CN1206447A - 无焰燃烧器 - Google Patents

无焰燃烧器 Download PDF

Info

Publication number
CN1206447A
CN1206447A CN96199386A CN96199386A CN1206447A CN 1206447 A CN1206447 A CN 1206447A CN 96199386 A CN96199386 A CN 96199386A CN 96199386 A CN96199386 A CN 96199386A CN 1206447 A CN1206447 A CN 1206447A
Authority
CN
China
Prior art keywords
fuel
combustion chamber
burner
conductor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96199386A
Other languages
English (en)
Other versions
CN1079885C (zh
Inventor
J·M·卡拉尼卡斯
T·米库斯
H·J·威尼卡
S·L·威林顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1206447A publication Critical patent/CN1206447A/zh
Application granted granted Critical
Publication of CN1079885C publication Critical patent/CN1079885C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/02Apparatus in which combustion takes place in the presence of catalytic material characterised by arrangements for starting the operation, e.g. for heating the catalytic material to operating temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/02Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99001Cold flame combustion or flameless oxidation processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Gas Burners (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

提供一种燃烧方法和设备。该方法利用具有三种改进中的一种或多种的无焰燃烧来促进无焰燃烧器的点火。可以在燃烧室内提供一个催化表面,从而至少在催化表面附近,在远低于没有催化表面存在时燃料在空气中的自燃温度的温度下提供无焰燃烧。也可以用氮的氧化物或过量的氧气作为氧化剂,代替空气或者与空气一起使用以降低点火温度。此外,可以使燃料导管通过电能,使导管的温度提高到在燃料与氧化剂混合时可以点火的温度以上。

Description

无焰燃烧器
本发明涉及一种燃烧设备和方法。
美国专利No.4,640,352和No.4,886,118提出了对低渗透性的含油地下岩层的传导加热来回收其中的油。低渗透性的岩层包括硅藻土、类脂煤、焦油砂和油页岩。低渗透性岩层对油的增强性回收方法,如蒸汽、二氧化碳或火焰溢流等方法不敏感。溢流材料趋于优先通过裂缝穿透具有低渗透性的岩层。注入的材料绕过了大部分岩层中的烃。相反,传导加热不需要流体迁移进入岩层。所以岩层内的油不会象在溢流法中那样被绕过。在通过传导加热提高了岩层的温度时,垂直的温度分布将趋于比较均匀,因为岩层一般具有较为均匀的热传导性和比热。热传导法中烃的迁移是通过禁锢在岩层的岩石气孔中的油和水的压力驱动、蒸发、和热膨胀进行的。烃通过热应力以及油和水的膨胀与蒸发产生的细小裂缝进行迁移。
美国专利N0.3,113,623和No.3,181,613提出了用于加热地下岩层的燃气热喷射燃烧器。这些燃烧器利用多孔材料吸住火焰,然后把火焰扩散到更长的长度上。通过提供吸住火焰的多孔介质避免了火焰对炉壁的辐射加热。但是对于在多孔介质中进行的燃烧,燃料气或助燃空气必须预先混合。如果预先混合的燃料气和助燃空气的温度超过混合物的自燃温度,它们就会在预先混合时发生反应,而不是在多孔介质中进行反应。用于这些发明的实施例中的岩层最高只能达到约15m厚,仅到覆盖层之下约4.5m。所以,燃料气和助燃空气在到达燃烧器时温度较低。如果要加热的岩层更深,该燃烧器就不能起到预定的作用。
美国专利No.5,255,742提出了一种用于加热地下岩层的无焰燃烧器,利用预热的燃料气和/或助燃空气,其中,燃料气以增量的形式与助燃空气进行混合,所说的增量应该足够小,从而避免了火焰的出现。几乎可以消除NOx的产生,因为构造材料较为便宜,所以加热器的成本大大降低。除非向燃料气中加入CO2、H2、水蒸气或其它焦炭抑制剂,否则,根据这个以前技术的说明进行的燃料气的预热会导致焦炭的形成。此外,这种已知的加热器的起始运行是费时的过程,因为它必须在高于燃料气混合物的自燃温度的温度下操作。在温度高到足以正常运行之前,起始运行需要长时间的非常低流量的操作过程。
催化燃烧器也是已知的。例如,美国专利No.3,928,961提出了一种催化支持的热燃烧设备,其中,通过在高于燃料的自燃温度的温度下进行燃烧消除了NOx的形成,但是在低于这些温度下燃烧会导致氮的氧化物的大量生成。
例如,在美国专利No.5,355,668和No.4,065,917中提出了用氧化反应催化剂涂覆的金属涂层表面。这些专利建议在燃气涡轮发动机的部件上使用催化剂涂覆表面。所说的美国专利No.4,065,917建议使用催化剂涂覆表面用于涡轮机的起动,并建议一个起动操作中传质控制限制阶段。
所以本发明的一个目的是提供一种无焰的燃烧方法和设备,可以容易地点火并达到运行温度。在本发明的另一个方面,本发明的目的是提供一种NOx的形成最少的燃烧方法和设备。本发明的另一个目的是提供一种热效率高的方法。
根据本发明的一个方面,一种无焰燃烧器,包括:
一个轴流式的燃烧室,一端与氧化剂进口相连,另一端与燃烧产物出口相连;
一个在所说的轴流式燃烧室之内的燃料导管,该燃料导管确定了一个燃料空间,所说的燃料空间与燃料源相连,并通过沿着燃料导管的许多喷嘴与燃烧室相连,每个喷嘴间隔一定距离,其中,氧化剂可以通过燃烧室,并且在氧化剂从进口端向着燃烧产物出口通过时,与通过喷嘴的燃料混合;
一个位于轴流式燃烧室之内的催化表面,所说的催化表面有效地降低燃料和氧化剂的混合物的自燃温度,从未催化的自燃温度降低到催化的自燃温度。
优选的是,所说的催化表面包括燃料导管的外表面和/或燃烧室的内表面。同样优选的是所说的催化表面包括钯,并且所说的燃烧器还包括一个电源,能够有效地使燃料导管通过一定量的电流,电流量能够有效地至少在一个喷嘴附近把燃料导管加热到燃料通过该喷嘴时能够点火的温度以上。
根据本发明的另一个方面的一种无焰燃烧器,包括:
一个轴流式的燃烧室,一端与氧化剂进口相连,另一端与燃烧产物出口相连;
一个在所说的轴流式燃烧室之内的燃料导管,该燃料导管确定了燃料空间,所说的燃料空间与燃料源相连,并通过沿着燃料导管的许多喷嘴与燃烧室相连,其中,所说的燃料导管由一种导电材料构成;
一个电源,能够有效地使燃料导管通过一定量的电流,电流量能够有效地至少在一个喷嘴附近把燃料导管加热到燃料通过该喷嘴时会点火的温度以上。
合适的是,所说的燃烧器位于一个地下的钻井之内,所说的燃料导管是一个从井盖悬浮的一个管;在井盖上通电;燃料导管在喷嘴附近比在喷嘴之上的厚度小;所说的导管在至少一个喷嘴下面的一点接地。
本发明还涉及一种使无焰燃烧器点火的方法,该方法包括:
提供一个轴流式的燃烧室,一端与氧化剂进口相连,另一端与燃烧产物出口相连;
提供一个在所说的轴流式燃烧室之内的燃料导管,该燃料导管确定了燃料空间,所说的燃料空间与燃料源相连,并通过沿着燃料导管的许多喷嘴与燃烧室相连;
向所说的燃烧室通入选自由氮的氧化物和过量的氧气组成的组中的氧化剂;
向所说的燃料空间内通入一个燃料流;
向所说的燃烧室内连续通入氧化剂,并向所说的燃料导管内连续通入燃料,直至燃烧室内的温度超过所说的燃料在空气中的点火温度;
在燃烧室内的温度超过所说的燃料在空气中的点火温度之后,用空气取代所说的氧化剂;
合适的是,根据本发明的方法还包括使燃料导管通过一定量的电流的步骤,通过的电流量应该足以使至少一个喷嘴附近的导管部分加热到至少260℃。
优选的是,根据本发明的方法还包括提供一个位于轴流式燃烧室之内的催化表面的步骤,所说的催化表面有效地降低催化表面附近的燃料和氧化剂的反应温度。
在根据本发明的方法的起动阶段中使用的合适的燃料是氢气以及氢气和一氧化碳混合物,这些燃料的点火温度低。
本发明的无焰燃烧方法和燃烧器使氮的氧化物的产生量最少,所以不需要其它除去或防止氮的氧化物形成的措施。
现在参考附图更详细地描述本发明,其中:
图1表示一个适用于本发明的燃烧器。
图2是表面本发明的实用性燃烧器消耗的燃料量与温度之间的关系图。
美国专利No.5,255,742中提出了一种可以利用的根据本发明改进的无焰燃烧器,该专利提出的内容在本文中引作参考。本发明的改进包括三个与这样的燃烧器的起始阶段有关的改进。这三个改进可以单独使用,但是优选的是至少两个改进结合使用。本发明的三个改进包括:用燃料气导管作为电阻加热器为起始阶段提供加热;用燃烧室内的催化表面降低燃料发生氧化反应的温度;用氧化剂而不是空气,或与空气一起降低起始阶段的自燃温度。
本发明的无焰燃烧器的一个重要特征是沿着燃烧室的轴向排出热量,从而使得温度明显低于绝热燃烧温度。这几乎可以消除NOx的形成,同时达到降低冶金上的要求,从而得到了较便宜的燃烧器。
一般来说,通过充分地预热助燃空气和燃料气,使得两个气流混合时,混合物的温度超过混合物的自燃温度,但是低于在混合时氧化反应受到混合速度限制时的温度,可以完成无焰燃烧。把所说的气流预热到约815℃~1260℃之间的温度,然后把燃料气以较小的增量混入到助燃空气中可以导致无焰燃烧。燃料气与助燃空气流混合的增量优选的是导致助燃空气流由于燃料燃烧产生约10~110℃的温度升高。
参见图1,表示了一个能进行本发明的热喷射井和燃烧器。要加热的岩层1在覆盖层2之下。一个钻井通过覆盖层到达要加热的岩层中或靠近底部的位置。表示了一个垂直的井,但是所说的钻井也可以是倾斜的或水平的。在水平断裂的岩层中可以提供水平的热喷射井来通过平行驱动法回收烃。浅油页岩岩层是这样的岩层的实例。水平加热器也可以有效地用于薄矿床来限制向覆盖层和基体岩石的热损失。在图1所示的实施方案中,所说的钻井用井壁4防护。所说的钻井的较低部分可以用水泥7胶结,它具有适合于耐较高温度和导热的特性。作为良好的隔热材料8的水泥,优选的是用于钻井的上部以防止系统的热损失。一个氧化剂导管10从井盖(未表示)伸入到钻井的下部。燃料导管12也从井盖伸入到钻井的底部。所说的燃料导管确定了一个燃料导管内部的燃料空间。所说的燃料空间与燃料源相连,并通过许多喷嘴与燃料导管周围的燃烧室相连。
适合于胶结钻井的高温部分的井壁和导管的高温水泥是可以得到的。在美国专利No.3,507,332和N0.3,180,748中提出了一些实例。优选的是以水泥砂浆中的固体为基准,氧化铝的含量高于50wt%。
在浅岩层中,直接把加热器锤击进入岩层中可能是优选的。当把加热器直接锤击进入岩层中时,不需要加热器在岩层中的胶结,但是加热器的上部可以胶结以防止到表面的流体损失。
图1的实施方案中的井壁4的直径选择是在井壁的费用与热量向岩层传递速率之间的折衷选择。由于所需的冶金方面的要求,所说的井壁一般是喷射井中最贵的部件。可以向岩层传递的热量随井壁的直径增加显著增大。内径为约10~20cm之间的井壁一般会提供在初始费用和热传递之间的最佳折衷。
燃料气导管沿着导管的长度方向在待加热的岩石内部含有许多喷嘴13(表示了8个)。喷嘴之间间隔一定的距离,该距离应该足以使氧化剂和喷嘴之间的燃料明显反应,并沿着喷嘴之间的燃烧室的长度方向从加热器中排出热量。喷嘴13提供在由燃料导管12确定的空间和轴流式燃烧室之间的连接。对该喷嘴提供了在待加热的岩层内部的热释放的分布。燃料分段向氧化剂/燃烧产物气流中释放导致了热量的分阶段产生,以及图1的实施方案中的钻井的均匀热传递,在钻井内部的温度远低于绝热燃烧温度。避免了温度过高,明显降低了冶金方面的要求,因此降低了设备的成本。此外,远低于绝热燃烧温度的温度避免了NOx的产生。
确定喷嘴的尺寸以便得到井壁内接近均匀的温度分布。井壁内接近均匀的温度分布曲线在待加热的岩层内产生更均匀的热量分布。在岩层内的接近均匀的热量分布在传导加热的烃回收法中得到更有效的热量利用。更均匀的温度分布对于相同的热量释放还会导致较低的最高温度。因为燃烧器和钻井系统的构造材料限定了最高温度,均匀的温度分布对于相同的构造材料会增大可能的热量释放。喷嘴的数量仅受所使用的喷嘴的尺寸限制。如果使用更多的喷嘴,它们一般必须具有较小的尺寸。较小的喷嘴比较大的喷嘴更容易堵塞。喷嘴的数量是在温度均匀性与堵塞的可能性之间的折衷选择。
喷嘴的数量、尺寸和空隙与燃烧室的热量排出一起优选的是使得燃烧器内的最高温度低于1100℃。这使得市售材料具有更长的使用寿命。
在本发明的燃烧器的运行中重要的是热量从燃料喷嘴之间的燃烧室排出。在本发明在钻井热喷射器中的应用中,热量传递到钻井周围的岩层中。本发明的加热器也可以用于其它用途中,例如蒸汽发生系统和化学工业或精炼过程的加热器中。
另外,通过在助燃空气导管中而不是在燃料导管中提供喷嘴,可以把空气和/或另一种氧化剂分阶段加入到燃料中。
输送到钻井底部的燃料和氧化剂在导管14周围的钻井空间内混合并反应,形成燃烧产物。这个空间是本发明的轴流式燃烧室。燃烧产物向钻井上部移动,并在井盖处的废气出口排出。可以处理燃烧产物除去污染物,并且通过膨胀涡轮机或热交换器从燃烧产物中回收能量也是希望的。
当燃烧产物在钻井中升高到待加热的岩层之上时,在氧化剂和沿着导管向下流动的燃料与燃烧产物之间进行了热交换。这种热交换不仅节约了能量,而且产生了本发明希望的无焰燃烧。燃料和氧化剂在其沿着各自的导管向下流动时被充分预热使得在最终混合点处两种气流的混合物的温度高于其自燃温度。产生了无焰燃烧,避免了作为辐射加热源的火焰。因此,热量以基本均匀的方式从钻井中传递出来。
电线15可以与一个接头16或其它方式在电绝缘的下面连接到靠近井盖的燃料管线12上,为燃烧器的起始加热和起动提供电能。在靠近钻井的底部在燃料导管17的周围和氧化剂导管18的周围可以用一个或多个导电定中心装置提供电接地。在燃料导管上在电接地定中心装置之上的定中心装置是电绝缘定中心装置。优选的是在喷嘴附近燃料导管的壁厚减小使得对燃料气导管施加的电能在喷嘴的上方产生可以忽略的电阻加热,而在喷嘴的下方产生显著的电阻加热。优选的是提供足够的热量,使得从喷嘴排出到流动的氧化剂(或空气)流中的燃料在与所说的氧化剂混合时,其温度为燃料-氧化剂混合物的自燃温度或高于该温度。最优选的是,在这些起动条件下,燃料和氧化剂的混合物的温度高于所说的混合物的自燃温度。这样,当燃料通过喷嘴并在喷嘴之间的氧化剂混合后,燃料将会点火。
优选的是通过在喷嘴附近提供催化表面19降低燃料一氧化剂的自燃温度。优选的是在氧化剂导管10的内表面提供这个催化表面。此外,可以为燃料导管提供这样的表面,或者在氧化剂导管内单独放置一个管或含有催化剂的表面。也可以提供其它的催化表面,例如,在氧化剂导管的外面的燃烧产物环状空间内。这种附加的催化表面可以保证在钻井内部产生完全燃烧。所说的催化表面还可以明显地增大温度范围,在该温度范围内,所说的燃烧器可以通过降低燃料发生氧化的温度进行运行。
本发明的无焰燃烧器的起动可以通过在起动阶段提供过量的氧化剂,和/或使用具有低点火温度的燃料(如氢气)进一步增强。优选的氧化剂包括过量的氧气和氮的氧化物。可以与天然气一起提供氢气,也可以把氢气作为替换气体与存在的一氧化碳和/或存在的二氧化碳一起提供。二氧化碳的存在不是优选的,但是是可以容忍的,一些二氧化碳的去除在经济上可能是不可行的。
可以接受的催化剂材料包括贵金属、半贵金属和过渡金属氧化物。一般来说,已知的氧化催化剂可以用于本发明。也可以使用这样的金属或金属氧化物。
起动的氧化剂和/或燃料优选的是仅使用到把燃烧器加热到足以用甲烷(天然气)作燃料,用空气作氧化剂就可以运行的温度(即,把燃烧器加热到甲烷在空气中的点火温度以上)。
为了获得无焰燃烧而对甲烷等燃料气进行的预热可能导致在燃料导管内大量产生碳,除非在燃料气流中含有碳形成抑制剂。碳形成抑制剂可以是二氧化碳、水蒸气、氢气或其混合物。由于氢气的成本一般较高,二氧化碳和水蒸气是优选的。
当氧化剂气流和燃料之间的反应不受混合过程限制并且混合气流的温度高于混合气流的自燃温度时,一般发生无焰燃烧。通过在混合点避免高温并向含有氧化剂的气流中混入较小增量的燃料可以做到这一点。通过未燃烧的燃料和燃烧产物之间的明亮界面可以证实火焰的存在。为了避免火焰的产生,优选的是在混合前把燃料和氧化剂加热到约815℃和约1260℃之间的某一温度。优选的是把所说的燃料以较小的增量与氧化剂气流混合以促进更快的混合。例如,可以以一定的增量加入足够的燃料,该增量能使燃烧把所说的气流的温度提高约28℃-56℃。
使用燃料导管作为电阻加热器为本发明的无焰燃烧器的起动提高起始的热量是一个有意义的改进,因为无论如何燃料导管都是存在的,一般是用导电材料制成的,并且一般较厚,可以期望它是一个可靠的加热器。可以变化燃料导管的厚度使得在燃料导管的长度上的预定位置上产生热量的释放。例如,在井式热喷射器应用中,为了在燃料的最高浓度处点燃所说的混合气流,并且在废气通过钻井向上排出之前使燃料燃烧,可以希望对钻井的最低部分进行电加热。可以在井盖上把电能与燃料导管相连,燃料导管用绝缘支架支撑,并用绝缘定中心装置保持在空气供应导管之内的中心。然后在用作加热器的部分之下把燃料导管接地。
钯或铂等催化金属可以涂敷(优选的是通过刷式电镀法)在燃烧室内的表面上,以增强低温下燃料的氧化。已经发现这样的催化表面在温度低至260℃时能非常有效地促进甲烷在空气中的氧化反应。这个反应在催化剂表面快速发生,一般来说,靠近催化表面的边界层内的气体能够快速完全反应。在燃烧室内有一个显著的催化表面的优点是无焰燃烧器能够运行的温度范围可以大大增大。
实施例
使用各种燃料、氧化剂和催化剂表面的组合,用一个热反应器来提供发生氧化反应的温度。所说的反应器是一个用电阻加热线圈缠绕并覆盖绝缘材料的2.54cm的不锈钢管。控温热电偶放在靠近所说的管子的外表面的绝缘材料之下。在所说的管子内,在进口、中间和出口处也提供热电偶。把贵金属带或带有贵金属涂层的不锈钢带悬挂在管子内以试验催化活性。把预热到低于希望的试验温度的某一温度的空气注入到管子中的电加热的试验区域内。变化电阻加热器的电能直至在试验区域内获得要求的温度并通过安装在管内的热电偶测量达到稳定状态。然后通过混合的T形管向预热的空气流中注入燃料并使其流过电加热区域。把4个0.32cm宽、约40cm长的铂带或两面涂有铂或钯的0.95cm宽、约0.16cm厚、约40cm长的不锈钢带悬挂在管内以试验催化活性。当试验区域内含有催化剂涂敷的带或贵金属带时,并且高于催化点火温度时,燃料的添加使内部中间处和出口的热电偶温度升高。在催化的点火温度之下时,没有观察到这样的温度升高。在没有催化剂涂敷的带或贵金属带存在时,在观察到温度升高之前必须把试验区域加热到燃料的自燃温度。测量的未催化的和催化的自燃温度总结在表中,测量的未催化的或催化的自燃温度称为实测自燃温度。
燃料 实测自动点火温度℃ 空气流量CC/MIN 空气中的燃料浓度VOL% 空气中加速剂的量VOL%   催化剂
天然气     788     380     10.5
天然气     732     380     2.6   N2O/21
天然气     677     380     2.6     O2/40
二甲醚     510     380     2.6
二甲醚     316     380     2.6   N2O/21
H2     659     380     13
H2     49     380     13   Pt
66.6%H233.3%CO     676     380     13
66.6%H233.3%CO     213     380     13   Pt
66.6%H233.3%CO     211     380     13   N2O/44.7   Pt
66.6%H233.3%CO     149     0     13  380CC/MIN100%N2O   Pt
甲烷     310     380     13   Pd
H2     149     380     13   Pd
66.6%H233.3%CO     154     380     13   Pd
从该表中可以看出,向燃料气流中添加N2O达到降低了混合物的实测自燃温度。而且,氢气作为燃料的掺入和催化表面的存在也大大降低了动力学自燃温度。
用一个3.048m的试验燃烧器在分布式燃烧器应用中试验一英寸反应器的结果。在内径为5.08cm的燃烧管线内提供一个外径2.54cm的燃料气管线。所说的燃料注入管线向靠近燃烧管线的进口端的燃料注入孔提供一个燃料导管。在一个隔热的管中放置所说的燃烧管线,并把热电偶沿燃料供应管线放置。利用两个不同的燃烧管线。一个燃烧管线用“HAYNES120”合金板制造。把该合金板的一面电刷镀平均厚度为0.000254cm的钯。然后把该合金板折断成形、弯曲并焊接在一个内表面涂敷钯的3.048m长的管子内。用一个“MAXON”燃烧器向所说的3.048m长燃烧管线提供助燃气体。并在所说的燃烧器和燃烧管线之间的混合区内用来自“MAXON”燃烧器的废气与不同量的空气和/或气体添加剂混合。为了在所说的燃烧管线内维持均匀的温度,把三个电加热器(每个加热器带有自己的控制器)沿着所说的燃烧管线的长度方向上放在外面。
进行了一系列试验,一个试验用涂敷钯的燃烧管线,一个试验用未涂敷钯的管线。在温度约为15℃,压力约为1大气压下测定时,以约0.635m3/小时的流量通过燃料气注入孔注入燃料气,以约374m3/小时的流量注入空气,包括燃烧器的气体和二次空气。向燃烧器提供足够的燃料气体以在燃烧管线的进口达到目标温度。对于催化的结构(曲线A)和不催化的结构(曲线B),注入甲烷的燃烧百分数在图2中表示为燃烧管线进口温度的函数。从图2可以看出,在设备可以运行的最低的温度下约为260℃,用钯涂敷的燃烧管线,55%的甲烷被氧化。最低的运行温度可以略低于260℃,但是,可以得到的设备在更低的温度下不能运行。在使用没有钯涂层的燃烧管线时,甲烷的一些氧化约在704℃发生,甲烷的氧化在约816℃下快速发生。在871℃和871℃以上的温度,钯表面的存在没有影响,因为无论用不用钯表面,甲烷的氧化都能快速进行并完成。
低于704℃氧化的甲烷的温度无关性趋于证实在钯表面处的边界层内的甲烷快速氧化,甲烷到该边界层的传送而不是反应动力学控制着甲烷氧化的程度。在约704℃和更高的温度下,放热氧化反应变得占优势,温度依赖性是由于这种放热氧化反应。

Claims (18)

1、无焰燃烧器,包括:
一个轴流式燃烧室,一端与氧化剂进口相连,另一端与燃烧产物出口相连;
一个在所说的轴流式燃烧室内的燃料导管,所说的燃料导管确定了一个燃料空间,所说的燃料空问与燃料供应装置连接,并通过许多沿着燃料导管布置的喷嘴与所说的燃烧室相连,每个喷嘴之间分开一定的距离,其中,在所说的氧化剂从进口端向燃烧产物出口端流过时,所说的氧化剂可以通过所说的燃烧室并与通过喷嘴来自所说的燃料空间的燃料混合;
一个位于所说的轴流式燃烧室内的催化表面,所说的催化表面能有效地把燃料与氧化剂的混合物的自燃温度从未催化的自燃温度降低到催化的自燃温度。
2、根据权利要求1的燃烧器,其中,所说的催化表面包括所说的燃料导管的外表面。
3、根据权利要求1的燃烧器,其中,所说的催化表面包括所说的燃烧室的内表面。
4、根据权利要求1的燃烧器,其中,所说的燃烧室由在钻井内的一个管的内表面确定。
5、根据权利要求1的燃烧器,还包括一种从至少两个喷嘴之间的燃烧室空隙内排出热量的装置,所说的排出热量的装置能排出一定量的热量,这些热量可以导致燃烧室内的温度在稳定态时高于燃料在空气中的自燃温度,但是低于约1100℃。
6、根据权利要求5的燃烧器,其中,所说的从至少两个喷嘴之间的燃烧室空隙内排出热量的装置包括岩层,热量可以通过在所说的燃烧室周围的环形空间通过对流和传导从所说的燃烧室传递到所说的岩层上。
7、根据权利要求1的燃烧器,其中,所说的催化表面包括钯。
8、根据权利要求1的燃烧器,还包括一个电源供给装置,能够有效地通过所说的燃料导管一定量的电流,所说的电流在所说的燃料通过所说的喷嘴时,可以有效地把至少一个喷嘴附近的燃料导管加热到燃料点火温度以上。
9、根据权利要求8的燃烧器,其中,所说的燃烧器在一个钻井内。
10、根据权利要求9的燃烧器,其中,所说的燃料导管是一个从井盖悬浮下来的管子,所说的燃烧器还包括:一个在井盖处向所说的燃料导管提供电能的装置;所说的燃料导管在喷嘴附近比在喷嘴以上的厚度更薄,所说的燃料导管从至少一个喷嘴之下的一点接地。
11、一种无焰燃烧器,包括:
一个轴流式燃烧室,一端与氧化剂进口相连,另一端与燃烧产物出口相连;
一个在所说的轴流式燃烧室内的燃料导管,所说的燃料导管确定了一个燃料空间,所说的燃料空间与燃料供应装置连接,并通过许多沿着燃料导管布置的喷嘴与所说的燃烧室相连,其中,所说的燃料导管由一种导电材料构成;
一个电源供给装置,能够有效地通过所说的燃料导管一定量的电流,所说的电流在所说的燃料通过所说的喷嘴时,可以有效地把至少一个喷嘴附近的燃料导管加热到燃料点火温度以上。
12、根据权利要求11的燃烧器,其中,所说的燃烧器在一个钻井之内。
13、根据权利要求12的燃烧器,其中,所说的燃料导管是一个从井盖上悬浮的一个管;在井盖处提供电源;所说的燃料导管在所说的喷嘴附近比在喷嘴以上更薄;所说的燃料导管从至少一个喷嘴之下的一点接地。
14、一种使无焰燃烧器点火的方法,包括;
提供一个轴流式燃烧室,一端与氧化剂进口相连,另一端与燃烧产物出口相连;
提供一个在所说的轴流式燃烧室内的燃料导管,所说的燃料导管确定了一个燃料空间,所说的燃料空间与燃料供应装置连接,并通过许多沿着燃料导管布置的喷嘴与所说的燃烧室相连;
向所说的燃烧室内通入一种选自由氮的氧化物和过量氧气组成的组中的氧化剂;
向所说的燃料空间通入一个燃料流:
把所说的燃料流、氧化剂流或燃料和氧化剂两者加热到当燃料与所说的氧化剂混合时可以导致所说的氧化剂与所说的燃料发生反应的温度;
不断向所说的燃烧室通入所说的氧化剂,并且不断向所说的燃料导管通入燃料,直至所说的燃烧室内的温度超过所说的燃料在空气中的自燃温度;
在所说的燃烧室内的温度超过所说的燃料在空气中的自燃温度之后,用空气代替所说的氧化剂。
15、根据权利要求14的方法,还包括使所说的燃料导管通过一定量电流的步骤,所说的电流量应该足以使所说的燃料导管在至少一个喷嘴附近的至少一部分导管加热到至少260℃的温度。
16、根据权利要求14的方法,还包括在所说的燃烧室内提供催化表面的步骤,所说的催化表面有效地降低燃料和氧化剂在所说的催化表面反应的温度。
17、根据权利要求14的方法,其中,所说的燃料是氢气。
18、根据权利要求14的方法,其中,所说的燃料包括氢气和一氧化碳。
CN96199386A 1995-12-27 1996-12-17 无焰燃烧器和其点火方法 Expired - Lifetime CN1079885C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US934595P 1995-12-27 1995-12-27
US60/009,345 1995-12-27

Publications (2)

Publication Number Publication Date
CN1206447A true CN1206447A (zh) 1999-01-27
CN1079885C CN1079885C (zh) 2002-02-27

Family

ID=21737075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96199386A Expired - Lifetime CN1079885C (zh) 1995-12-27 1996-12-17 无焰燃烧器和其点火方法

Country Status (21)

Country Link
US (3) US5899269A (zh)
EP (1) EP0870100B1 (zh)
JP (1) JP3747066B2 (zh)
KR (1) KR100445853B1 (zh)
CN (1) CN1079885C (zh)
AT (1) ATE191254T1 (zh)
AU (1) AU696743B2 (zh)
BR (1) BR9612363A (zh)
CA (1) CA2240411C (zh)
DE (1) DE69607485T2 (zh)
DK (1) DK0870100T3 (zh)
EA (1) EA000249B1 (zh)
EG (1) EG21060A (zh)
ES (1) ES2145513T3 (zh)
GR (1) GR3033618T3 (zh)
IL (1) IL124806A (zh)
JO (1) JO1948B1 (zh)
MA (1) MA24040A1 (zh)
PT (1) PT870100E (zh)
TR (2) TR199900452T2 (zh)
WO (1) WO1997024509A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209835A (zh) * 2008-11-06 2011-10-05 美国页岩油公司 从地下矿床中采收烃的加热器和方法
CN102257241B (zh) * 2008-10-17 2014-04-09 亚康科技股份有限公司 用于原位石油改质与回收的井衬管分段以及原位改质与回收的方法
CN104245165A (zh) * 2012-02-24 2014-12-24 格兰特·格克勒 用于环境修复和分解污染物的先进导热式加热器系统
CN106918053A (zh) * 2015-12-24 2017-07-04 中国石油天然气股份有限公司 点火装置及油田开采方法

Families Citing this family (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL124806A (en) * 1995-12-27 2001-04-30 Shell Int Research Flameless combustor
US5985222A (en) * 1996-11-01 1999-11-16 Noxtech, Inc. Apparatus and method for reducing NOx from exhaust gases produced by industrial processes
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US7011154B2 (en) * 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
EA003899B1 (ru) 2000-04-24 2003-10-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения углеводородов и синтез-газа из углеводородсодержащей формации
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6951247B2 (en) * 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US7104319B2 (en) * 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7165615B2 (en) * 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7090013B2 (en) * 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
NZ532091A (en) 2001-10-24 2005-12-23 Shell Int Research In situ recovery from a hydrocarbon containing formation using barriers
US7182132B2 (en) * 2002-01-15 2007-02-27 Independant Energy Partners, Inc. Linearly scalable geothermic fuel cells
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
EP1556580A1 (en) 2002-10-24 2005-07-27 Shell Internationale Researchmaatschappij B.V. Temperature limited heaters for heating subsurface formations or wellbores
US6796789B1 (en) 2003-01-14 2004-09-28 Petro-Chem Development Co. Inc. Method to facilitate flameless combustion absent catalyst or high temperature oxident
NZ567052A (en) 2003-04-24 2009-11-27 Shell Int Research Thermal process for subsurface formations
US7631691B2 (en) * 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
CA2541169A1 (en) * 2003-10-10 2005-04-28 David W Bacon Apparatus for igniting combustible mediums
EP1738052B1 (en) 2004-04-23 2008-04-16 Shell International Research Maatschappij B.V. Inhibiting reflux in a heated well of an in situ conversion system
US7168949B2 (en) * 2004-06-10 2007-01-30 Georgia Tech Research Center Stagnation point reverse flow combustor for a combustion system
US7425127B2 (en) * 2004-06-10 2008-09-16 Georgia Tech Research Corporation Stagnation point reverse flow combustor
US7293606B2 (en) * 2005-03-09 2007-11-13 391854 Alberta Limited Heat exchanging apparatus
KR20070110437A (ko) * 2005-03-10 2007-11-16 쉘 인터내셔날 리써취 마트샤피지 비.브이. 연료의 연소 및 공정 유체의 가열을 위한 열 전달 시스템및 이를 사용한 공정
RU2400669C2 (ru) * 2005-03-10 2010-09-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ пуска системы непосредственного нагревания (варианты), способ пуска устройства непосредственного нагревания (варианты)
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US7966822B2 (en) * 2005-06-30 2011-06-28 General Electric Company Reverse-flow gas turbine combustion system
WO2007050446A2 (en) 2005-10-24 2007-05-03 Shell Internationale Research Maatschappij B.V. Methods of filtering a liquid stream produced from an in situ heat treatment process
GB2431673B (en) 2005-10-26 2008-03-12 Schlumberger Holdings Downhole sampling apparatus and method for using same
US20090120103A1 (en) * 2005-12-21 2009-05-14 Vetcogray Scandinavia As Method and apparatus for sub sea power generation
US20070269755A2 (en) * 2006-01-05 2007-11-22 Petro-Chem Development Co., Inc. Systems, apparatus and method for flameless combustion absent catalyst or high temperature oxidants
US20070199700A1 (en) * 2006-02-27 2007-08-30 Grant Hocking Enhanced hydrocarbon recovery by in situ combustion of oil sand formations
US7520325B2 (en) 2006-02-27 2009-04-21 Geosierra Llc Enhanced hydrocarbon recovery by in situ combustion of oil sand formations
US8151874B2 (en) 2006-02-27 2012-04-10 Halliburton Energy Services, Inc. Thermal recovery of shallow bitumen through increased permeability inclusions
US20070199710A1 (en) * 2006-02-27 2007-08-30 Grant Hocking Enhanced hydrocarbon recovery by convective heating of oil sand formations
US7748458B2 (en) * 2006-02-27 2010-07-06 Geosierra Llc Initiation and propagation control of vertical hydraulic fractures in unconsolidated and weakly cemented sediments
US20070199705A1 (en) * 2006-02-27 2007-08-30 Grant Hocking Enhanced hydrocarbon recovery by vaporizing solvents in oil sand formations
US20070199712A1 (en) * 2006-02-27 2007-08-30 Grant Hocking Enhanced hydrocarbon recovery by steam injection of oil sand formations
US20070199706A1 (en) * 2006-02-27 2007-08-30 Grant Hocking Enhanced hydrocarbon recovery by convective heating of oil sand formations
US7604054B2 (en) * 2006-02-27 2009-10-20 Geosierra Llc Enhanced hydrocarbon recovery by convective heating of oil sand formations
US7404441B2 (en) * 2006-02-27 2008-07-29 Geosierra, Llc Hydraulic feature initiation and propagation control in unconsolidated and weakly cemented sediments
US7591306B2 (en) * 2006-02-27 2009-09-22 Geosierra Llc Enhanced hydrocarbon recovery by steam injection of oil sand formations
US20070199711A1 (en) * 2006-02-27 2007-08-30 Grant Hocking Enhanced hydrocarbon recovery by vaporizing solvents in oil sand formations
US20070199701A1 (en) * 2006-02-27 2007-08-30 Grant Hocking Ehanced hydrocarbon recovery by in situ combustion of oil sand formations
US20070199697A1 (en) * 2006-02-27 2007-08-30 Grant Hocking Enhanced hydrocarbon recovery by steam injection of oil sand formations
US7866395B2 (en) * 2006-02-27 2011-01-11 Geosierra Llc Hydraulic fracture initiation and propagation control in unconsolidated and weakly cemented sediments
US20070199695A1 (en) * 2006-02-27 2007-08-30 Grant Hocking Hydraulic Fracture Initiation and Propagation Control in Unconsolidated and Weakly Cemented Sediments
US7543638B2 (en) * 2006-04-10 2009-06-09 Schlumberger Technology Corporation Low temperature oxidation for enhanced oil recovery
WO2007126676A2 (en) 2006-04-21 2007-11-08 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US8381806B2 (en) 2006-04-21 2013-02-26 Shell Oil Company Joint used for coupling long heaters
US20070254252A1 (en) * 2006-04-28 2007-11-01 Guenter Schaefer Hydrogen burner with a shut-off valve near the gas jets
US8016038B2 (en) * 2006-09-18 2011-09-13 Schlumberger Technology Corporation Method and apparatus to facilitate formation sampling
US7878243B2 (en) * 2006-09-18 2011-02-01 Schlumberger Technology Corporation Method and apparatus for sampling high viscosity formation fluids
US7770646B2 (en) 2006-10-09 2010-08-10 World Energy Systems, Inc. System, method and apparatus for hydrogen-oxygen burner in downhole steam generator
US7712528B2 (en) 2006-10-09 2010-05-11 World Energy Systems, Inc. Process for dispersing nanocatalysts into petroleum-bearing formations
CA2702099A1 (en) * 2006-10-12 2008-04-17 Stonewick, Inc. Catalytic burner
AU2007313395B2 (en) 2006-10-13 2013-11-07 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
AU2007313394B2 (en) 2006-10-13 2015-01-29 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
CA2663650A1 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Improved method of developing a subsurface freeze zone using formation fractures
AU2007313396B2 (en) 2006-10-13 2013-08-15 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
WO2008048448A2 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Heating an organic-rich rock formation in situ to produce products with improved properties
CA2666959C (en) 2006-10-20 2015-06-23 Shell Internationale Research Maatschappij B.V. Moving hydrocarbons through portions of tar sands formations with a fluid
US8162052B2 (en) 2008-01-23 2012-04-24 Schlumberger Technology Corporation Formation tester with low flowline volume and method of use thereof
CA2675780C (en) 2007-03-22 2015-05-26 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
WO2008115356A1 (en) 2007-03-22 2008-09-25 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US20080241774A1 (en) * 2007-03-30 2008-10-02 Pierangelo Ghilardi Compact apparatus for generating a hot air flow with a gas burner
AU2008236737A1 (en) * 2007-04-05 2008-10-16 Worcester Polytechnic Institute Composite structures with porous anodic oxide layers and methods of fabrication
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
AU2008253753B2 (en) 2007-05-15 2013-10-17 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
CN101680284B (zh) 2007-05-15 2013-05-15 埃克森美孚上游研究公司 用于原位转化富含有机物岩层的井下燃烧器井
US20080290719A1 (en) * 2007-05-25 2008-11-27 Kaminsky Robert D Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
KR20100061445A (ko) * 2007-07-20 2010-06-07 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 무화염 연소 히터
ATE511062T1 (de) * 2007-07-20 2011-06-15 Shell Int Research Heizvorrichtung zur flammenlosen verbrennung
US7647966B2 (en) * 2007-08-01 2010-01-19 Halliburton Energy Services, Inc. Method for drainage of heavy oil reservoir via horizontal wellbore
CA2700998C (en) 2007-10-19 2014-09-02 Shell Internationale Research Maatschappij B.V. Irregular spacing of heat sources for treating hydrocarbon containing formations
US8671658B2 (en) 2007-10-23 2014-03-18 Ener-Core Power, Inc. Oxidizing fuel
US8393160B2 (en) 2007-10-23 2013-03-12 Flex Power Generation, Inc. Managing leaks in a gas turbine system
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US7832477B2 (en) 2007-12-28 2010-11-16 Halliburton Energy Services, Inc. Casing deformation and control for inclusion propagation
EP2098683A1 (en) 2008-03-04 2009-09-09 ExxonMobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
EP2276559A4 (en) 2008-03-28 2017-10-18 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CA2715186C (en) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
AU2009251533B2 (en) 2008-04-18 2012-08-23 Shell Internationale Research Maatschappij B.V. Using mines and tunnels for treating subsurface hydrocarbon containing formations
US8091636B2 (en) * 2008-04-30 2012-01-10 World Energy Systems Incorporated Method for increasing the recovery of hydrocarbons
CN102037211B (zh) 2008-05-23 2014-12-17 埃克森美孚上游研究公司 基本恒定组成气体生产的油田管理
AU2009303604B2 (en) 2008-10-13 2013-09-26 Shell Internationale Research Maatschappij B.V. Circulated heated transfer fluid heating of subsurface hydrocarbon formations
AU2009303735B2 (en) 2008-10-14 2014-06-26 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
CA2738873A1 (en) * 2008-10-29 2010-05-06 Exxonmobil Upstream Research Company Electrically conductive methods for heating a subsurface formation to convert organic matter into hydrocarbon fluids
US8701413B2 (en) 2008-12-08 2014-04-22 Ener-Core Power, Inc. Oxidizing fuel in multiple operating modes
WO2010096210A1 (en) 2009-02-23 2010-08-26 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8621869B2 (en) 2009-05-01 2014-01-07 Ener-Core Power, Inc. Heating a reaction chamber
US20100275611A1 (en) * 2009-05-01 2010-11-04 Edan Prabhu Distributing Fuel Flow in a Reaction Chamber
CA2757483C (en) 2009-05-05 2015-03-17 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
CA2896436C (en) * 2009-07-17 2017-02-07 World Energy Systems Incorporated Method and apparatus for a downhole gas generator
AU2010318595C1 (en) 2009-11-12 2016-10-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
WO2011112513A2 (en) 2010-03-08 2011-09-15 World Energy Systems Incorporated A downhole steam generator and method of use
US8893468B2 (en) 2010-03-15 2014-11-25 Ener-Core Power, Inc. Processing fuel and water
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US20110256052A1 (en) * 2010-04-15 2011-10-20 Thomas Merritt System and method for the generation of hydrogen fuel product
US8652239B2 (en) 2010-05-03 2014-02-18 Worcester Polytechnic Institute High permeance sulfur tolerant Pd/Cu alloy membranes
WO2012003077A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
WO2012003080A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Low emission power generation systems and methods
CA2801492C (en) 2010-07-02 2017-09-26 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
CN102959203B (zh) 2010-07-02 2018-10-09 埃克森美孚上游研究公司 通过排气再循环的浓缩空气的化学计量燃烧
AU2011296521B2 (en) 2010-08-30 2016-06-23 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
BR112013001022A2 (pt) 2010-08-30 2016-05-24 Exxonmobil Upstream Res Compony redução de olefina para geração de óleo por pirólise in situ
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9057028B2 (en) 2011-05-25 2015-06-16 Ener-Core Power, Inc. Gasifier power plant and management of wastes
US8955585B2 (en) 2011-09-27 2015-02-17 Halliburton Energy Services, Inc. Forming inclusions in selected azimuthal orientations from a casing section
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9279364B2 (en) 2011-11-04 2016-03-08 Ener-Core Power, Inc. Multi-combustor turbine
CA2845012A1 (en) 2011-11-04 2013-05-10 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9273606B2 (en) 2011-11-04 2016-03-01 Ener-Core Power, Inc. Controls for multi-combustor turbine
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
CN102563626B (zh) * 2012-01-17 2014-12-17 中国科学技术大学 一种无焰燃烧装置
CA2898956A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
WO2013112133A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US9534780B2 (en) 2012-03-09 2017-01-03 Ener-Core Power, Inc. Hybrid gradual oxidation
US9234660B2 (en) 2012-03-09 2016-01-12 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US8980192B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US9381484B2 (en) 2012-03-09 2016-07-05 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US8844473B2 (en) 2012-03-09 2014-09-30 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US9347664B2 (en) 2012-03-09 2016-05-24 Ener-Core Power, Inc. Gradual oxidation with heat control
US9371993B2 (en) 2012-03-09 2016-06-21 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US9359947B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US9353946B2 (en) 2012-03-09 2016-05-31 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9726374B2 (en) 2012-03-09 2017-08-08 Ener-Core Power, Inc. Gradual oxidation with flue gas
US8926917B2 (en) 2012-03-09 2015-01-06 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US8671917B2 (en) 2012-03-09 2014-03-18 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US8807989B2 (en) 2012-03-09 2014-08-19 Ener-Core Power, Inc. Staged gradual oxidation
US9328916B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation with heat control
US9567903B2 (en) 2012-03-09 2017-02-14 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9273608B2 (en) 2012-03-09 2016-03-01 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9328660B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9359948B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US8980193B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9206980B2 (en) 2012-03-09 2015-12-08 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9267432B2 (en) 2012-03-09 2016-02-23 Ener-Core Power, Inc. Staged gradual oxidation
US9017618B2 (en) 2012-03-09 2015-04-28 Ener-Core Power, Inc. Gradual oxidation with heat exchange media
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
JP2013249605A (ja) * 2012-05-31 2013-12-12 Ihi Corp ガスハイドレート回収装置
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9291027B2 (en) 2013-01-25 2016-03-22 Schlumberger Technology Corporation Packer and packer outer layer
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
EP2964735A1 (en) 2013-03-08 2016-01-13 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
CA2923681A1 (en) 2013-10-22 2015-04-30 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
EA201691560A1 (ru) 2014-01-31 2017-01-30 Гарри Бэйли Керлетт Способ и система добычи подземных природных ресурсов
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
CN104453818B (zh) * 2014-11-06 2018-01-02 中国石油天然气股份有限公司 一种火烧吞吐井注采一体化管柱及其点火方法
CA2967325C (en) 2014-11-21 2019-06-18 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN105840162B (zh) * 2016-05-17 2019-09-17 赵金岷 地下燃烧对流加热方法
US10272385B2 (en) * 2016-05-17 2019-04-30 Linde Engineering North America, Inc. Flameless thermal oxidizer for oxidizing gaseous effluent streams containing hydrogen gas
US10697630B1 (en) 2019-08-02 2020-06-30 Edan Prabhu Apparatus and method for reacting fluids using a porous heat exchanger
RU2750638C1 (ru) * 2020-02-28 2021-06-30 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Устройство для беспламенного получения тепловой энергии из углеводородных топлив
US11433352B1 (en) 2021-10-18 2022-09-06 Edan Prabhu Apparatus and method for oxidizing fluid mixtures using porous and non-porous heat exchangers
US11939901B1 (en) 2023-06-12 2024-03-26 Edan Prabhu Oxidizing reactor apparatus

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US35696A (en) * 1862-06-24 Improved mode of constructing and arranging foot-lights for theaters
US3072189A (en) * 1958-05-12 1963-01-08 Phillips Petroleum Co Process and apparatus for in situ combustion
US2985240A (en) * 1959-05-21 1961-05-23 Sinclair Oil & Gas Company Bottom hole burner
US3272262A (en) * 1964-01-23 1966-09-13 Pan American Petroleum Corp Ignition of thick pay formations
US3507332A (en) * 1965-11-29 1970-04-21 Phillips Petroleum Co High temperature cements
US3372754A (en) * 1966-05-31 1968-03-12 Mobil Oil Corp Well assembly for heating a subterranean formation
US3880235A (en) * 1969-12-30 1975-04-29 Sun Oil Co Delaware Method and apparatus for igniting well heaters
US3817332A (en) * 1969-12-30 1974-06-18 Sun Oil Co Method and apparatus for catalytically heating wellbores
US3680635A (en) * 1969-12-30 1972-08-01 Sun Oil Co Delaware Method and apparatus for igniting well heaters
US3680636A (en) * 1969-12-30 1972-08-01 Sun Oil Co Method and apparatus for ignition and heating of earth formations
US3713482A (en) * 1971-05-04 1973-01-30 H Lichte Gas flow regulator for wellbore catalytic heaters
US3928961A (en) * 1971-05-13 1975-12-30 Engelhard Min & Chem Catalytically-supported thermal combustion
US3780803A (en) * 1971-05-17 1973-12-25 Sun Oil Co Downhole control valve for catalytic wellbore heaters
US3804163A (en) * 1972-06-08 1974-04-16 Sun Oil Co Catalytic wellbore heater
US3982592A (en) * 1974-12-20 1976-09-28 World Energy Systems In situ hydrogenation of hydrocarbons in underground formations
MX3874E (es) * 1975-12-29 1981-08-26 Engelhard Min & Chem Mejoras en metodo para iniciar un sistema de combustion utilizando un catalizador
US4237973A (en) * 1978-10-04 1980-12-09 Todd John C Method and apparatus for steam generation at the bottom of a well bore
US4377205A (en) * 1981-03-06 1983-03-22 Retallick William B Low pressure combustor for generating steam downhole
US4930454A (en) * 1981-08-14 1990-06-05 Dresser Industries, Inc. Steam generating system
US4445570A (en) * 1982-02-25 1984-05-01 Retallick William B High pressure combustor having a catalytic air preheater
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4640352A (en) * 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4706751A (en) * 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5355668A (en) * 1993-01-29 1994-10-18 General Electric Company Catalyst-bearing component of gas turbine engine
US5404952A (en) * 1993-12-20 1995-04-11 Shell Oil Company Heat injection process and apparatus
US5433271A (en) * 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
IL124806A (en) * 1995-12-27 2001-04-30 Shell Int Research Flameless combustor
US5862858A (en) * 1996-12-26 1999-01-26 Shell Oil Company Flameless combustor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102257241B (zh) * 2008-10-17 2014-04-09 亚康科技股份有限公司 用于原位石油改质与回收的井衬管分段以及原位改质与回收的方法
CN102209835A (zh) * 2008-11-06 2011-10-05 美国页岩油公司 从地下矿床中采收烃的加热器和方法
CN102209835B (zh) * 2008-11-06 2014-04-16 美国页岩油公司 从地下矿床中采收烃的加热器和方法
CN104245165A (zh) * 2012-02-24 2014-12-24 格兰特·格克勒 用于环境修复和分解污染物的先进导热式加热器系统
CN106918053A (zh) * 2015-12-24 2017-07-04 中国石油天然气股份有限公司 点火装置及油田开采方法

Also Published As

Publication number Publication date
KR19990076856A (ko) 1999-10-25
US5899269A (en) 1999-05-04
PT870100E (pt) 2000-09-29
KR100445853B1 (ko) 2004-10-15
TR199801220T2 (xx) 1998-10-21
AU1303397A (en) 1997-07-28
AU696743B2 (en) 1998-09-17
IL124806A (en) 2001-04-30
EG21060A (en) 2000-10-31
JO1948B1 (en) 1997-12-15
ES2145513T3 (es) 2000-07-01
JP2000503084A (ja) 2000-03-14
US6269882B1 (en) 2001-08-07
CA2240411A1 (en) 1997-07-10
EA000249B1 (ru) 1999-02-25
US6019172A (en) 2000-02-01
EA199800600A1 (ru) 1998-12-24
DK0870100T3 (da) 2000-07-17
JP3747066B2 (ja) 2006-02-22
CA2240411C (en) 2005-02-22
EP0870100B1 (en) 2000-03-29
ATE191254T1 (de) 2000-04-15
EP0870100A1 (en) 1998-10-14
GR3033618T3 (en) 2000-10-31
TR199900452T2 (xx) 1999-07-21
DE69607485D1 (de) 2000-05-04
WO1997024509A1 (en) 1997-07-10
BR9612363A (pt) 1999-07-13
IL124806A0 (en) 1999-01-26
CN1079885C (zh) 2002-02-27
MA24040A1 (fr) 1997-07-01
DE69607485T2 (de) 2000-09-14

Similar Documents

Publication Publication Date Title
CN1079885C (zh) 无焰燃烧器和其点火方法
US5862858A (en) Flameless combustor
US5404952A (en) Heat injection process and apparatus
USRE35696E (en) Heat injection process
IL158427A (en) System and method for transmitting heat into a hydrocarbon formation surrounding a heat injection well
US20070042306A1 (en) Apparatus for igniting combustible mediums
US5488990A (en) Apparatus and method for generating inert gas and heating injected gas
AU2002212320B2 (en) In-situ combustion for oil recovery
AU2002212320A1 (en) In-situ combustion for oil recovery
CN1079884C (zh) 无焰燃烧器及加热地下岩层的方法
CN102454386A (zh) 地下加热装置
EP1381752B1 (en) In-situ combustion for oil recovery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20020227

EXPY Termination of patent right or utility model