使用的例子
以下描述APS字节的一个使用例子。
图4显示了本发明中采用的APS字节的使用的一个例子。该图显示了其中切换信息被分配给APS字节的一个例子。例如,“故障的重要性”和“光路号”被分配给K1字节。它们分别通过4位而得到分配。“发送节点号”、“信号类型”和“切换状态”被分配给K2字节。它们分别通过4位而被分配。当它们分别以这种方式得到分配时,16种故障状态类型、与16条通路(保护光路:1和与其相应的工作光路:15)相应的光路号、与16个节点相应的节点号、两种信号类型、以及八种类型的切换状态可被分配给这些字节。
c.如何分配波长地址
图11描述了与本发明有关的波长地址分配方式。光网络的配置与图5中显示的类似。
波长地址映象包括各个光路的编号、相连节点的状态、如结合图10描述的第一优先级的保护光路和第二优先级的保护光路。光路号只依赖于各个发送设备的连接状态,而不依赖于波长和光纤的连接状态等。当工作光路采用了同一保护光路时,需要分配光路号以避免重叠。第一优先级保护光路对应于当希望恢复其中发生故障的工作光路时首先切换的光路。当第一优先级保护光路不能使用时,进行切换到第二优先级保护光路的尝试。
在构造网络时需要在处于各个发送设备中的波长地址映象中存储这些信息。例如,一个工作光路41被分配了光路号“1”、一个连接节点“AB”、一个第一优先级保护光路“AB”、以及一个第二优先级保护光路“ABCD”。由于工作光路44-2共用保护光路34,所以一个工作光路41-1被分配了一个光路号“2”。
以下描述用于利用波长地址映象的一种方法。
当在例如图11显示的状态下的光路41中发生故障时,切换信息在发送设备A和B之间传送或通信,从而确定切换路由。此时,根据波长地址映象至第一优先级保护光路31的切换首先进行。结果,如果该切换被允许,保护光路31得到采用。如果该切换不被允许,换言之,当保护光路31已经被使用时,或者在保护光路31中发生故障因而保护光路31不能使用时,进行切换到连接在发送设备A、B、C和D之间的第二优先级保护光路32、33和34的尝试。
此时,波长地址映象以如下方式得到更新。表示光路41的一个光路号“1”和连接节点“AB”的状态被改变到“信号故障”。当第一优先级保护光路31在故障恢复时得到使用时,为光路41使用第一优先级保护光路的状态被“占用”。因此,用于光路31的所有保护光路都被改变成“不可用”。在图11中,本例中的波长地址映象中的数据更新被显示为例如“在波长地址映象中的数据改变之前”和“在波长地址映象中的数据改变之后”。
d.APS字节的处理
图12是描述处理本发明中采用的APS字节的过程的流程图。
1.具有检测到的故障的发送设备判定APS字节是否表明故障信息的形式(S1)。
2.当表明该故障形式时,发送设备判定APS字节是否以其自身的发送设备为目的地(S2)。
3.当S2的答案被发现为“是”时,发送设备开始至保护光路的切换(S3)。当S2的答案为“否”时,发送设备通过保护光路把APS字节发送到与其相邻的发送设备(S4)。
4.控制装置3在访问波长地址映象的同时进行这些判定。
现在描述发送设备之间的APS信号的交换。
图13显示了本发明中采用的APS字节的定时图的一个例子。
现在以举例的方式描述图10中显示的工作光路44-2中的一个故障的例子。
首先,信号1至4表示了时刻T0时的故障的稳定状态。“#0”表示一个保护光路且“NR”表示一种正常状态。“S”表示切换触发信号之外的一个信号。“空闲”表示无切换的一种状态。这些由图13中显示的K1和K2字节的信号1、2、3、和4表示。分别与表示图13中显示的定时图中的发送信号的数字相应的符号或标记被分别给予K1和K2字节。
1.现在考虑其中发送设备A已经检测到表示在时刻T1的工作光路44-2的故障的“SF”。术语“SF”是一种故障状态,其中切换优先级高达已经作为通过位错误率(缩写为BER)测量等的故障判定结果。检测到故障的节点A把包括故障状态、波长地址信息和切换状态的切换信息发送到与其相邻的节点B和D(信号5)。此时,节点A发送了作为故障状态的一个严重故障“SF”,并根据光路号“1”、发送节点“A”、信号的类型与切换状态的组合发送表示作为波长地址信息的切换请求“r/idle”。
接收到切换信息的节点D首先判定该切换信息具有故障格式(这种判定与图12显示的流程图中的S1相应且随后的处理类似)。
2.随后通过访问由各个发送设备保持的一个波长地址映象,判定接收切换信息的一个节点(S2)。
3.由于从该判定结果发现接收切换信息的节点是C,所以它被传送到相邻的节点C(S4)。
4.进一步地,接收到切换信息的节点C判定故障模式(S1),并随后通过访问波长地址映象判定接收它的节点作为目的地节点(S3)。结果,开始至与第一优先级保护光路即保护光路33和34相应的路由ADC的切换(S3)。
5.节点C发送作为故障状态的严重故障“SF”并根据光路号“1”、发送节点“C”、信号类型与切换状态的组合(信号6)发送作为波长地址信息的、表示切换响应的“r/Br”。
6.接收到切换响应的节点A完成切换,并根据信号类型与切换状态的组合(信号7)向节点C发送表示切换完成的“r/S&B”。
7.接收到切换完成的节点C,也终止切换并向节点A发送其要点(信号8)。
由于故障信息也被发送给与切换无关的发送设备B,节点A和C根据信号类型与切换状态的组合(信号7和8)发送表示信息发送的“s/S&B”。接收到这种信号的节点B更新波长地址映象中的信息。这使得可以在例如故障有新的发展时进行高速切换判定,从而缩短切换时间间隔。
时刻T2表示工作光路44-2通过采用保护光路33和34而恢复通信量时的APS信号。
根据本发明的光网络能够提供可在发生故障时不依赖于例如光纤的光学传输线路的安装方式而灵活地选择保护光路的自修复光网络。
根据本发明的光网络,能够提高例如其中采用光纤的光学传输线路的使用效率。
即,由于根据本发明的光网络不受安装形式的影响,所以光路可根据通信量的容量而灵活地构成。结果,光纤的使用效率能够得到改善,且借助节点的中继器安装使网络能够灵活地构成。进一步地,网络的费用能够得到降低。还可以使故障时的保护光路选择具有灵活性,并进行高速切换。
已经参照说明性的实施例对本发明进行了描述,这种描述不是限制性的。通过参考本描述,对所示的实施例的各种修正,以及本发明的其他实施例,对于本领域的技术人员来说都是显而易见的。因而所附的权利要求书覆盖了处于本发明的实际范围之内的所有这些修正或实施例。

Claims (27)

1.一种光网络,包括:
多个发送设备;以及
把所述多个发送设备彼此相连的多个光路;
其中从所述多个光路中选出的至少一个光路能够被用作工作光路或保护光路,
且具有预定发送光的波长被分配给所述光路以进行波分多路复用数字发送,且
所述多个光路具有以直链形式连接所述多个发送设备的光路。
2.根据权利要求1的光网络,进一步包括把所述发送设备连接成环形的光路,且其中所述把所述发送设备连接成环形的光路能够被用作保护光路。
3.根据权利要求1的光网络,进一步包括以直链形式连接所述发送设备的光路,且其中所述以直链形式连接所述发送设备的光路能够被用作保护光路。
4.根据权利要求1至3中任一项的光网络,其中提供了至少两个由所述工作光路构成的环形网络。
5.根据权利要求2的光网络,其中多个光路把所述多个发送设备连接成网状,且由所述连接成网状的发送设备构成的多个光路被用作工作线路。
6.根据权利要求3的光网络,其中多个光路把多个所述发送设备连接成网状,且由所述连接成网状的发送设备构成的多个光路被用作工作线路。
7.一种时分复用传输光网络,包括:
多个发送设备;以及
把所述多个发送设备彼此相连的多个光路,
其中从所述多个光路中选出的至少一个光路能够被用作工作光路或保护光路,
且所述多个光路被分配了预定的时分复用信号,且一种具有开销信息的发送帧被用于进行数字发送,且
所述多个光路包括以直链形式连接所述多个发送设备的光路。
8.根据权利要求7的光网络,进一步包括把所述多个发送设备连接成环形的光路,且其中所述把所述多个发送设备连接成环形的光路能够被用作保护光路。
9.根据权利要求7的光网络,进一步包括以直链形式连接所述多个发送设备的光路,且其中所述以直链形式连接所述多个发送设备的光路能够被用作保护光路。
10.根据权利要求7至9中任一项的光网络,其中提供了至少两个由所述工作光路构成的环形网络。
11.根据权利要求8的光网络,其中多个光路把所述发送设备连接成网状,且由所述连接成网状的发送设备构成的多个光路被用作工作线路。
12.根据权利要求9的光网络,其中多个光路把所述发送设备连接成网状,且由所述连接成网状的发送设备构成的多个光路被用作工作线路。
13.一种波分多路复用光网络,包括:
多个发送设备;以及
把所述多个发送设备彼此相连的光路,
其中所述光路被分配了预定发送光的波长,且一种具有开销信息的发送帧被用于进行数字发送,
所述开销信息具有关于故障的切换控制信息,且
所述各个发送设备具有存储装置-该存储装置构成了用于在其中存储有关所述各个光路的波长地址的信息和有关所述各个光路的故障信息的波长地址映象,并被这样地构成-即当在工作光路中发生故障时,根据关于故障的切换控制信息、波长地址信息和有关光路的故障信息而进行光路切换。
14.一种波分多路复用光网络,包括:
多个发送设备;以及
把所述多个发送设备彼此相连的光路,
其中从所述多个光路中选出的至少一个光路能够被用作工作光路或保护光路,并被分配了预定发送光的波长,且一种具有开销信息的发送帧被用于执行数字发送,
所述开销信息具有关于故障的切换控制信息,且
所述各个发送设备具有存储装置-该存储装置构成了用于在其中存储有关所述各个光路的波长地址的信息和有关所述各个光路的故障信息的波长地址映象,并被这样构成-即在工作光路中发生故障时,根据有关故障的切换控制信息、波长地址信息和有关光路的故障信息将工作光路切换到一条保护光路。
15.根据权利要求13或14的光网络,它是一个SDH(同步数字结构)网络。
16.根据权利要求13或14的光网络,它是一个SONET(同步光网络)网络。
17.根据权利要求13或14的光网络,进一步包括把所述发送设备连接成环形的光路,且其中所述把所述发送设备连接成环形的光路能够被用作保护光路。
18.根据权利要求13或14的光网络,进一步包括以直链形式连接所述发送设备的光路,且其中所述以直链形式连接所述多个发送设备的光路能够被用作保护光路。
19.根据权利要求13或14的光网络,其中在一个光学传输线路中设置了两个或更多的所述光路。
20.根据权利要求13或14的光网络,其中提供了至少两个由所述工作光路构成的环形网络。
21.根据权利要求13或14的光网络,其中切换控制信息包括用于所述工作光路的波长地址和发送设备的切换状态。
22.根据权利要求13或14的光网络,其中切换控制信息包括重要性最高的工作光路的波长地址和发送设备的切换状态。
23.根据权利要求13或14的光网络,其中切换控制信息包括重要性最高的工作光路的编号、发送切换信息的发送设备的编号、以及该发送设备的切换状态。
24.根据权利要求17的光网络,其中多个光路把所述发送设备连接成网状,且由所述连接成网状的发送设备构成的多个光路被用作工作线路。
25.根据权利要求18的光网络,其中多个光路把所述发送设备连接成网状,且由所述连接成网状的发送设备构成的多个光路被用作工作线路。
26.一种光网络,包括:
多个发送设备;以及
把所述多个发送设备彼此相连的多个光路,
其中在一条光学传输线路中设置了至少两个所述光路,且一种具有开销信息的发送帧被用于进行数字发送,从而允许信号多路复用发送,且
所述多个光路包括以直链形式连接所述多个发送设备的多个光路。
27.一种波分多路复用生存网络,包括:
若干个发送设备;
把所述发送设备彼此相连并被分配了光波长的工作光路;以及
连接所述发送设备并被分配了光波长的保护光路,
其中所述各个发送设备具有存储装置一该存储装置构成了用于在其中存储波长地址信息和有关所述各个光路的故障信息的波长地址映象,并通过利用一种具有开销信息的发送帧来进行数字发送,且
所述网络被适当构成从而能够进行以下切换判定步骤:
(1)步骤1,用于判定所述开销信息的一个自动保护切换字节是否显示了一种故障模式,
(2)步骤2,用于判定所述开销信息的该自动保护切换字节是否以接收它的发送设备为目的地,
(3)步骤3,用于在该自动保护切换字节是以接收它的发送设备为目的地时开始一个切换操作,以及
(4)步骤4,用于当自动保护切换字节不是以接收它的发送设备为目的地时传送该自动保护切换字节。
CNB991101251A 1998-07-01 1999-07-01 光网络 Expired - Fee Related CN1215673C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18551898A JP3753866B2 (ja) 1998-07-01 1998-07-01 自己救済型光ネットワーク
JP185518/1998 1998-07-01

Publications (2)

Publication Number Publication Date
CN1241075A CN1241075A (zh) 2000-01-12
CN1215673C true CN1215673C (zh) 2005-08-17

Family

ID=16172202

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991101251A Expired - Fee Related CN1215673C (zh) 1998-07-01 1999-07-01 光网络

Country Status (5)

Country Link
US (1) US6643041B1 (zh)
EP (1) EP0969619B1 (zh)
JP (1) JP3753866B2 (zh)
CN (1) CN1215673C (zh)
CA (1) CA2276377C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105721960A (zh) * 2014-12-18 2016-06-29 瞻博网络公司 具有分组光网络中的可预测的分析和故障避免的网络控制器

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3586586B2 (ja) * 1999-05-24 2004-11-10 日本電気株式会社 光波リングシステム
US6968130B1 (en) * 1999-09-07 2005-11-22 Nokia Corporation System and method for fully utilizing available optical transmission spectrum in optical networks
EP1096712A3 (en) * 1999-10-29 2005-09-07 Nippon Telegraph and Telephone Corporation Path network and path network operation method using conversion of protection path into working path
AU2001230216A1 (en) * 2000-01-31 2001-08-14 Pirelli Submarine Telecom Systems Italia S.P.A. Linear optical transmission system with failure protection
IT1316316B1 (it) * 2000-02-01 2003-04-10 Cit Alcatel Metodo di protezione del traffico in reti di trasporto in fibra otticain tecnologia wdm
US6934248B1 (en) * 2000-07-20 2005-08-23 Nortel Networks Limited Apparatus and method for optical communication protection
FR2814304B1 (fr) * 2000-09-21 2003-02-07 Cit Alcatel Procede de gestion de ressources de protection et reseau de communication mettant en oeuvre ce procede
JP2002111693A (ja) * 2000-09-29 2002-04-12 Fujitsu Ltd 双方向リング切替制御方法
US7012895B1 (en) * 2000-11-17 2006-03-14 University Of Kentucky Research Foundation Packet-switching network with symmetrical topology and method of routing packets
ATE541214T1 (de) 2000-11-17 2012-01-15 Biomoda Inc Zusammensetzungen und verfahren zum nachweis von präkanzerösen bedingungen in zell- und gewebeproben unter anwendung von 5,10,15,20- tetrakis(carbophenyl)porphin
EP1213862A1 (en) * 2000-12-11 2002-06-12 Marconi Communications GmbH Optical data network with protection switching
EP1414193B1 (en) * 2001-08-01 2008-06-25 Fujitsu Limited Communication method and communication device
WO2003039084A1 (fr) * 2001-10-31 2003-05-08 Fujitsu Limited Systeme de reseau wdm et noeud wdm utilise dans ce dernier
DE50308756D1 (de) * 2002-04-30 2008-01-24 Nokia Siemens Networks Gmbh Verfahren zum Schützen von Datensignalen, die über Lichtwellenleiter übertragen werden
US7627243B2 (en) * 2004-02-17 2009-12-01 Dynamic Method Enterprises Limited Methods and apparatuses for handling multiple failures in an optical network
US7697455B2 (en) * 2004-02-17 2010-04-13 Dynamic Method Enterprises Limited Multiple redundancy schemes in an optical network
US7664391B2 (en) 2004-12-17 2010-02-16 Fujitsu Limited Method and system for shared optical regeneration
WO2006080050A1 (ja) * 2005-01-25 2006-08-03 Fujitsu Limited ネットワーク管理装置、光分岐挿入ノードおよびネットワーク管理方法
JP4562081B2 (ja) * 2005-02-09 2010-10-13 Kddi株式会社 光クロスコネクト装置と伝送装置の連係方式
US7805073B2 (en) 2006-04-28 2010-09-28 Adc Telecommunications, Inc. Systems and methods of optical path protection for distributed antenna systems
JP4819596B2 (ja) * 2006-06-29 2011-11-24 富士通株式会社 伝送装置
CN101145856B (zh) * 2006-09-13 2012-03-07 中兴通讯股份有限公司 一种实现自动保护倒换的多播通信方法及装置
CN101145882B (zh) * 2007-08-01 2012-05-09 中兴通讯股份有限公司 快速保护倒换的实现方法
ES2651068T3 (es) * 2009-07-17 2018-01-24 Bioaffinity Technologies, Inc. Sistema y procedimiento de análisis de muestras marcadas con 5,10,15,20 tetraquis(4 carboxifenil)porfirina (TCPP)
JP5319787B2 (ja) * 2009-12-28 2013-10-16 富士通株式会社 光転送リングネットワークの切替え方法及びノード装置
JP5367610B2 (ja) * 2010-02-10 2013-12-11 日本電信電話株式会社 Wdm伝送システム、予備パス設定方法および予備パス切替方法
JP5682353B2 (ja) * 2011-02-14 2015-03-11 富士通株式会社 伝送装置およびネットワークプロテクション方法
JP5867247B2 (ja) * 2012-03-30 2016-02-24 富士通株式会社 光伝送装置
US9077478B1 (en) * 2014-12-18 2015-07-07 Juniper Networks, Inc. Wavelength and spectrum assignment within packet-optical networks
CN109922834B (zh) 2016-06-16 2022-09-23 良药治疗公司 用于治疗癌症的卟啉化合物和组合物
CN106303768B (zh) * 2016-08-31 2019-10-18 武汉光迅科技股份有限公司 具备自动发现功能的光合波分波模块
CN109818705B (zh) * 2017-11-22 2020-05-19 华为技术有限公司 传送、接收子速率信号方法及装置、设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8910957D0 (en) * 1989-05-12 1989-06-28 Plessey Telecomm Optical transmission apparatus
JPH07226736A (ja) * 1994-02-14 1995-08-22 Hitachi Ltd メッシュ網における障害復旧方法
JPH07264231A (ja) * 1994-03-16 1995-10-13 Fujitsu Ltd 回線切替え方式
JP3432958B2 (ja) * 1995-07-21 2003-08-04 富士通株式会社 光伝送システム及び伝送路切替制御方法
CN1198423C (zh) 1996-04-23 2005-04-20 株式会社日立制作所 自修复网络及其传输线路交换方法和传输设备
JPH10126350A (ja) * 1996-10-15 1998-05-15 Nec Corp 光ネットワーク、光分岐挿入ノードおよび障害回復方式
US6047331A (en) * 1997-02-19 2000-04-04 Massachusetts Institute Of Technology Method and apparatus for automatic protection switching
CA2254606C (en) 1997-11-28 2003-06-17 Nec Corporation Ring network for sharing protection resource by working communication paths
US5999288A (en) * 1998-02-02 1999-12-07 Telcordia Technologies, Inc. Connection set-up and path assignment in wavelength division multiplexed ring networks
US6366556B1 (en) * 1998-06-22 2002-04-02 Lucent Technologies Inc. Self-healing networks using virtual rings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105721960A (zh) * 2014-12-18 2016-06-29 瞻博网络公司 具有分组光网络中的可预测的分析和故障避免的网络控制器
CN105721960B (zh) * 2014-12-18 2020-07-10 瞻博网络公司 具有分组光网络中的可预测的分析和故障避免的网络控制器

Also Published As

Publication number Publication date
JP3753866B2 (ja) 2006-03-08
EP0969619A3 (en) 2004-09-08
US6643041B1 (en) 2003-11-04
EP0969619B1 (en) 2012-10-31
CN1241075A (zh) 2000-01-12
CA2276377C (en) 2008-10-21
JP2000022630A (ja) 2000-01-21
CA2276377A1 (en) 2000-01-01
EP0969619A2 (en) 2000-01-05

Similar Documents

Publication Publication Date Title
CN1215673C (zh) 光网络
CN1094007C (zh) 自愈网络
CN1070665C (zh) 包含信道切换保护装置的电信网络
CN1617476A (zh) 用于sdh/sonet网络的路径/通道保护
CN1182674C (zh) 用于异构光通信网络的操作、保护和恢复的方法和设备
CN1744448A (zh) 双纤光复用段共享保护环的保护方法及其节点装置
CN101043267A (zh) 弹性光突发环的保护与恢复方法及其装置
CN1820438A (zh) 在通信网中向附加业务路径提供连接保护的方法、相关网络及计算机程序产品
CN1314749A (zh) 用于在网状网中发出路径恢复信息信号的方法和装置
CN1233893A (zh) 双向线路倒换环网络系统
CN1816977A (zh) 电信网络中的单光纤保护
CN1866806A (zh) 共享格状网恢复的实现方法
CN1283057C (zh) 光通信节点和光网络方法
CN1275006A (zh) 光环状系统
CN1661941A (zh) 分布式基站系统及数据交互方法
US6442131B1 (en) Selective VP protection method in ATM network
CN1227842C (zh) 一种网络协议ip数据的波分复用光网络传输适配方法
CN1791048A (zh) 实现m:n环网保护倒换操作的方法
CN1279543A (zh) 光环形网
CN1753324A (zh) 通信网络中实现m:n保护的方法及其网络节点装置
CN1397118A (zh) 用于在一个电信网内清楚表示告警的方法
JP2008219276A (ja) 無線基地局
CN1110930C (zh) 同步数字体系传输系统、传输单元及帧传输方法
CN1210912C (zh) 故障恢复方法,通信网络,网络单元,及通信接口模块
CN1111995C (zh) 交换机中路径检查控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050817

Termination date: 20140701

EXPY Termination of patent right or utility model