CN1209883C - 对射频功率放大器的工作偏置进行动态调节的系统和方法 - Google Patents
对射频功率放大器的工作偏置进行动态调节的系统和方法 Download PDFInfo
- Publication number
- CN1209883C CN1209883C CNB018095070A CN01809507A CN1209883C CN 1209883 C CN1209883 C CN 1209883C CN B018095070 A CNB018095070 A CN B018095070A CN 01809507 A CN01809507 A CN 01809507A CN 1209883 C CN1209883 C CN 1209883C
- Authority
- CN
- China
- Prior art keywords
- signal
- radio
- current
- wave detector
- power amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004891 communication Methods 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 20
- 230000003321 amplification Effects 0.000 abstract description 4
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 4
- 230000004044 response Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 5
- 230000007480 spreading Effects 0.000 description 5
- 230000001052 transient effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- NUOYJPPISCCYDH-BYPYZUCNSA-N (2s)-1-(2,2,2-trifluoroacetyl)pyrrolidine-2-carbonyl chloride Chemical group FC(F)(F)C(=O)N1CCC[C@H]1C(Cl)=O NUOYJPPISCCYDH-BYPYZUCNSA-N 0.000 description 1
- 241000581364 Clinitrachus argentatus Species 0.000 description 1
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0222—Continuous control by using a signal derived from the input signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/005—Control of transmission; Equalising
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0233—Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
- H03F1/0266—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3036—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
- H03G3/3042—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3084—Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/52—TPC using AGC [Automatic Gain Control] circuits or amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/474—A current mirror being used as sensor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/0416—Circuits with power amplifiers having gain or transmission power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/045—Circuits with power amplifiers with means for improving efficiency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/08—Closed loop power control
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
- Microwave Amplifiers (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一种根据发送功率控制信号对射频发送放大器的工作偏置进行动态调节的方法和系统。本发明为可用功率源受限应用提供了高效的射频功率放大器。本发明使用驻留在带有检波器和电流-电压转换器的无线通信系统结构中的信号以完成动态放大器工作偏置。
Description
技术领域
本发明主要涉及无线数字通信系统。更具体地说,本发明涉及一种关于对应用在无线通信中的射频功率放大器进行动态偏置的方法和系统。
背景技术
典型的数字通信系统在发送信息或数据时使用一个连续频率载波,并使用调制技术对其振幅、频率或相位进行改变。在调制之后,信号被放大并通过通信介质而发送。
一个多路访问通信系统允许多个用户单元对同一个通信介质进行访问,从而发送或接收信息。此种通信介质一般指的是用于在两个单元之间传送信息的信道。对于无线电通信而言,信道的电磁频谱可以从几千赫兹的极低频率,经过若干兆赫的短波,到高达几百兆赫的甚高频和超高频,再到初于1千兆赫的微波波段。
原有技术的多路访问通信系统如图1所示。通信技术——如频分多址(frequency division access,FDMA)、时分多址(time division access,TDMA)、载波侦测多址(carrier sense multiple access,CSMA)、码分多址(code division access,CDMA)以及其它技术——允许不止一个用户单元对同一个通信介质进行访问。这些技术可混合使用,以创建混合型的各种多址访问机制。例如已提出的第三代无线协议的时分双工(TDD)模式就是混合了TDMA和CDMA的一种技术。
图2中显示原有技术条件下的一个示例性CDMA无线通信系统。对待发送的数据使用伪噪声(PN)信号进行调制后,以加宽频带(扩频)来发送通信数据。待发送信号的频宽在可以高达几百万赫兹的频率波段中可能仅有几千赫兹。通信信道被多个独立的副信道(subchannel)同时使用。对于每个副信道而言,所有其它的副信道都是一种干扰。
如图所示,既定频宽的单独一个副信道与一个单一的扩展代码混合,该扩展代码重复一种由宽带PN(伪噪声)序列发生器所产生的预定模式。这些单一的扩展代码对彼此来说通常都是伪正交的,从而使得扩展代码之间交互相关的可能性接近于零。一个数据信号按PN(伪噪声)序列进行调制以产生一个数字扩频信号。其后,以该数字扩频信号来调制一个载波信号并将其发送。一个接收机将发送的信号进行解调并析取出其中的数字扩频信号。在与对应的PN序列进行对比后,将发送的数据再现出来。当扩展代码彼此正交时,接收到的信号就可以关联与特定扩展代码相关的特定用户单元信号。这样,只有所希望的与特定扩展代码相关的预定用户单元信号会得到增强,而对应于所有其它用户单元的信号则不会得到增强。
因为在CDMA系统中多个副信道共享同一带宽,大部分原有技术的无线通信系统都采用了某种形式的自适应传输功率控制(TPC)以防止副信道之间相互干扰。当一个用户单元或一个基站正在接收一个特定信号时,所有其它副信道或用户单元的信号都显示为噪声。因此,增加一个用户单元的信号功率等级就意味着增加了对其它用户单元的噪声。
在原有技术的CDMA通信系统中,一个基站通过下行链路向特定的用户单元发送通信信号。信号一经接收,就会被进行定性的计算和比较。根据比较结果,一个TPC信号通过上行链路被发送至基站,并且要求基站增大或减小其对该特定用户单元的传输功率。这一方法即人们所知的正向信道功率控制。相反地,对于由用户单元向基站发出的信号所进行的功率控制就是反向信道功率控制。
通过用前驱动级、可变增益放大器、衰减器或类似装置来调整使用TPC信号的RF(射频)放大器的输入信号振幅,可以影响用于传输的信号输出的功率水平。然而,放大器的增益和偏置保持不变。因此,当发送的信号振幅增大或减小时,放大器的工作点是连续的。
已提出的第三代无线协议可提供宽带宽、高数据速率的通信。推荐的带宽为5~10兆赫通信信道。然而众所周知,通信中会发生大约10~15dB的快衰落。例如,如果一个移动用户单元处于一个既定网元的边缘并且正以最大功率进行发送,就需要有10~15dB的发送输出功率范围以满足发送中的瞬间增量。图3中用户单元输出功率(以dB为单位)每秒的变化曲线即反映了以上的情况。其中,平均输出功率为12dB到17dB。如图3所示,在16秒时间采样上,超过平均发送功率的瞬态峰值功率的出现率大约为1~10%。这表明了需要高传输功率的有限持续时间。
对数据信号进行调制的最常用方法为正交调幅(QAM)。该方法可根据一个输入信号而改变一个预定的载波频率振幅以及相位。该方法之所以会如此流行,是因为多种类型的正交调幅(QAM)(64QAM、256QAM等)和正交相移键控调制都通过将振幅信息作为调制的一部分,而更有效地使用了可用带宽,这不同于只包括很少振幅信息甚至不包括振幅信息的调频、频移键控(FSK)、相移键控(PSK)或二进制相移键控(BPSK)。为了将信号适当地放大,发送功率放大器必须工作于线性状态。在调制器端口,输入信号的动态范围可能很大。例如,在第三代无线协议中,输入信号的峰值均值比可能超过10dB。
过高的瞬间峰值是不合需要的。传输输出功率每增大3dB,以瓦特为单位的基础射频放大功率就需要增大一倍,而这则有可能迫使放大器进入其反应曲线中的非线性工作范围。这样就会导致增加频带外发射并且会降低放大器的工作效率。另外,放大器的功率源必须具备大于可预期的最大瞬间峰值的容量。而这对于使用电池的手持装置来说是特别不合需要的。为了适应由高瞬间峰值所导致的更高功率水平,就需要更复杂的放大器电路。否则,放大器增益、电池寿命和通信时间都会受到损害。
原有技术中使用了许多技术以提高射频功率放大器的工作效率,如预失真发生器、包络反馈校正和前馈纠错等。然而,原有技术用来提高射频功率放大器效率的改善措施却加重了现有的设计问题。
因此,就需要一种可配合原有技术而解决上述问题的射频放大器。
发明内容
本发明为一种根据传输功率控制信号(TPC)而对射频发送放大器的工作偏置进行动态调节的方法和系统。本发明对于可用功率源功率受限的应用提供了高效率的射频功率放大器。本发明使用一个驻留在特定通信结构——该通信结构具有检波器和电压-电流转换器——中的TPC信号,直接根据传输功率的需要而达成放大器工作偏置。
因此,本发明的目标之一就是依据信号放大的需求而对工作偏置进行动态调节。
为达到上述目的,本发明提供一种用于动态偏置射频功率放大器的系统,所述射频功率放大器将所接收的通信信号放大,所述用于动态偏置射频功率放大器的系统包括:一个检波器,用于接收及解调所述的通信信号,从而提供检波器输出信号;一个电压-电流转换器,连接到所述检波器的输出端,并同时接收一发送功率控制信号,通过处理所述发送功率控制信号和所述检波器输出信号,产生一电流信号;一个射频功率放大器,所述射频功率放大器具有一个偏置点,且所述射频功率放大器通过接收并放大所述通信信号而产生一输出反馈信号;及一个电流镜,用于接收所述电流信号和所述射频功率放大器输出端的反馈信号,并将所述电流信号与所述反馈信号进行比较,以产生偏置控制信号;以及通过所述射频功率放大器被连接到所述电流镜以接收所述偏置控制信号,所述的偏置控制信号对所述放大器的偏置点进行动态调节。
本发明还提供一种一种用于动态偏置射频功率放大器的方法,所述射频功率放大器将通信信号放大,该方法包括以下步骤:在一个检波器上接收及解调所述的通信信号,从而提供检波器输出信号;接收一发送功率控制信号;对所述的发送功率控制信号和所述检波器输出信号进行处理,以产生电流信号;通过所述射频功率放大器将所述通信信号进行放大,在该放大器输出端产生一反馈信号;接收所述的电流信号和来自所述射频功率放大器输出端的所述反馈信号,并将所述电流信号与所述反馈信号加以比较,以产生一偏置控制信号;以及用所述偏置控制信号对所述放大器的偏置点进行动态调节。
在阅读较佳实施例中关于本发明的详细描述后,所属领域技术人员会对本系统其它的目标和优点更加清楚。
附图说明
图1为原有技术的多路访问通信系统的简化系统框图。
图2为原有技术的无线通信系统的简化系统框图。
图3为一曲线图,其显示了瞬间峰值功率需求。
图4为本发明的系统框图。
图5为本发明中输入功率与输出功率的关系曲线图。
具体实施方式
以下将参考各附图来描述实施例,其中,相同的编号通篇代表相同的成分。
图4所示为本发明中的动态偏置放大系统(10),其集成在一个用户单元内。然而,本领域技术人员应该可以认识到,该系统同样可以集成作为基站的一部分。系统10包括一个通信信号输入端20、一个放大器12、一个检波器14、一个功率控制信号输入端22、一个电压-电流转换器16、一个电流镜(current mirror)18和一个输出端24。为了方便本发明的描述,参考了一个使用TPC信号的无线通信系统。然而,所属领域的技术人员应认识到,本发明可应用到任何一种使用功率控制信号的通信系统之中。
通信信号输入端20提供输入的无线通信信号32以待发送。该无线通信信号32可包含声音、数据或任何其它可通过无线通信系统发送的无线信号。
射频放大器12接收到输入信号32,并将输入信号32的功率进行线性放大,从而以更大的功率等级提供输出信号38。射频放大器12可包括一个或多个增益级、对应于每一增益级的一个或多个偏置调节装置、输入缩放,等等。RF(射频)放大器12的电路拓扑结构不在本说明的范围之内。
检波器14将调制成分从扩展通信信号中剥离,并提供一个直流电压输出信号28,该信号随时间而缓慢变化。检波器14的输出耦合至电压-电流转换器16的第一个输入端。
控制输入设备22提供一个TPC信号26。TPC信号26的发生细节和/或TPC过程不在本说明的范围之内。然而总的来说,TPC信号26由基站(或用户单元)产生,并对用户单元(或基站)(即对应的通信主体)的发送功率分别做定量测量。基站或用户单元会将TPC信号26发送到对应的通信主体,以指示该对应的通信主体根据基站或用户单元所完成的的计算而增加或减小其功率。
电压-电流转换器接受到两个输入信号,对输入信号进行缩放(scale)并将两者结合以产生电流输出信号30。第一个输入信号是检波器输出信号28。第二个输入信号是TPC信号26。电压-电流转换器16接收这两个输入信号26、28,对输入信号26、28进行缩放或称加权,并且将输入信号26、28根据下列预定的公式进行合并,产生电流输出信号30:
VC输出信号=(W1*logP)+(W2*logV) 等式(1)
其中:P=检波器输出信号28
V=TPC信号26
W1和W2为设计指定常量,是动态功率控制范围、波形峰值均值比和所用功率放大器的函数。
电流输出信号30耦合至电流镜18的一个输入端。反馈线36将射频放大器12的输出38耦合至电流镜18的第二个输入端。电流镜18对两个输入信号30、36进行比较,并输出一个偏置电流34。如图所示,输出的偏置电流34与TPC信号26和射频放大器12的输出端38都有联系。例如,当TPC信号26为高电平时,则表示基站要求用户单元提供更高的发送功率。如前所述在原有技术中,TPC信号26造成了用户单元发送信号功率的适当增大或减少。输入信号30、36都会被缩放以进行比较。如果电流输出信号30高于射频放大器12的输出信号38,电流镜18会对偏置电流34进行增强。同样,如果电流输出信号30低于射频放大器12的输出信号38,电流镜18会对偏置电流34进行减弱。
在对比过程中,电流镜18产生更大或更小的偏置电流,并从而影响射频放大器12的线性工作范围。这将在射频放大器12保持在线性工作范围内的同时提供额外的峰值储备。当TPC信号26减弱时,放大器12并不要求一个大的偏置电流,因为高偏置意味着更高的功率消耗。因此,偏置电流会被减弱以减少功率消耗。
图5所示为放大器增益曲线图,相当于放大器输出功率Pout与放大器输入功率Pin的比值。1dB压缩点为放大器增益变为非线性时的临界点。偏置2的1dB压缩点(即图中所示的A点),出现在小于偏置1的1dB压缩点(即图中所示的B点)的输出功率处。如图所示,本发明得出的动态偏置值扩展了放大器的线性工作范围。这样,当输出功率减弱时,偏置电流会相应地减弱,但仍然可以提供线性放大。当输入功率增强时,偏置电流级别亦被增强以维持线性工作。
根据统计数据,本发明要优于原有的补偿技术。因为在全部发射时间中,仅有一小部分时间发射机要求使用最大功率,通过对TPC信号的动态追踪,本发明的动态偏置功率放大器可以在很大程度上改善功率消耗。
当以较佳实施例说明本发明时,在本发明范畴内的其它变动是所属领域技术人员所易知的,本发明的范畴界定于所附权利要求书中。
Claims (10)
1.一种用于动态偏置射频功率放大器的系统,所述射频功率放大器将所接收的通信信号放大,所述用于动态偏置射频功率放大器的系统包括:
一个检波器(14),用于接收及解调所述的通信信号,从而提供检波器输出信号(28);
一个电压-电流转换器(16),连接到所述检波器(14)的输出端,并同时接收一发送功率控制信号(22),通过处理所述发送功率控制信号(22)和所述检波器输出信号(28),产生一电流信号(30);
一个射频功率放大器(12),所述射频功率放大器(12)具有一个偏置点,且所述射频功率放大器(12)通过接收并放大所述通信信号而产生一输出反馈信号(38);及
一个电流镜(18),用于接收所述电流信号(30)和所述射频功率放大器输出端的反馈信号(38),并将所述电流信号(30)与所述反馈信号(38)进行比较,以产生偏置控制信号(34);以及
通过所述射频功率放大器被连接到所述电流镜以接收所述偏置控制信号,所述的偏置控制信号对所述放大器的偏置点进行动态调节。
2.根据权利要求1所述的系统,其中所述电压-电流转换器(16)通过对所述功率控制信号(22)和所述检波器的输出信号分别进行加权,然后将加权后的功率控制信号和检波器输出信号相加并来完成所述处理。
3.根据权利要求1所述的系统,其中所述的电流镜(18)在所述比较所述电流信号(30)与所述反馈信号(38)之前,将所述电流信号(30)和所述反馈信号(38)进行加权。
4.根据权利要求2所述的系统,其中所述的电流镜(18)在所述比较所述电流信号(30)和所述反馈信号(38)之前,将所述电流信号(30)和所述反馈信号(38)进行加权。
5.根据权利要求1所述的系统,其中所述通信信号为码分多址信号。
6.一种用于动态偏置射频功率放大器的方法,所述射频功率放大器将通信信号放大,该方法包括以下步骤:
在一个检波器上接收及解调所述的通信信号,从而提供检波器输出信号;
接收一发送功率控制信号;
对所述的发送功率控制信号和所述检波器输出信号进行处理,以产生电流信号;
通过所述射频功率放大器将所述通信信号进行放大,在该放大器输出端产生一反馈信号;
接收所述的电流信号和来自所述射频功率放大器输出端的所述反馈信号,并将所述电流信号与所述反馈信号加以比较,以产生一偏置控制信号;以及
用所述偏置控制信号对所述放大器的偏置点进行动态调节。
7.根据权利要求6所述的方法,其中所述处理步骤包括对所述发送功率控制信号和所述检波器输出信号分别进行加权,然后将加权后的发送功率控制信号和所述检波器输出信号相加。
8.根据权利要求6所述的方法,其中所述比较步骤具体包括在将所述电流信号和所述反馈信号进行比较之前,分别将所述电流信号和所述反馈信号进行加权。
9.根据权利要求7所述的方法,其中所述比较步骤具体包括在将所述电流信号和所述反馈信号进行比较之前,分别将所述电流信号和所述反馈信号进行加权。
10.根据权利要求6所述的方法,其中所述通信信号为码分多址信号。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19252800P | 2000-03-29 | 2000-03-29 | |
US60/192,528 | 2000-03-29 | ||
US09/773,857 US6684064B2 (en) | 2000-03-29 | 2001-02-01 | Dynamic bias for RF power amplifiers |
US09/773,857 | 2001-02-01 | ||
PCT/US2001/009911 WO2001073975A1 (en) | 2000-03-29 | 2001-03-28 | Dynamic bias for rf power amplifiers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100718304A Division CN100472945C (zh) | 2000-03-29 | 2001-03-28 | 偏置功率放大器的用户单元及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1429436A CN1429436A (zh) | 2003-07-09 |
CN1209883C true CN1209883C (zh) | 2005-07-06 |
Family
ID=26888150
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100718304A Expired - Fee Related CN100472945C (zh) | 2000-03-29 | 2001-03-28 | 偏置功率放大器的用户单元及方法 |
CNB018095070A Expired - Fee Related CN1209883C (zh) | 2000-03-29 | 2001-03-28 | 对射频功率放大器的工作偏置进行动态调节的系统和方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100718304A Expired - Fee Related CN100472945C (zh) | 2000-03-29 | 2001-03-28 | 偏置功率放大器的用户单元及方法 |
Country Status (15)
Country | Link |
---|---|
US (4) | US6684064B2 (zh) |
EP (4) | EP1269655B1 (zh) |
JP (2) | JP4824246B2 (zh) |
KR (3) | KR100703649B1 (zh) |
CN (2) | CN100472945C (zh) |
AT (3) | ATE330377T1 (zh) |
AU (1) | AU2001252992A1 (zh) |
CA (1) | CA2404824C (zh) |
DE (3) | DE60103266T2 (zh) |
DK (2) | DK1269655T3 (zh) |
ES (2) | ES2263898T3 (zh) |
HK (2) | HK1053022B (zh) |
MX (1) | MXPA02009432A (zh) |
NO (1) | NO20024619L (zh) |
WO (1) | WO2001073975A1 (zh) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6358504B1 (en) | 1997-02-07 | 2002-03-19 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6377784B2 (en) * | 1999-02-09 | 2002-04-23 | Tropian, Inc. | High-efficiency modulation RF amplifier |
US6684064B2 (en) * | 2000-03-29 | 2004-01-27 | Interdigital Technology Corp. | Dynamic bias for RF power amplifiers |
US6735424B1 (en) * | 2000-06-14 | 2004-05-11 | The Regents Of The University Of California | S-band low-noise amplifier with self-adjusting bias for improved power consumption and dynamic range in a mobile environment |
GB2373417B (en) * | 2001-03-13 | 2004-06-09 | Tandberg Television Asa | Satellite communication apparatus |
TWI226765B (en) * | 2002-03-01 | 2005-01-11 | Cognio Inc | System and method for joint maximal ratio combining using time-domain signal processing |
US6862456B2 (en) * | 2002-03-01 | 2005-03-01 | Cognio, Inc. | Systems and methods for improving range for multicast wireless communication |
US6687492B1 (en) | 2002-03-01 | 2004-02-03 | Cognio, Inc. | System and method for antenna diversity using joint maximal ratio combining |
US6785520B2 (en) * | 2002-03-01 | 2004-08-31 | Cognio, Inc. | System and method for antenna diversity using equal power joint maximal ratio combining |
US20070060074A1 (en) * | 2002-03-07 | 2007-03-15 | Matsushita Electric Industrial Co., Ltd. | High-efficiency modulating RF amplifier |
US6871049B2 (en) * | 2002-03-21 | 2005-03-22 | Cognio, Inc. | Improving the efficiency of power amplifiers in devices using transmit beamforming |
US7103327B2 (en) * | 2002-06-18 | 2006-09-05 | Broadcom, Corp. | Single side band transmitter having reduced DC offset |
CN102655430A (zh) * | 2002-07-30 | 2012-09-05 | 美商智慧财产权授权股份有限公司 | 通过信道传送信号的方法和无线电通信装置 |
US7277678B2 (en) * | 2002-10-28 | 2007-10-02 | Skyworks Solutions, Inc. | Fast closed-loop power control for non-constant envelope modulation |
US7099678B2 (en) * | 2003-04-10 | 2006-08-29 | Ipr Licensing, Inc. | System and method for transmit weight computation for vector beamforming radio communication |
GB2401264A (en) * | 2003-04-30 | 2004-11-03 | Motorola Inc | Method of controlling the bias and quiescent current of an RF transmitter |
KR100556909B1 (ko) * | 2003-11-07 | 2006-03-03 | 엘지전자 주식회사 | 휴대폰의 파워앰프모듈 전원회로 |
JP4246622B2 (ja) * | 2003-12-26 | 2009-04-02 | 古野電気株式会社 | マイクロ波周波数変換器 |
JP4220435B2 (ja) * | 2004-05-28 | 2009-02-04 | 株式会社東芝 | 無線通信システムおよび無線端末 |
JP2005354378A (ja) * | 2004-06-10 | 2005-12-22 | Hitachi Kokusai Electric Inc | 送信装置 |
US20060068727A1 (en) * | 2004-09-30 | 2006-03-30 | Motorola, Inc. | Method and system for dynamic range power control |
KR20060029423A (ko) * | 2004-10-01 | 2006-04-06 | 엘지전자 주식회사 | 피에이엠 구동전압 가변기능을 갖는 이동통신 단말기 및그 제어방법 |
US7756493B2 (en) * | 2005-04-05 | 2010-07-13 | Powerwave Technologies, Inc. | Feed forward amplifier system and method using the pilot frequency from a positive feedback pilot generation and detection circuit to improve second loop convergence |
US7250817B2 (en) * | 2005-06-28 | 2007-07-31 | Motorola, Inc. | Linear power efficient radio frequency (RF) driver system and method with power level control |
TWI332747B (en) * | 2006-12-13 | 2010-11-01 | Univ Nat Taiwan | Bias circuits and signal amplifier circuits |
FR2911447B1 (fr) * | 2007-01-16 | 2011-12-16 | St Microelectronics Sa | Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la realisation d'un etage d'amplification multistandard pour la telephonie mobile |
US8385853B2 (en) * | 2007-05-10 | 2013-02-26 | Skyworks Solutions, Inc. | System and method for power detection in a power amplifier |
US7489191B2 (en) | 2007-06-08 | 2009-02-10 | General Electric Company | Circuit and method for reducing bias noise in amplifier circuits |
US7826815B2 (en) | 2007-07-13 | 2010-11-02 | Fairchild Semiconductor Corporation | Dynamic selection of oscillation signal frequency for power converter |
US7929915B2 (en) * | 2007-09-28 | 2011-04-19 | Verizon Patent And Licensing Inc. | Method and system for measuring cross-polarization isolation value and 1 dB gain compression point |
US8452243B2 (en) * | 2008-05-08 | 2013-05-28 | Skyworks Solutions, Inc. | System and method for power detection in a power amplifier using an adjustable load |
US7777573B2 (en) * | 2008-05-29 | 2010-08-17 | Himax Technologies Limited | Operational amplifier having adjustable bias current and related source driver of display thereof |
US8000665B2 (en) * | 2008-10-28 | 2011-08-16 | Freescale Semiconductor, Inc. | Systems and methods for adjusting headroom of a power amplifier |
US20110250853A1 (en) * | 2010-04-09 | 2011-10-13 | Andrea Camuffo | Operating point setting of an amplifier |
KR20120018266A (ko) * | 2010-08-20 | 2012-03-02 | 삼성전자주식회사 | 직교 주파수 분할 다중 접속 방법을 사용하는 무선 통신 시스템에서 기지국의 전력 증폭기 소모 전력 제어 방법 및 장치 |
US8400218B2 (en) | 2010-11-15 | 2013-03-19 | Qualcomm, Incorporated | Current mode power amplifier providing harmonic distortion suppression |
US8854814B2 (en) * | 2011-06-27 | 2014-10-07 | Futurewei Technologies, Inc. | Hybrid cooling design for modular systems |
WO2013050085A1 (en) * | 2011-10-07 | 2013-04-11 | Telefonaktiebolaget L M Ericsson (Publ) | Apparatus and method for use with antenna array |
CN103631307B (zh) * | 2013-08-06 | 2015-10-21 | 豪芯微电子科技(上海)有限公司 | 射频功率放大器的功率控制电路 |
CN104467745B (zh) | 2013-09-19 | 2018-07-20 | 天工方案公司 | 动态误差向量幅度占空比校正 |
US9660600B2 (en) * | 2013-12-23 | 2017-05-23 | Skyworks Solutions, Inc. | Dynamic error vector magnitude compensation |
US9559646B2 (en) | 2014-09-10 | 2017-01-31 | Samsung Electronics Co., Ltd | Apparatus and method for dynamically biased baseband current amplifier |
CN107040220B (zh) * | 2017-04-10 | 2020-11-13 | 捷开通讯(深圳)有限公司 | 调制功率放大器偏置的装置及方法 |
CN107994897B (zh) * | 2017-11-27 | 2021-08-10 | 尚睿微电子(上海)有限公司 | 一种偏置电流控制电路、方法以及功率放大控制电路 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54104760A (en) * | 1978-02-03 | 1979-08-17 | Nec Corp | Amplifier of low power consumption type |
KR910007654B1 (ko) * | 1989-04-26 | 1991-09-28 | 삼성전자 주식회사 | 이동식 무선전화기의 rf전력 제어회로 |
US5119042A (en) * | 1990-08-30 | 1992-06-02 | Hughes Aircraft Company | Solid state power amplifier with dynamically adjusted operating point |
KR960000775B1 (ko) * | 1990-10-19 | 1996-01-12 | 닛본덴기 가부시끼가이샤 | 고주파 전력 증폭기의 출력레벨 제어회로 |
US5101173A (en) * | 1990-11-28 | 1992-03-31 | The United States Of America As Represented By The Secretary Of The Air Force | Stored program controlled module amplifier bias and amplitude/phase compensation apparatus |
JPH05119042A (ja) * | 1991-10-24 | 1993-05-14 | Analytical Instr:Kk | 自動分析システム |
JPH05129860A (ja) * | 1991-11-08 | 1993-05-25 | Oki Electric Ind Co Ltd | 電力増幅装置及び送信装置 |
JPH07170202A (ja) * | 1993-12-15 | 1995-07-04 | Hitachi Ltd | 送信回路 |
FR2716313B1 (fr) | 1994-02-11 | 1996-04-12 | Alcatel Mobile Comm France | Dispositif de commande de la polarisation d'un amplificateur. |
US5452473A (en) * | 1994-02-28 | 1995-09-19 | Qualcomm Incorporated | Reverse link, transmit power correction and limitation in a radiotelephone system |
JP3192323B2 (ja) * | 1994-07-29 | 2001-07-23 | 沖電気工業株式会社 | 電力制御回路 |
US5608348A (en) * | 1995-04-14 | 1997-03-04 | Delco Electronics Corporation | Binary programmable current mirror |
SE506842C2 (sv) * | 1996-06-28 | 1998-02-16 | Ericsson Telefon Ab L M | Anordning och förfarande vid radiosändare för styrning av effektförstärkare |
EP0856955A3 (en) * | 1997-01-29 | 2000-09-06 | YRP Mobile Telecommunications Key Technology Research Laboratories Co., Ltd. | CDMA power control system |
SE520227C2 (sv) | 1997-04-18 | 2003-06-10 | Ericsson Telefon Ab L M | Effektförstärkarkrets, samt förfarande för reglering och användning av en sådan krets |
JP3150090B2 (ja) * | 1997-10-28 | 2001-03-26 | 埼玉日本電気株式会社 | 移動通信機器 |
JP2926576B1 (ja) * | 1998-04-03 | 1999-07-28 | 埼玉日本電気株式会社 | 無線電話装置 |
US6008698A (en) * | 1998-05-18 | 1999-12-28 | Omnipoint Corporation | Amplifier with dynamically adaptable supply current |
JP3240998B2 (ja) * | 1998-07-27 | 2001-12-25 | 日本電気株式会社 | 送信パワー制御回路 |
US6321072B1 (en) * | 1998-08-31 | 2001-11-20 | Conexant Systems, Inc. | Distortion control feedback loop utilizing a non-linear transfer function generator to compensate for non-linearities in a transmitter circuit |
US6466772B1 (en) * | 1998-09-25 | 2002-10-15 | Skyworks Solutions, Inc. | Apparatus and method for improving power control loop linearity |
US6178313B1 (en) * | 1998-12-31 | 2001-01-23 | Nokia Mobile Phones Limited | Control of gain and power consumption in a power amplifier |
US6684064B2 (en) * | 2000-03-29 | 2004-01-27 | Interdigital Technology Corp. | Dynamic bias for RF power amplifiers |
US6735424B1 (en) * | 2000-06-14 | 2004-05-11 | The Regents Of The University Of California | S-band low-noise amplifier with self-adjusting bias for improved power consumption and dynamic range in a mobile environment |
FI114666B (fi) * | 2000-10-31 | 2004-11-30 | Elektrobit Oy | Linearisointimenetelmä ja vahvistinjärjestely |
-
2001
- 2001-02-01 US US09/773,857 patent/US6684064B2/en not_active Expired - Fee Related
- 2001-03-28 AU AU2001252992A patent/AU2001252992A1/en not_active Abandoned
- 2001-03-28 EP EP01926458A patent/EP1269655B1/en not_active Expired - Lifetime
- 2001-03-28 EP EP06012037A patent/EP1693955B1/en not_active Expired - Lifetime
- 2001-03-28 ES ES03027415T patent/ES2263898T3/es not_active Expired - Lifetime
- 2001-03-28 KR KR1020067006043A patent/KR100703649B1/ko not_active IP Right Cessation
- 2001-03-28 DK DK01926458T patent/DK1269655T3/da active
- 2001-03-28 AT AT03027415T patent/ATE330377T1/de not_active IP Right Cessation
- 2001-03-28 JP JP2001571578A patent/JP4824246B2/ja not_active Expired - Fee Related
- 2001-03-28 DE DE60103266T patent/DE60103266T2/de not_active Expired - Lifetime
- 2001-03-28 AT AT01926458T patent/ATE266909T1/de not_active IP Right Cessation
- 2001-03-28 AT AT06012037T patent/ATE407476T1/de not_active IP Right Cessation
- 2001-03-28 CN CNB2005100718304A patent/CN100472945C/zh not_active Expired - Fee Related
- 2001-03-28 KR KR1020027012846A patent/KR100558105B1/ko not_active IP Right Cessation
- 2001-03-28 EP EP03027415A patent/EP1398886B1/en not_active Expired - Lifetime
- 2001-03-28 DK DK03027415T patent/DK1398886T3/da active
- 2001-03-28 CA CA002404824A patent/CA2404824C/en not_active Expired - Fee Related
- 2001-03-28 ES ES01926458T patent/ES2220766T3/es not_active Expired - Lifetime
- 2001-03-28 WO PCT/US2001/009911 patent/WO2001073975A1/en not_active Application Discontinuation
- 2001-03-28 MX MXPA02009432A patent/MXPA02009432A/es active IP Right Grant
- 2001-03-28 EP EP08015405A patent/EP1990912A3/en not_active Withdrawn
- 2001-03-28 DE DE60120788T patent/DE60120788T2/de not_active Expired - Lifetime
- 2001-03-28 CN CNB018095070A patent/CN1209883C/zh not_active Expired - Fee Related
- 2001-03-28 DE DE60135689T patent/DE60135689D1/de not_active Expired - Lifetime
- 2001-03-28 KR KR1020057007093A patent/KR100659999B1/ko not_active IP Right Cessation
-
2002
- 2002-09-26 NO NO20024619A patent/NO20024619L/no not_active Application Discontinuation
-
2003
- 2003-07-02 HK HK03104693.9A patent/HK1053022B/zh not_active IP Right Cessation
- 2003-07-02 HK HK04106423A patent/HK1065179A1/xx not_active IP Right Cessation
- 2003-11-26 US US10/722,941 patent/US7010282B2/en not_active Expired - Fee Related
-
2006
- 2006-03-06 US US11/368,802 patent/US7502600B2/en not_active Expired - Fee Related
-
2008
- 2008-12-15 JP JP2008318545A patent/JP2009077439A/ja active Pending
-
2009
- 2009-03-09 US US12/400,285 patent/US20090264145A1/en not_active Abandoned
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1209883C (zh) | 对射频功率放大器的工作偏置进行动态调节的系统和方法 | |
EP1597824B1 (en) | A method and a device for adjusting power amplifier properties | |
US7012970B2 (en) | Method and apparatus for reducing transmitter peak power requirements | |
CN1299186A (zh) | 产生放大信号的系统和方法 | |
US6687238B1 (en) | CDMA signal transmission control | |
US6515961B1 (en) | Decresting peaks in a CDMA signal | |
US20020180522A1 (en) | Transmitter with a sliding compression point | |
AU769962B2 (en) | Transmitter for mobile terminal with carrier leak suppressing circuit | |
Silberger | The effect of nonlinear amplifiers on orthogonal-CDMA link and measures of performance, using a simplified amplifier model | |
KR20040106018A (ko) | 전력 증폭기를 위한 아날로그 적응 전치왜곡 장치 | |
JP2003018028A (ja) | 基地局増幅装置 | |
IL161489A (en) | Method and device for increasing minimum values | |
Wustenberg et al. | A fixed point approach to wideband amplifier compensation for IS-2000 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20050706 Termination date: 20150328 |
|
EXPY | Termination of patent right or utility model |