CN1192291C - 基于卫星定位系统的时间测量方法以及相应的设备和系统 - Google Patents

基于卫星定位系统的时间测量方法以及相应的设备和系统 Download PDF

Info

Publication number
CN1192291C
CN1192291C CNB988022761A CN98802276A CN1192291C CN 1192291 C CN1192291 C CN 1192291C CN B988022761 A CNB988022761 A CN B988022761A CN 98802276 A CN98802276 A CN 98802276A CN 1192291 C CN1192291 C CN 1192291C
Authority
CN
China
Prior art keywords
record
time
satellite
mobile
positioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB988022761A
Other languages
English (en)
Other versions
CN1246934A (zh
Inventor
N·F·克拉斯默
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SnapTrack Inc
Original Assignee
SnapTrack Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SnapTrack Inc filed Critical SnapTrack Inc
Publication of CN1246934A publication Critical patent/CN1246934A/zh
Application granted granted Critical
Publication of CN1192291C publication Critical patent/CN1192291C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS
    • G04R20/06Decoding time data; Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Electric Clocks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种测量和与卫星定位系统(SPS)一起使用的卫星数据消息相关的时间的方法和装置。在一种方法中,一个实体(通常是基站)接收了至少是卫星数据消息的一部分的第一记录。将第一记录和卫星数据消息的第二记录相比较,其中第一记录和第二记录至少在部分时间上是重叠的。然后,通过这种比较确定时间,而这个时间就指示远端实体(通常是移动SPS接收机)何时接收到第一记录(或获得第一记录的源)。描述了发明的多种其它方法并且还描述了发明的多种装置。这些方法和装置使用SPS信号测量日时间,而不用读取作为数据在这些信号中发射的卫星数据消息。这些方法和装置适用于接收的信号电平弱到不能够读取卫星数据消息的情况。

Description

基于卫星定位系统的时间测量方法以及相应的设备和系统
发明的背景
本发明涉及使用从卫星定位系统(SPS)接收的信号来定位它们自己或确定日时间的系统。
诸如GPS(全球定位系统)接收机这样的SPS接收机,一般是通过计算诸如GPS(或NAVSTAR)卫星这样的多重卫星同时发射的信号的相对到达时间来确定它们的位置的。这些卫星发射作为它们的卫星数据消息的一部分的卫星定位数据和称为“天文历”的时钟定时数据。另外,它们发射周时间(即,time-of-week,TOW)信息,以便接收机可以明确地确定本地时间。每个接收的GPS信号(按C/A模式)是由1023个符号的通常称为“chip(时间片)”的高速率(1.023MHz)重复伪随机(PN)图样构成的。加在这个图样上的是50Hz的低速率数据。这个数据就是上面提到的周时间信息的源。搜索并捕获GPS信号、读取多重卫星的天文历数据和其它数据并且通过这个数据计算接收机的位置(和精确的日时间)的过程是很耗时的,通常需要几分钟。在很多情况下,这样长的处理时间是不能接受的,并且严重地限制了小型化便携应用中的电池寿命。
另外,在很多卫星信号受到阻塞的情况下,从GPS卫星接收的信号电平低到不能够无误地解调并读取卫星数据信号。这种情况可能在个人跟踪和其它高速移动应用中出现。在这种情况下,接收机仍然可能捕获并跟踪GPS信号。但是,在不使用这些数据的情况下来进行定位和精确的时间测量就需要有其它的方法。
如下所解释,跟踪GPS信号而不读取数据消息在时间上会导致1毫秒的不确定性。如前所述,这种不确定性在常规GPS接收机中通常是通过读取卫星数据消息来解决的。在非常低的接收信号电平上,可以跟踪伪随机图样,或者通过处理大量重复的这种信号(例如在1秒内重复1000次)提供不确定的系统定时。然而,除非在一个数据周期(20毫秒)上测量的信噪比高于大约12dB,否则在试图解调这个信号时将出现大量的错误。本发明在这种读取已经变得不可能或不现实的情况下提供另一种解决时间不确定性的方案。
发明概要
本发明提供一种测量和与卫星定位系统(如GPS或Glonass)一起使用的卫星数据消息相关的时间的方法和装置。一个实施例中的方法包括以下步骤:(1)在一个实体接收卫星数据消息的至少一部分的第一记录;(2)将第一记录与卫星数据消息的第二记录相比较,其中第一记录和第二记录至少在部分时间上重叠;和(3)通过比较步骤确定时间,该时间指示远端实体接收第一记录(例如,第一记录的源)的时间。在这个实施例的一个例子中,远端实体是一个移动SPS接收机,并且该实体是通过无线(也可能是有线)链路与移动SPS接收机通信的基站。本发明的方法可以仅仅在基站完成。
一个建立接收机定时的本发明的实施例是为接收机形成卫星数据消息的一部分的估计并且将这个估计发送到基站。在基站,这个估计与从其它GPS接收机接收的一个卫星数据消息记录或GPS信息源比较。假设这个记录是无误的。然后,这个比较确定基站的消息中的哪一部分与远端单元发射的数据最接近于匹配。因为基站已经无误地读取了卫星数据消息,它可以将那个消息的每个数据比特与一个绝对时间标记相关连,就如发射的卫星所看到的那样。因此在基站比较的结果为远端发射的估计数据赋予了一个正确的时间。如果希望,这个时间信息可以发射回远端。
上述方案的一种变化是基站向远端发送一个清楚记录的卫星数据消息,加上与这个消息的开始相关的绝对时间。在这种情况下,远端将这个记录与通过处理它所接收的GPS信号而形成的这个数据的估计相比较。这个比较将提供两个记录之间的时间偏移,并藉此建立本地采集的数据的绝对时间。
附图的简要描述
图1A是一个可以接收SPS信号并与基站建立通信的组合移动SPS和通信系统的主要组成的框图。
图1B表示图1A的RF到IF变换器和频率综合器的典型实现的框图。
图2是说明本发明的一种方法的流程图。
图3是表示本发明的另一种方法的流程图。
图4A表示在本发明的一种具体方法中移动SPS接收机执行的方法;图4B表示基站执行的相应方法。
图5A表示一个本发明的基站的实施例。
图5B表示另一个本发明的基站的实施例。
图6表示本发明的一个系统,它包括SPS接收机、蜂窝电话站点、基站、互联网和客户计算机系统。
图7表示本发明在移动SPS接收机处为了确定卫星数据消息的接收时间所典型完成的图样匹配的简化视图。
图8A表示在本发明的另一个具体实施例中移动SPS接收机执行的方法,而图8B表示基站执行的相应方法。
图9表示常规GPS接收机的简化结构。
图10A,10B,10C和10D表示在根据本发明的不同信号处理阶段之后的抽样SPS信号的例子。
图11A,11B和11C表示在根据本发明的不同信号处理阶段之后的抽样SPS信号的其它例子。
优选实施例的详细描述
下面描述测量与卫星定位系统一起使用的卫星数据消息相关的时间的各种方法和装置。发明的讨论集中在美国全球定位卫星(GPS)系统上。然而,很显然这些方法也同样可以应用于类似的卫星定位系统,如俄国的Glonass系统。此外,应该理解本发明的教义同样可以应用于使用尖晶石形滑石(pseudolite)或卫星和尖晶石形滑石组合的定位系统。另外,提供各种基站和移动SPS接收机的结构是出于说明的目的,而不要解释为限制本发明。
图2表示可以用于结合移动通信接收机和发射机的移动SPS接收机(如图1A所示)的本发明的一般方法。图1A所示的移动GPS接收机100抽样卫星数据消息,如天文历,并且在步骤201建立一个消息记录。下面在方法200中,远端或移动GPS接收机在步骤203将这个记录发射到基站,如图5A或5B所示的基站。这个记录通常是移动SPS接收机接收的消息的某种表示。在步骤205,基站比较移动SPS发射的记录和另一个可以认为是卫星数据消息的参考记录的记录。这个参考记录具有相关的时间值,其中卫星数据消息的不同段都有与之相关的具体“参考”时间。在步骤207,基站确定移动GPS接收机抽样的卫星数据消息的时间。这个判决基于与参考记录相关的时间值,并且这个判决将指示移动GPS接收机接收该记录或该记录的源的时间。
图7用一种简化方法说明图2的步骤205中的比较操作。更具体地,图7表示分别用记录491和495表示的移动接收机的记录和基站的参考记录之间所尝试的比较。两个记录的横轴都表示时间。移动接收机的记录的部分493表示为了比较而向基站发射的部分。典型地,基站将具有在时间上至少与从移动接收机接收的记录部分重叠的相应部分497。图7中,这个重叠是完整的,该参考记录在移动接收机的记录的整个时间间隔上提供卫星数据消息。然而,这仅仅是一个例子,而重叠可以只是移动接收机的记录的一部分与来自基站的参考记录重叠。
图3更详细地说明本发明用以测量与卫星定位系统一起使用的卫星数据消息相关的时间的方法220。移动或远端GPS接收机在步骤221捕获GPS信号并且通过那些捕获的GPS信号确定伪范围。在步骤223,移动GPS接收机除去PN数据,并且通过用于建立或确定伪范围的捕获的GPS信号来建立卫星数据消息记录。这个记录通常是捕获的GPS信号中的天文历的某种表示并一般表示该数据的一个估计。在步骤225,移动GPS接收机向基站(如图5A或5B所示的基站)发射记录并且确定伪范围。
在步骤227,基站完成移动GPS接收机发射的记录和卫星天文历参考记录的互相关。这个参考记录通常包括与参考记录中的数据相关的精确时间标记(例如参考记录中的每个数据比特都有一个相关的时间值或“标记”),并且这个时间标记将用于确定移动GPS接收机接收原始捕获GPS信号的时间。在步骤229,基站通过互相关操作确定远端GPS接收机捕获GPS信号的时间。然后在步骤231,基站使用远端GPS接收机捕获GPS信号的时间并使用确定的伪范围来确定位置信息,这个位置信息可以是远端/移动GPS接收机的纬度和经度。在步骤233,基站可以将远端GPS接收机的这个位置信息通知另一个实体,如通过网络(如互联网或内部网)与基站相连的计算机系统。这将在下面结合图5B和6进一步描述。
下面我们更详细地解释几种在远端SPS接收机估计卫星数据的方法。这些方法分为两类:一类执行差分解调和数据的软判决(除去PN之后),而另一类在除去PN之后直接抽样原始的I/Q数据。第一种方法在图4A和4B中表示,而第二中在图8A和8B中表示。注意,这里的目的是确定远端和基站接收信号之间的到达时间差。由于假定基站具有精确的时间,因而这个时间差将确定远端数据接收的精确时间。如下面所解释的,这两种方案的差别在于远端(移动SPS接收机)必须完成的处理量和远端必须通过通信链路发射到基站的信息量。在本质上,需要在远端的处理负担和必须通过链路的数据质量之间折衷。
在描述图4A和4B与图8A和8B中的过程细节之前,先回顾以下常规GPS操作以便和本发明的方法对比。图9表示常规GPS接收机601的简化型式。
这种常规接收机601从GPS RF前端(例如下变频器和数字转换变换器)接收数字化的I/Q输入信号603,并且在混频器605中将这些输入信号603和来自数字振荡器607的信号混频。然后混频器605的输出在混频器609中与PN发生器611的输出混频,PN发生器611被微控制器617的信号619控制以便时间片推进(Chip advance)。微控制器617还控制数字振荡器607以将信号转换到近基带。
在常规GPS接收机的操作中,在没有噪声时从GPS卫星接收的信号表示为:
y(t)=AP(t)D(t)exp(j2pf0t+f)    (公式1)
其中P(t)是长度为1023,值为±1的重复二进制相移键控伪随机序列(时间片速率1.023Mchip/s),而D(t)是50波特的数据信号,它与PN帧的开始对齐,并且假设值也为±1。将信号转换到近基带后(例如,由混频器605进行此转换),通常使用相关器(可以考虑包括图9的组件609,611,613,615和617)除去PN码。这个装置在本地再生码P(t)(对于给定的卫星)并且确定接收的PN和本地产生的PN之间的相对相位关系。当相位对齐时,相关器用本地产生的参考来乘这个信号从而产生以下信号:
P(t)¥y(t)=P(t)AP(t)D(t)exp(j2pf0+f)=AD(t)exp(j2pf0t+f)    (公式2)
在这一点信号被窄带滤波(例如在滤波器613中)以除去数据信号D(t)的带外噪声。然后,抽样器615的抽样速率可以降低为数据速率的一个小倍数。因此,等式(2)右边的时间变量t的取值是mT/K,m=0,1,2,…,其中K是一个小整数(例如2),而T是比特周期。
然后,这点的数据抽样用于PN跟踪操作、载波跟踪和数据解调。这通常是在微控制器中用软件算法完成的,但是也可以用硬件完成。图9中,微控制器617分别向数字振荡器和PN发生器反馈修正信号621和619以保持本地产生的载波信号和PN信号与接收的信号相位同步。这个操作通常是对多路同时接收的GPS信号并行完成的(典型的是来自4颗或更多GPS卫星的4路或更多GPS信号)。
现在,在某些情况下(例如,低信噪比(“SNR”)),GPS信号可能太弱以至于不能可靠地提取数据D(t)。如前所述,常规GPS接收机需要读取这个数据以确定通用时间并且提供定位。本发明提供了另一种方案,在这种低SNR情况下,远端和基站一起工作,后者有权访问这个卫星数据信息。远端向基站发送信息,允许它计算与远端原来接收这个数据相关的时间。存在另一种配置,其中基站向远端发送信息以便让它计算这个接收时间。我们主要考虑第一种情况。
应该注意,在某些情况下,基站和远端之间时间协调可以通过在通信链路上发送精确的定时信号(例如脉冲或特殊波形)、并且通过链路等待时间的先验知识或测量环路时延(假设双向对称链路)而统计任何转接时间来实现。然而,在很多情况下,这种方案是不现实的或不可能的。例如,许多链路包括分组协议,其中在两次传输之间等待时间是不同的并且跨越很多秒。
本发明的方案是让远端形成数据序列D(t)的一部分的估计或对它所处理的一个版本的估计,并且将这个数据发射到基站。可以将这个数据序列与基站产生的类似的但更高度可靠的信号相比较。两个序列在时间上彼此相对滑动,一直到根据给定的度量标准(如最小均方误差)获得最佳匹配。这种“相关”过程与GPS接收机用来同步PN扩频序列的过程非常相象;然而在这里,操作是在非常低速率的数据信号上完成的,并且这种信号的图样是不断变化的,而且可能是事先未知的。
因为基站有可能知道与消息的每个组或单元相关的精确时间,所以它可以使用这个知识加上前述的比较来确定与远端接收的信号相关的原始时间。
因此,主要的问题是远端对数据序列D(t)或其派生物的估计。
图8A和8B所示估计数据序列的本发明一个具体实施例是在除去PN后简单抽样并存储信号记录,例如如公式(2)所示。这里假设以数据速率的小倍数来抽样信号;出于这种目的每秒100抽样可能就是合适的。注意,I和Q支路都必须抽样。同时,应该选取长度为25左右或更多的数据符号(0.5秒)记录,以便使数据图样对于基站识别而言是唯一的。注意,在公式(2)中还出现了少量的残余载波f0和未知载波相位f。确知载波频率的精度到±1/2数据信号的抽样速率是非常有益的,否则载波可能会导致数据信号的相位反转并因此破坏数据。
图8A说明根据这个具体实施例的移动GPS接收机所执行的方法。接收机在步骤503捕获特定的GPS信号的第一(或下一个,如果不是第一个的话)PN码,并且从信号中除去PN码。然后,接收机在步骤505完成对载频的精确估计,并在步骤507从输入信号中除去载波。然后在步骤509和511抽样并量化I和Q数据,并且将这个量化结果作为相应的卫星数据消息记录而存储,然后发送到基站(可能和发射特定的GPS信号的GPS卫星的相应伪范围一起)。在步骤513,接收机确定接收机是否已经对所有感兴趣的卫星(例如在移动GPS接收机视距内的所有卫星或至少4颗视距内的卫星)执行了步骤503,505,507,509,和511(并因此确定一个记录)。如果已经确定了每颗感兴趣的卫星的卫星数据消息记录,GPS接收机就将带有经历时间标记的记录发射(在步骤515)到基站。基站可以使用经历时间标记在基站估计和/或选择“参考”记录,它将与该记录进行比较(例如通过相关)。如果接收机没有从每颗感兴趣的卫星确定记录,那么移动GPS接收机就从步骤513返回步骤503,并重复步骤503,505,507,509,和511以确定从下一颗感兴趣的卫星接收的卫星数据消息记录。一个完成图8A的方法的GPS接收机(和通信接收机/发射机)的例子如图1A所示,并且将在下面更详细地描述这个GPS接收机。
基站在接收这个信息时可以改进频率估计并除去载波,然后通过将这个数据与从视野良好的GPS接收机接收(或从某些其它高可靠度GPS信号源、如从互联网或从GPS地面控制站接收)的高可靠度信号中提取的类似数据互相关来确定相对定时。
图8表示基站根据接收的远端发射的卫星数据消息的记录执行的方法521。在步骤523,基站接收相应于卫星数据消息的信号,然后在步骤525锁相到该记录并除去步骤525中的所有残余相位误差/滚动。与步骤523和525同时地,基站通常将跟踪并解调GPS信号并为这些数据消息提供时间标记,以便提供与已经解调的卫星数据消息的不同时间间隔相关的精确时间值。这在步骤527表示。典型地,基站将在这个基础上完成对卫星数据消息的跟踪和解调,以便在基站产生连续的参考记录并且存储这个“参考”记录的连续抽样。应该理解可以保持当前时间以前多达10到30分钟的这个连续的参考记录。即,基站在删除参考记录的最旧部分并且用时间上最新部分替换它之前,可以保持参考记录的拷贝长达30分钟。
在步骤529,基站将基站的参考记录与来自远端的自第一(或下一个)卫星的第一(如果不是第一则是下一个)卫星数据消息的参考记录相关。这个相关实际上是在两个记录之间比较以匹配图样,这样,基站就可以精确地确定远端接收记录的时间(实际上就是远端接收那个记录的源的时间,因为该记录自身就是源的估计)。应该理解,作为用来描述本发明,远端接收记录的时间实际上就是远端接收记录的源的时间。在步骤531,基站发现并且内插峰值位置,该位置指示远端接收当前卫星的记录和它的相应卫星数据消息的时间。在步骤533,基站确定是否已经对所有感兴趣的卫星确定了与所有相应记录相关的所有时间。如果不是,处理返回到步骤529,并且该过程对每个远端接收的记录重复。如果所有记录都已经处理以确定与所有感兴趣的卫星相应的时间和它们的相应卫星数据消息,那么处理就从步骤533执行到535,比较感兴趣的不同卫星的时间。在步骤537,使用多数逻辑来删除错误的或不明确的数据,然后在步骤539确定是否所有数据都是不明确的。如果不是所有数据都是不明确的,基站就通过向移动GPS单元中的通信接收机发射命令从而命令移动GPS接收机取得更多的数据。如果所有数据不是不明确的,那么在步骤543基站执行时间的加权平均,以确定移动GPS接收机接收卫星数据消息的平均时间。应该理解,在特定情况下,例如当GPS信号的抽样被数字化并存储在数字存储器中以便进一步处理时,只要抽样的持续时间短,实际上将有一次接收。在其它例子中,例如涉及序列相关(SerialCorrelation)时,其中:一次处理一个卫星、捕获来自那个卫星的信号并且做出那个信号的记录、然后在下一时间捕获另一颗卫星的信号的串行相关,在这种情况下,可能有多个接收时间,并且基站可能要确定那些时间中的每一个,并且按下面描述的方法来使用它们。
应该理解,至少在某些实施例中,基站将使用记录的接收时间结合通常由移动GPS接收机发送的伪范围来确定位置信息,如移动GPS接收机的纬度和经度和/或高度。
在某些情况下,以足够的经度确定残余载波频率(步骤525)可能会有困难,并且随后在互相关之前差分解调来自远端的数据和本地接收的数据。这种差分解调将结合图4A和4B在下面进一步描述。
如果通信链路容量(移动GPS接收机和基站之间)很低,则远端对解扩的信号(除去了PN后的信号)完成额外的处理是有好处的。如图4A和4B说明,为此目的的好的方案是远端通过对数据信号的时延乘法操作来差分检测这个信号,该时延设置为一个比特周期(20毫秒)或它的倍数。因此,如果公式(2)的基带信号表示为:
z(t)=AD(t)exp(j2pf0+f)         (公式3)
那么正确的操作将是:
z(t)z(t-T)*=A2D(t)D(t-T)exp(j2pf0T)=A2D1(t)exp(j2pf0T)  (公式4)
其中星号表示复共轭,T是比特周期(20毫秒),而D1(t)是通过差分解码原始数据序列(例如将变化映射为-1而不变映射为+1)形成的新的50波特序列。现在,如果载频误差和符号周期的倒数相比很小,那么后面的指数项的实部比虚部占支配地位,并且只有实部保留从而产生结果A2D1(t)。因此,等式(4)的运算将产生实信号流,而不是图8A所示方法的复信号流。当通过通信链路发射记录时,这本身将等分所要求的传输消息长度。由于信号A2D1(t)处在基带,因此可以用比图8A所示方法更低的速率对它进行抽样。同样,以可以只保留这个数据的符号,藉此减小发射的数据量。然而,这种方案将降低基站解析远优于一个符号周期(20毫秒)的时间的能力。这里我们应该注意,PN码以1毫秒的时间间隔重复,因此它对于进一步解决这个测量误差将是无用的。
图4A说明移动GPS接收机执行的处理步骤,而图4B说明基站根据本发明的这个具体实施例执行的处理步骤。移动GPS接收机在步骤301接收基站对位置信息的请求。应该理解在典型实施例中,这个接收将由通信接收机(如图1A中的移动GPS接收机100)来完成。为了响应位置信息请求,移动GPS接收机在步骤303从GPS信号中捕获第一(如果不是第一,则是下一个)PN码,并且从接收的GPS信号中除去该PN码。在步骤305,远端完成载频的精确估计;这个估计的精度应该高于GPS数据消息的抽样速率,它在50波特GPS数据的情况下典型值为100Hz。步骤305可以使用GPS接收机中的常规频率测量系统完成;这些频率测量系统通常使用常常包括锁相环的载波跟踪环来提取载波,然后使用频率测量电路或者带有锁相环的频率跟踪环。在步骤307,移动GPS接收机从剩余信号中除去载频,留下50波特的数据。然后在步骤309,以典型两倍数据速率抽样数据对剩余数据进行差分检测。应该理解,远端GPS接收机可以将数据发射到基站并且允许基站完成步骤309和311的差分检测和量化,而不在步骤309进行数据的差分检测。移动GPS接收机继续在步骤311量化并存储其结果,该结果是通常具有从半秒到1秒时间周期的卫星数据消息记录。然后在步骤313,移动GPS接收机确定是否已经为每颗感兴趣的卫星建立卫星数据消息记录,这些感兴趣的卫星可以是视距内的所有卫星或至少4颗视距内的卫星。如果尚未为每颗感兴趣的卫星建立卫星数据消息记录和它的相应卫星数据消息,那么处理从步骤313返回步骤303,并且这个循环一直进行到已经为每颗感兴趣的卫星的每个卫星数据消息建立记录。如果所有感兴趣的卫星的记录都已经确定并建立,那么处理从步骤313前进到步骤315,在此,移动GPS接收机通过它的通信发射机发射所有感兴趣的卫星的带有粗略(经历)时间标记的记录,由基站根据上述方法对其进行使用。
如图4B所示在步骤327基站接收这些来自移动GPS接收机的记录。于移动GPS接收机运行的同时,基站通常跟踪并且解调GPS数据消息并且为那些数据消息提供时间标记,以有效地标记这些数据消息;这在图4B所示的步骤321中完成。然后,在步骤323,基站差分解码该数据以提供在步骤325的相关操作中将要使用的基准数据。从移动GPS接收机接收的数据通常为相关操作而存储起来,并且与步骤323得到的存储的差分解码的数据比较。在步骤325,基站将基准数据与来自移动GPS接收机的第一(如果不是第一,则是下一个)卫星的记录相关。在步骤327,基站发现并且内插峰值位置,该位置指示移动接收机接收当前正处理的卫星的卫星数据消息的到达时间。在步骤329,基站确定是否已经对从移动接收机接收的所有记录执行了相关。如果没有,处理返回到步骤325,在步骤325和327处理下一卫星数据消息的下一条记录。如果在步骤329,确定了已经对从移动GPS接收机接收的所有记录都执行了相关,那么在步骤331比较对不同的感兴趣卫星确定的时间。在步骤333,基站使用多数逻辑删除错误的或不明确的数据,然后在步骤335基站确定是否所有数据都是不明确或错误的。如果是,基站就在步骤337命令移动GPS接收机取得更多的数据,并且重复从图4A所示方法开始并继续到图4B所示方法的整个过程。如果在步骤335确定不是所有数据都是不明确的,那么基站在步骤339执行时间加权平均,并且至少在某些实施例中,使用这个加权平均和移动GPS接收机发射的伪范围来确定移动GPS接收机的位置信息。
为了说明刚刚描述的处理步骤,对一个实际GPS信号进行抽样,将其采集到记录中,进行解扩并且以每个符号周期4个抽样的速率抽样。图10A表示1秒钟的除去了部分载波的解扩的波形的实部的记录。符号图样是明显的,但是显然还存在大约1Hz的小残余载波偏移。图10B表示通过用信号本身带有20毫秒时延的共轭的时延形式与信号相乘而得的差分检测的信号。符号图样是非常明显的。图10C表示理想数据信号,而图10D表示理想信号(例如在基站产生的)和10B的信号的互相关。注意抽样效果导致的在图10B中误脉冲和由于噪声造成的信号的非理想特性等。
图11A表示噪声附加到信号上时的解调数据,这样,解调信号的SNR大约为0dB。这模拟了例如由于阻塞情况接收的GPS信号在功率上相对标称电平降低超过15dB的状况。图11B表示差分解调的数据。比特图样是不可检测的。最后图11C表示这个噪声信号和干净的参考的互相关。显然峰值依然是强的,峰值相对RMS电平超过5.33(14.5dB),可以进行精确的到达时间估计。事实上,对这个信号的峰值的内插例程指示出小于1/16抽样间隔的精确度,即小于0.3毫秒。
如前所述,基站可以向远端发送数据序列和与这个消息的开始相关联的时间。然后远端可以通过相同的上述互相关方法来估计数据消息的到达时间,只是这些互相关方法是在远端完成的。这在远端计算它自己的位置时是有用的。在这种情况下,远端也可以通过从基站传输的这些数据获得卫星天文历数据。
图1A表示一个本发明可以使用的组合移动GPS接收机和通信系统的例子。这个组合移动GPS接收机和通信系统100已经在结合在这里参考的1996年5月23日提交的题为“Combined GPS PositioningSystem and Communication System Utilizing Shared Circuitry(组合GPS定位系统和使用共享电路的通信系统)”的共同未决申请序列号08/652,833中详细描述。图1B更详细地说明图1A的RF到IF变换器7和频率综合器16。图1B中所示的这些组成也在共同未决申请序列号08/652,833中进行了描述。图1A所示的移动GPS接收机和通信系统100可以被配置成对存储的GPS信号执行特殊形式的数字信号处理,用这种方式,接收机可以具有非常高的灵敏度。这将在结合在这里参考的1996年3月8日提交的题为“An Improved GPSReceiver and Method for Processing GPS Signals(用于处理GPS信号的改进的GPS接收机和方法)”的共同未决美国专利申请序列号08/612,669中进一步描述。申请序列号08/612,669中描述的处理操作通常使用快速傅立叶变换来计算多个中间卷积并且将这些中间卷积存储在数字存储器中,然后使用这些中间卷积提供至少一个伪范围。图1A所示的组合的GPS和通信系统100也可以结合某种频率稳定或标定技术来进一步提高GPS接收机的灵敏度和精确度。这些技术在结合在这里参考的1996年12月4日提交的题为“An Improved GPSReceiver Utilizing a Communication Link(利用通信链路的改进的GPS接收机)”的共同未决申请序列号P003X中描述。
不必详细描述图1A所示的组合移动GPS接收机和通信系统100的操作,这里将仅提供一个简要内容。在一个典型实施例中,移动GPS接收机和通信系统100将从基站(如基站17,它可以是图5A或图5B中所示的基站)接收命令。这个命令在通信天线2上接收,并且处理器10在存储在存储器9中后将该命令作为一条数字消息处理。处理器10确定该消息是向基站提供位置信息的命令,并且这导致处理器10激活系统的GPS部分,这其中至少有一些是与通信系统共享的。这包括,例如设置开关6,从而使RF到IF变换器7接收来自GPS天线1的GPS信号、而不是来自天线2的通信信号。然后,接收、数字化GPS信号,并将其存储在数字存储器9中,然后根据前述申请序列号08/612,669中描述的数字信号处理技术进行处理。这个处理的结果通常包括视距内多颗卫星的多个伪范围,随后处理单元10激活发射机部分并且将返回基站的伪范围发送到通信天线2,以便将这些伪范围发射回基站。
图1A所示基站17可以通过无线通信链路直接连接到远端,或如图6所示,通过在电话站点和基站之间提供有限通信链路的蜂窝电话站点连接到远端。图5A和5B说明这些可能的基站。
图5A中说明的基站401可以通过根据本发明提供往返于移动GPS接收机之间的双向无线链路以及处理接收的伪范围和相应时间记录而作为一个独立单元来工作。这个基站401可以作为位于大都市区域中的基站以及被跟踪的所有移动GPS接收机也都类似地位于同一大都市区域的情况下找到应用。举例而言,警察机关或营救服务可以使用这个基站401来跟踪佩带或使用移动GPS接收机的个人。典型地,发射机和接收机组件409和411将可以合并到一个单一收发机单元,并且具有单一天线。然而,由于这些组件也可以独立存在,因此将它们独立表示。发射机409通过发射机天线410为移动GPS接收机提供命令;这个发射机409通常处于数据处理单元405的控制之下,数据处理单元405从它的用户接收请求以确定具体移动GPS接收机的位置。因此,数据处理单元405可以让发射机409将命令发射到移动GPS接收机。在本发明的一个实施例中,作为相应,移动GPS接收机向接收机411发回伪范围和相应的记录,由接收天线412进行接收。接收机411接收这些来自移动GPS接收机的消息,并且将它们提供给数据处理单元405,数据处理单元再完成从来自移动GPS接收机的伪范围和从GPS接收机403接收的卫星数据消息或其它参考高质量数据消息源中导出位置信息的操作。这在上述共同未决的专利申请中有进一步的描述。GPS接收机403提供与伪范围和所确定的时间一起使用的卫星天文历,以计算移动GPS接收机的位置信息。海量存储装置407包括存储的卫星数据消息的参考记录的版本,并将其用来和从移动GPS接收机接收的记录比较。数据处理单元405可以连接到可选配的显示器415,并且也可以与可选用的GIS软件一起连接到海量存储装置413。应该理解海量存储装置413可以与海量存储装置407相同,这样它们就可以包含在相同的硬盘或其它海量存储装置中。
图5B说明本发明的另一个基站。这个基站425打算连接到远端发射和接收站点,如图6所示的蜂窝电话站点455。这个基站425也可以通过网络(如互联网或内部网,或其它类型的计算机网络系统)连接到客户系统。这样的基站使用方法在结合在这里参考的1996年9月6日提交的、题为“Client-Server Based Remote Locator Device(基于客户机-服务器的远端定位设备)”的共同未决申请序列号08/708,176中有进一步的描述。基站425通过图6所示的蜂窝电话站点455和它的相应天线457与移动GPS单元(如图6所示的组合移动GPS接收机和通信系统453)通信。应该理解该组合GPS接收机和通信系统453可以与图1A所示的系统100类似。
图5B所示的基站425包括处理器427,它可以是通过总线430连接到主存储器429的常规微处理器,该主存储器可以是随机访问存储器(RAM)。基站425还包括其它输入和输出装置,如键盘、鼠标、和显示器425、以及通过总线430连接到处理器427和存储器429的相关I/O控制器。海量存储装置433(如硬盘或CD ROM或其它海量存储装置)连接到系统的各个组件,如通过总线430连接到处理器427。在GPS接收机或其它卫星数据消息源之间提供I/O控制的I/O控制器431也连接到总线430。I/O控制器431从GPS接收机430接收卫星数据消息,并且通过总线430将它们提供给处理器,后者将它们加上时间标记然后存储在海量存储装置433中,以便在今后与从移动GPS接收机接收的记录比较。图5B中所示的两个调制解调器439和437与远离基站425的其它系统接口。在调制解调器或网络接口439的情况下,这个装置通过互联网或某些其它计算机网络连接到客户计算机。调制解调器或其它接口437提供与蜂窝电话站点(如说明系统451的图6中所示的站点455)的接口。
本领域的技术人员应该意识到基站425也可以用其它接收机结构实现。举例而言,可以有多条总线或者主总线和外围总线,或多个计算机系统和/或多个处理器。举例而言,以下方法可能是有好处的,用专用处理器接收来自GPS接收机403的卫星数据信号、并且处理该消息以便以专用的方法提供参考记录,这样,在根据本发明准备参考记录并存储它以及管理存储的数据总量时就没有中断。
在一个实施例中,图6所示的系统451通常将按下述方法工作。客户计算机系统463通过网络(如互联网461)向基站425发送消息。应该理解,在传递具体移动GPS计算机的定位请求的网络或互联网461之中可能会有路由器或计算机系统介入。基站425将通过一条链路(通常是有线电话链路459)向蜂窝电话站点455发送消息。然后,这个蜂窝电话站点使用它的天线457向组合移动GPS接收机和通信系统453发送命令。根据本发明,作为响应,系统453发回伪范围和卫星数据消息记录。随后,蜂窝电话站点455接收这些记录和伪范围并且通过链路459发送回基站。然后基站根据本发明完成所描述的操作使用这些记录来确定接收卫星数据消息的时间,并且使用来自远端GPS系统453的伪范围,以及在基站使用来自GPS接收机或来自其它GPS数据源的卫星天文历数据。然后基站确定位置信息,并且通过网络(如互联网461)将这个位置信息通知客户计算机系统453,该客户计算机系统可能拥有映射软件,使用这些系统在地图上看到移动GPS系统453的确切位置。
已经参考不同附图描述了本发明,这是出于说明的目的而不是希望用任何方法限制本发明。此外,还描述了本发明的方法和装置的不同例子,应该理解这些例子可以根据本发明而修改,同时依然处于以下权利要求的范围之中。

Claims (131)

1.测量与供卫星定位系统使用的卫星数据消息相关的时间的方法,所述方法包括:
在一个实体接收卫星数据消息的至少一部分的第一记录;
将所述第一记录与所述卫星数据消息的第二记录相比较,其中所述第一和所述第二记录至少在部分时间上重叠;
通过所述比较确定一个时间,所述时间指示远端实体接收所述第一记录的时间。
2.权利要求1的方法,其特征在于所述方法仅仅在所述实体执行,该实体是一个基站。
3.权利要求2的方法,其特征在于所述远端实体是移动卫星定位系统接收机。
4.权利要求3的方法,其特征在于所述移动卫星定位系统接收机是一个GPS接收机。
5.权利要求3的方法,其特征在于所述第二记录提供日时间信息,从而就可以从所述第二记录中确定所述时间。
6.权利要求5的方法,其特征在于所述第二记录存储在所述基站中。
7.权利要求5的方法,其特征在于所述比较包括在所述第一记录和所述第二记录之间进行互相关或逐个抽样比较。
8.权利要求7的方法,其特征在于还包括在所述实体从所述远端实体接收多个伪范围。
9.权利要求8的方法,其特征在于还包括:
使用所述时间和所述多个伪范围来确定所述远端实体的位置信息。
10.权利要求5的方法,其特征在于所述第一记录包括50波特数据。
11.权利要求5的方法,其特征在于还包括精确地确定所述第一记录的载频。
12.权利要求9的方法,其特征在于还包括向另一个实体通知所述位置信息。
13.权利要求6的方法,其特征在于所述第一记录是未解调的,并且所述基站解调所述第一记录。
14.权利要求6的方法,其特征在于还包括在所述确定后将所述时间通知所述远端实体。
15.权利要求6的方法,其特征在于还包括在所述实体接收来自所述远端实体的多个伪范围。
16.权利要求15的方法,其特征在于还包括使用所述时间和所述多个伪范围确定所述远端实体的位置信息。
17.权利要求16的方法,其特征在于所述第一记录包括与所述多个伪范围的第一伪范围对应的所述卫星数据消息的至少所述部分的至少一个记录。
18.权利要求17的方法,其特征在于还包括:
在所述实体接收第二卫星数据消息的至少一部分的第三记录;
将所述第三记录与所述第二卫星数据消息的第四记录比较,其中所述第三和所述第四记录至少在部分时间上重叠;
通过所述比较确定第二时间,所述第二时间指示所述远端实体接收所述第三记录的时间,其中所述第二卫星数据消息与所述多个伪范围的第二伪范围对应。
19.权利要求16的方法,其特征在于所述远端实体是一个蜂窝电话而所述第一记录是通过蜂窝电话站点从所述蜂窝电话接收的。
20.权利要求19的方法,其特征在于还包括向另一个实体通知所述位置信息。
21.权利要求20的方法,其特征在于所述另一个实体包括通过网络连接到所述实体的计算机系统。
22.测量与供卫星定位系统使用的卫星数据消息相关的时间的装置,所述装置包括:
接收机,用于接收卫星数据消息的至少一部分的第一记录;
连接到所述接收机的数据处理器,所述数据处理器将所述第一记录与所述卫星数据消息的第二记录相比较,其中所述第一和所述第二记录至少在部分时间上重叠,并且通过所述比较确定一个时间,所述时间指示远端实体接收所述第一记录的时间。
23.权利要求22的装置,其特征在于所述远端实体是一个移动卫星定位系统接收机。
24.权利要求22的装置,其特征在于所述第二记录提供日时间信息,从而可以通过所述第二记录确定所述时间。
25.权利要求24的装置,其特征在于还包括连接到所述数据处理器的存储装置,所述存储装置存储所述第二记录。
26.权利要求25的装置,其特征在于还包连接到所述数据处理器的GPS接收机,所述GPS接收机提供所述第二记录。
27.权利要求26的装置,其特征在于所述接收机是一个无线装置或有线通信接收机。
28.权利要求26的装置,其特征在于所述接收机从所述远端实体接收多个伪范围。
29.权利要求28的装置,其特征在于所述数据处理器使用所述时间和所述多个伪范围确定所述远端实体的位置信息。
30.权利要求24的装置,其特征在于所述第一记录包括50波特数据。
31.权利要求24的装置,其特征在于还包括连接到所述数据处理器的发射机,所述发射机与另一个实体通信。
32.权利要求29的装置,其特征在于还包括连接到所述数据处理器的发射机,所述发射机将所述位置信息通知另一个实体。
33.权利要求29的装置,其特征在于所述第一记录包括与所述多个伪范围的第一伪范围对应的所述卫星数据消息的至少所述部分的至少一个记录。
34.权利要求33的装置,其特征在于所述接收机接收第二卫星数据消息的至少一部分的第三记录,并且数据处理器将所述第三记录与所述第二卫星数据消息的第四记录相比较,其中所述第三记录和所述第四记录至少在部分时间上重叠,并且其中所述数据处理器通过所述比较确定第二时间,所述第二时间指示所述远端实体接收所述第三记录的时间,并且其中所述第二卫星数据消息与所述多个伪范围的第二伪范围对应。
35.权利要求29的装置,其特征在于还包括连接到所述数据处理器的调制解调器,所述调制解调器通过网络通知所述位置信息。
36.测量与供卫星定位系统使用的卫星数据消息相关的时间的方法,所述方法包括:
在一个移动卫星定位系统接收机中接收卫星数据消息的至少一部分;
确定所述卫星数据消息的至少一部分的第一记录;
从所述移动卫星定位系统接收机向远端基站发射所述第一记录,用于确定指示所述第一记录何时被在所述移动卫星定位系统接收机中接收的时间。
37.权利要求36的方法,其特征在于还包括接收GPS信号并且确定至少一个伪范围。
38.权利要求37的方法,其特征在于还包括发射所述至少一个伪范围。
39.权利要求36的方法,其特征在于所述接收、确定和发射是在移动卫星定位系统接收机中完成的。
40.权利要求39的方法,其特征在于还包括:
接收GPS信号并且确定多个伪范围;
发射所述多个伪范围。
41.权利要求40的方法,其特征在于所述第一记录包括50波特数据。
42.权利要求37的方法,其特征在于还包括从所述GPS信号中除去载频。
43.权利要求42的方法,其特征在于还包括差分检测所述第一记录。
44.卫星定位系统接收机,包括:
用于接收卫星定位系统信号的天线;
连接到所述天线的解调器,所述解调器从所述卫星定位系统信号中除去PN码;
连接到所述解调器的处理器,所述处理器确定所述解调器接收的卫星数据消息的至少一部分的第一记录;
连接到所述处理器的发射机,所述发射机向远端基站发射所述第一记录,用于确定指示所述第一记录何时被在所述卫星定位系统接收机中接收的时间。
45.权利要求44的接收机,其特征在于还包括:
连接到所述发射机的通信天线,所述通信天线向所述远端基站发射所述第一记录。
46.权利要求45的接收机,其特征在于还包括:
连接到所述天线的相关器,所述相关器捕获所述卫星定位系统信号并且确定至少一个伪范围。
47.权利要求45的接收机,其特征在于还包括:
连接到所述天线的数字转换器;
连接到所述数字转换器的数字存储器,所述数字存储器存储所述卫星定位系统信号的数字表示;
连接到所述发射机并且连接到所述数字存储器的数字处理器,所述数字处理器处理所述卫星定位系统信号并且从所述卫星定位系统信号中确定至少一个伪范围。
48.卫星定位系统接收机,包括:
用于接收卫星定位系统信号的卫星定位系统天线;
连接到所述卫星定位系统天线的数字转换器;
连接到所述数字转换器的数字存储器,所述数字存储器存储所述卫星定位系统信号的数字表示;
连接到所述数字存储器的数字处理器,所述数字处理器处理所述卫星定位系统信号并且从所述卫星定位系统信号中确定至少一个伪范围,所述数字信号处理器从所述卫星定位系统信号中除去PN码以提供所述卫星定位系统信号中至少一部分卫星数据消息的第一记录;
连接到所述数字处理器的发射机,所述发射机向远端基站发射所述第一记录。
49.权利要求48的卫星定位系统接收机,其特征在于还包括:
连接到所述发射机的通信天线,所述通信天线向所述远端基站发射所述第一记录。
50.一个包括移动卫星定位系统接收机和相对远离所述移动SPS接收机的基站的系统,所述系统包括:
所述移动卫星定位系统接收机包括:
用于接收卫星定位系统信号的卫星定位系统天线;
连接到所述天线的处理器,所述处理器确定所述卫星定位系统信号中包括的至少一部分卫星数据消息的第一记录;
连接到所述处理器的发射机,所述发射机向所述基站发射所述第一记录;
所述基站包括:
用于接收所述第一记录的接收机;
连接到所述接收机的数字处理器,所述数字信号处理器完成所述第一记录与卫星数据消息的第二记录的比较,其中所述第一记录和所述第二记录至少在一部分时间上重叠,所述数据处理器通过所述比较确定一个时间,所示时间指示所述移动卫星定位系统接收机接收所述第一记录的时间。
51.权利要求50的系统,其特征在于所述第二记录提供日时间信息,从而可以从所述第二记录中确定所述时间。
52.权利要求50的系统,其特征在于所述移动卫星定位系统接收机还包括连接到发射机以便发射所述第一记录的通信天线。
53.权利要求52的系统,其特征在于所述移动卫星定位系统接收机还包括:
连接到所述天线的数字转换器;
连接到所述数字转换器的数字存储器,所述数字存储器存储所述卫星定位系统信号的数字表示;
连接到所述发射机并且连接到所述数字存储器的数字处理器,所述数字处理器处理所述卫星定位系统信号并且从所述卫星定位系统信号中确定至少一个伪范围。
54.权利要求53的系统,其特征在于所述数字处理器计算多个中间卷积并且将所述中间卷积存储在所述数字存储器中,并且使用所述中间卷积来提供所述至少一个伪范围。
55.权利要求54的系统,其特征在于确定所述第一记录的所述处理器包括所述数字处理器。
56.权利要求55的系统,其特征在于所述数字处理器从所述卫星定位系统中除去PN码以提供所述第一记录。
57.权利要求52的系统,其特征在于所述移动SPS接收机还包括连接到所述天线的相关器,所述相关器捕获所述卫星定位系统信号并且确定至少一个伪范围。
58.权利要求53的系统,其特征在于所述发射机向所述基站发射所述至少一个伪范围。
59.权利要求57的系统,其特征在于所述发射机向所述基站发射所述至少一个伪范围。
60.权利要求58的系统,其特征在于所述基站通过蜂窝电话站点接收所述第一记录和所述至少一个伪范围。
61.权利要求59的系统,其特征在于所述基站通过蜂窝电话站点接收所述第一记录和所述至少一个伪范围。
62.权利要求52的系统,其特征在于所述基站还包括一个连接到所述数据处理器的存储装置,所述存储装置存储所述第二记录。
63.权利要求62的系统,其特征在于所述基站还包括一个连接到所述数据处理器的GPS接收机,所述GPS接收机提供所述第二记录。
64.权利要求63的系统,其特征在于所述接收机是一个无线装置或有线通信接收机。
65.权利要求64的系统,其特征在于所述移动卫星定位系统接收机还包括:
连接到所述天线的数字转换器;
连接到所述数字转换器的数字存储器,所述数字存储器存储所述SPS信号的数字表示;
连接到所述发射机并且连接到所述数字存储器的数字处理器,所述数字处理器处理所述卫星定位系统信号并且从所述卫星定位系统信号中确定至少一个伪范围;
并且其中所述发射机向所述基站发射至少一个伪范围并且其中所述数据处理器使用所述时间和所述至少一个伪范围确定所述移动卫星定位系统接收机的位置信息。
66.权利要求65的系统,其特征在于所述基站通过蜂窝电话站点接收所述第一记录和所述至少一个伪范围。
67.权利要求66的系统,其特征在于所述基站还包括连接到所述数据处理器的调制解调器,所述调制解调器通过网络发送所述位置信息。
68.权利要求66的系统,其特征在于所述数字处理器计算多个中间卷积并且将所述中间卷积存储在所述数字存储器中,并且使用所述中间卷积提供所述至少一个伪范围。
69.权利要求68的系统,其特征在于所述数字处理器包括所述处理器,该处理器确定所述第一记录并且其中所述数字处理器从所述SPS中除去PN码以提供所述第一记录。
70.在移动卫星定位系统接收机中测量与供卫星定位系统使用的卫星数据消息相关的时间的方法,所述方法包括:
在所述移动卫星定位系统接收机接收至少一部分卫星数据消息的第一记录;
在所述移动卫星定位系统接收机接收所述卫星数据消息的第二记录,其中所述第一记录和所述第二记录至少在部分时间上重叠;
比较所述第一记录和所述第二记录;
通过所述比较确定一个时间,所述时间指示所述移动卫星定位系统接收机接收所述第一记录的时间。
71.权利要求70的方法,其特征在于所述第二记录提供日时间信息,从而可以从所述第二记录确定所述时间。
72.权利要求71的方法,其特征在于所述第二记录是从基站接收的。
73.权利要求72的方法,其特征在于还包括在所述移动卫星定位系统接收机接收卫星天文历信息。
74.权利要求73的方法,其特征在于所述卫星天文历信息是从所述基站接收的。
75.权利要求71的方法,其特征在于还包括接收卫星定位系统信号并且确定多个伪范围。
76.权利要求75的方法,其特征在于所述第一记录是通过从所述卫星数据消息中除去PN码获得的。
77.移动卫星定位系统接收机,包括:
用于接收卫星定位系统信号的天线;
连接到所述天线的解调器,所述解调器从所述卫星定位系统中除去PN码;
连接到所述解调器的处理器,所述处理器确定从所述解调器接收的至少一部分卫星数据消息的第一记录;
通信天线;
连接到所述通信天线并且连接到所述处理器的通信接收机,所述通信接收机接收所述卫星数据消息的第二记录,其中所述第一和第二记录至少在部分时间上是重叠的,所述处理器比较所述第一记录和所述第二记录并且确定指示接收所述第一记录的时间。
78.权利要求77的移动卫星定位系统接收机,其特征在于所述第二记录提供日时间信息,从而可以从所述第二记录确定所述时间。
79.权利要求78的移动卫星定位系统接收机,其特征在于所述第二记录是从基站接收的。
80.权利要求79的移动卫星定位系统接收机,其特征在于所述通信接收机接收卫星天文历信息。
81.权利要求80的移动卫星定位系统接收机,其特征在于所述卫星天文历信息是所述基站提供的。
82.权利要求78的移动卫星定位系统接收机,其特征在于所述移动卫星定位系统接收机确定伪范围。83.一种含有可执行的计算机程序指令的计算机可读存储介质,所述指令在被执行时促使一个数字处理系统执行一个方法,该方法包括:
在一个实体中接收卫星数据消息的至少一部分的第一记录;
将所述第一记录与所述卫星数据消息的第二记录相比较,其中所述第一和所述第二记录至少在部分时间上重叠;
通过所述比较确定一个时间,所述时间指示远端实体接收所述第一记录的时间。
84.权利要求83的计算机可读存储介质,其特征在于所述方法仅仅在所述实体执行,该实体是一个基站。
85.权利要求84的计算机可读存储介质,其特征在于所述远端实体是移动卫星定位系统接收机。
86.权利要求85的计算机可读存储介质,其特征在于所述移动卫星定位系统接收机是一个GPS接收机。
87.权利要求85的计算机可读存储介质,其特征在于所述第二记录提供日时间信息,从而就可以从所述第二记录中确定所述时间。
88.权利要求87的计算机可读存储介质,其特征在于所述第二记录存储在所述基站中。
89.权利要求87的计算机可读存储介质,其特征在于所述比较包括在所述第一记录和所述第二记录之间进行互相关或逐个抽样比较。
90.权利要求89的计算机可读存储介质,其特征在于所述方法还包括在所述实体从所述远端实体接收多个伪范围。
91.权利要求90的计算机可读存储介质,其特征在于所述方法还还包括:
使用所述时间和所述多个伪范围来确定所述远端实体的位置信息。
92.权利要求87的计算机可读存储介质,其特征在于所述第一记录包括50波特数据。
93.权利要求87的计算机可读存储介质,其特征在于所述方法还包括精确地确定所述第一记录的载频。
94.权利要求91的计算机可读存储介质,其特征在于所述方法还包括向另一个实体通知所述位置信息。
95.权利要求88的计算机可读存储介质,其特征在于所述第一记录是未解调的,并且所述基站解调所述第一记录。
96.权利要求83的计算机可读存储介质,其特征在于所述第一记录包括与所述多个伪范围的第一伪范围对应的所述卫星数据消息的至少所述部分的至少一个记录。
97.权利要求96的计算机可读存储介质,其特征在于还包括:
在所述实体接收第二卫星数据消息的至少一部分的第三记录;
将所述第三记录与所述第二卫星数据消息的第四记录比较,其中所述第三和所述第四记录至少在部分时间上重叠;
通过所述比较确定第二时间,所述第二时间指示所述远端实体接收所述第三记录的时间,其中所述第二卫星数据消息与所述多个伪范围的第二伪范围对应。
98.权利要求83的计算机可读存储介质,其特征在于所述远端实体是一个蜂窝电话而所述第一记录是通过蜂窝电话站点从所述蜂窝电话接收的。
99.权利要求98的计算机可读存储介质,其特征在于所述方法还包括向另一个实体通知所述位置信息。
100.权利要求99的计算机可读存储介质,其特征在于所述另一个实体包括通过网络连接到所述实体的系统。
101.一种含有可执行数字处理器指令的处理器可读存储介质,所述指令被执行时促使数字处理系统执行一个方法,该方法包括:
在一个移动卫星定位系统接收机中接收一个卫星数据消息的至少一部分的第一记录;
在所述移动卫星定位系统接收机接收所述卫星数据消息的第二记录,其中所述第一记录和所述第二记录至少部分地在时间上重叠;
将所述第一记录与所述第二记录比较;
根据所述比较确定一个时间,所述时间指示何时所述第一记录被在所述移动卫星定位系统接收机中接收。
102.权利要求101的处理器可读存储介质,其中所述第二记录提供日时间信息,以便所述时间被根据所述第二记录确定。
103.权利要求102的计算机可读存储介质,其中所述第二记录被从一个基站接收。
104.权利要求103的处理器可读存储介质,所述方法还包括在所述移动卫星定位系统接收机中接收卫星天文历信息。
105.权利要求104的处理器可读存储介质,其中所述卫星天文历信息被从所述基站接收。
106.权利要求102的处理器可读存储介质,所述方法还包括接收卫星定位系统信号以及确定多个伪距。
107.权利要求106的处理器可读存储介质,其中所述第一记录被通过从所述卫星数据消息中除去一个PN码而获得。
108.一种含有可执行数字处理器指令的处理器可读存储介质,当所述指令被执行时促使数字处理系统执行一个方法,该方法包括:
在所述移动卫星定位系统接收机接收至少一部分卫星数据消息的第一记录;
在所述移动卫星定位系统接收机接收所述卫星数据消息的第二记录;
比较所述第一记录和所述第二记录;
通过所述比较确定一个时间,所述时间指示所述第一记录或者所述第二记录中的一个何时被在所述移动卫星定位系统接收机中接收,所述时间被用于处理卫星定位系统数据以便确定所述移动卫星定位系统接收机的一个位置。
109.权利要求108的处理器可读存储介质,其特征在于所述第二记录提供日时间信息,从而可以从所述第二记录确定所述时间。
110.权利要求109的处理器可读存储介质,其特征在于所述第二记录是从基站接收的。
111.权利要求110的处理器可读存储介质,其特征在于还包括在所述移动卫星定位系统接收机接收卫星天文历信息。
112.权利要求111的处理器可读存储介质,其特征在于所述卫星天文历信息是从所述基站接收的。
113.权利要求109的处理器可读存储介质,其特征在于还包括接收卫星定位系统信号并且确定多个伪范围。
114.权利要求113的处理器可读存储介质,其特征在于所述第一记录是通过从所述卫星数据消息中除去PN码获得的。
115.在移动卫星定位系统接收机中,一种用于测量涉及供移动卫星定位系统接收机使用的卫星数据消息的时间的方法,该方法包括:
在一个移动卫星定位系统接收机中接收一个卫星数据消息的至少一部分的第一记录;
在所述移动卫星定位系统接收机接收所述卫星数据消息的第二记录;
将所述第一记录与所述第二记录比较;
根据所述比较确定一个时间,所述时间指示何时所述第一记录或者所述第二记录中的一个被在所述移动卫星定位系统接收机中接收,所述时间被用于处理卫星定位系统数据以便确定所述移动卫星定位系统接收机的位置。
116.权利要求115的方法,其中所述第二记录提供日时间信息,以便所述时间被根据所述第二记录确定。
117.权利要求116的方法,其中所述第二记录被从一个基站接收。
118.权利要求117的方法,所述方法还包括在所述移动卫星定位系统接收机中接收卫星天文历信息。
119.权利要求118的方法,其中所述卫星天文历信息被从所述基站接收。
120.权利要求116的方法,所述方法还包括接收卫星定位系统信号以及确定多个伪距。
121.一种含有可执行计算机程序指令的计算机可读存储介质,当所述指令被执行时促使数字处理系统执行一个方法,该方法包括:
在一个实体中接收卫星定位系统的一个卫星数据消息的至少一部分的第一记录;
将所述第一记录与所述卫星数据消息的第二记录相比较;
根据所述比较来确定一个时间,所述时间指示所述第一记录何时被在一个远端实体中接收,并且其中所述时间被用于处理卫星定位系统数据以便确定一个移动卫星定位系统接收机的位置。
122.权利要求121的计算机可读存储介质,其中所述方法只被在所述是基站的实体中执行。
123.权利要求122的计算机可读存储介质,其中所述远端实体是所述移动卫星定位系统接收机。
124.权利要求123的计算机可读介质,其中所述移动卫星定位系统接收机是GPS接收机。
125.权利要求123的计算机可读存储介质,其中所述第二记录提供日时间信息,以便所述时间可以被根据所述第二记录来确定。
126.权利要求125的计算机可读存储介质,其中所述第二记录被记录在所述基站中。
127.一种测量涉及供卫星定位系统使用的卫星数据消息的时间的方法,该方法包括:
在一个实体中接收卫星定位系统的一个卫星数据消息的至少一部分的第一记录;
将所述第一记录与所述卫星数据消息的第二记录相比较;
根据所述比较来确定一个时间,所述时间指示所述第一记录何时被在一个远端实体中接收,并且其中所述时间被用于处理卫星定位系统数据以便确定一个移动卫星定位系统接收机的位置。
128.权利要求127的方法,其中所述方法只被在所述是基站的实体中执行。
129.权利要求128的方法,其中所述远端实体是所述移动卫星定位系统接收机。
130.权利要求129的方法,其中所述移动卫星定位系统接收机是GPS接收机。
131.权利要求129的方法,其中所述第二记录提供日时间信息,以便所述时间可以被根据所述第二记录来确定。
132.权利要求131的方法,其中所述第二记录被记录在所述基站中。
CNB988022761A 1997-02-03 1998-01-26 基于卫星定位系统的时间测量方法以及相应的设备和系统 Expired - Lifetime CN1192291C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/794,649 1997-02-03
US08/794,649 US5812087A (en) 1997-02-03 1997-02-03 Method and apparatus for satellite positioning system based time measurement

Publications (2)

Publication Number Publication Date
CN1246934A CN1246934A (zh) 2000-03-08
CN1192291C true CN1192291C (zh) 2005-03-09

Family

ID=25163246

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988022761A Expired - Lifetime CN1192291C (zh) 1997-02-03 1998-01-26 基于卫星定位系统的时间测量方法以及相应的设备和系统

Country Status (11)

Country Link
US (3) US5812087A (zh)
EP (1) EP0958530B1 (zh)
JP (2) JP4316676B2 (zh)
CN (1) CN1192291C (zh)
AU (1) AU6648298A (zh)
BR (2) BR9807295B1 (zh)
DE (1) DE69810592T2 (zh)
DK (1) DK0958530T3 (zh)
ES (1) ES2191281T3 (zh)
HK (1) HK1025156A1 (zh)
WO (1) WO1998034164A1 (zh)

Families Citing this family (312)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7092369B2 (en) 1995-11-17 2006-08-15 Symbol Technologies, Inc. Communications network with wireless gateways for mobile terminal access
US6215442B1 (en) * 1997-02-03 2001-04-10 Snaptrack, Inc. Method and apparatus for determining time in a satellite positioning system
US6377209B1 (en) * 1997-02-03 2002-04-23 Snaptrack, Inc. Method and apparatus for satellite positioning system (SPS) time measurement
US5812087A (en) * 1997-02-03 1998-09-22 Snaptrack, Inc. Method and apparatus for satellite positioning system based time measurement
US6493338B1 (en) 1997-05-19 2002-12-10 Airbiquity Inc. Multichannel in-band signaling for data communications over digital wireless telecommunications networks
US6771629B1 (en) 1999-01-15 2004-08-03 Airbiquity Inc. In-band signaling for synchronization in a voice communications network
WO1998053573A2 (en) * 1997-05-19 1998-11-26 Integrated Data Communications, Inc. System and method to communicate time stamped, 3-axis geo-position data within telecommunication networks
US7164662B2 (en) * 1997-05-19 2007-01-16 Airbiquity, Inc. Network delay identification method and apparatus
US6690681B1 (en) 1997-05-19 2004-02-10 Airbiquity Inc. In-band signaling for data communications over digital wireless telecommunications network
DE69832848T2 (de) * 1997-07-01 2006-08-10 Alcatel SPS-Synchronisationsverfahren
US6531982B1 (en) 1997-09-30 2003-03-11 Sirf Technology, Inc. Field unit for use in a GPS system
DK0924532T3 (da) * 1997-11-19 2006-07-17 Imec Vzw Fremgangsmåde og apparat til modtagelse af GPS/GLONASS-signaler
US6327471B1 (en) 1998-02-19 2001-12-04 Conexant Systems, Inc. Method and an apparatus for positioning system assisted cellular radiotelephone handoff and dropoff
US6348744B1 (en) 1998-04-14 2002-02-19 Conexant Systems, Inc. Integrated power management module
US6052646A (en) * 1998-04-15 2000-04-18 Magellan Dis, Inc. Vehicle navigation system with improved powerup performance
US6104338A (en) * 1998-05-04 2000-08-15 Snaptrack, Inc. Method and apparatus for operating a satellite positioning system receiver
US6061018A (en) * 1998-05-05 2000-05-09 Snaptrack, Inc. Method and system for using altitude information in a satellite positioning system
US6816710B2 (en) * 1998-05-06 2004-11-09 Snaptrack, Inc. Method and apparatus for signal processing in a satellite positioning system
US6636740B1 (en) 1998-06-16 2003-10-21 Ericsson Inc. Apparatus and methods for position computation based on broadcast initialization data
US6515619B1 (en) * 1998-07-30 2003-02-04 Mckay, Jr. Nicholas D. Object location system
US7545854B1 (en) * 1998-09-01 2009-06-09 Sirf Technology, Inc. Doppler corrected spread spectrum matched filter
US7711038B1 (en) 1998-09-01 2010-05-04 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
US6693953B2 (en) 1998-09-30 2004-02-17 Skyworks Solutions, Inc. Adaptive wireless communication receiver
US7215967B1 (en) * 1998-12-22 2007-05-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for fast cold start of a GPS receiver in a telecommunications environment
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US6606349B1 (en) 1999-02-04 2003-08-12 Sirf Technology, Inc. Spread spectrum receiver performance improvement
US6448925B1 (en) 1999-02-04 2002-09-10 Conexant Systems, Inc. Jamming detection and blanking for GPS receivers
US6838998B1 (en) 1999-02-05 2005-01-04 Eworldtrack, Inc. Multi-user global position tracking system and method
JP5770028B2 (ja) * 1999-03-22 2015-08-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated 衛星位置決めシステムの時間測定のための方法および装置
US6304216B1 (en) 1999-03-30 2001-10-16 Conexant Systems, Inc. Signal detector employing correlation analysis of non-uniform and disjoint sample segments
US6577271B1 (en) 1999-03-30 2003-06-10 Sirf Technology, Inc Signal detector employing coherent integration
JP3522581B2 (ja) * 1999-04-22 2004-04-26 富士通株式会社 Gps測位装置およびgps測位方法ならびにgps測位プログラムを記録したコンピュータ読み取り可能な記録媒体
US7053824B2 (en) 2001-11-06 2006-05-30 Global Locate, Inc. Method and apparatus for receiving a global positioning system signal using a cellular acquisition signal
US6453237B1 (en) * 1999-04-23 2002-09-17 Global Locate, Inc. Method and apparatus for locating and providing services to mobile devices
US9020756B2 (en) * 1999-04-23 2015-04-28 Global Locate, Inc. Method and apparatus for processing satellite positioning system signals
US6704348B2 (en) 2001-05-18 2004-03-09 Global Locate, Inc. Method and apparatus for computing signal correlation at multiple resolutions
US6829534B2 (en) 1999-04-23 2004-12-07 Global Locate, Inc. Method and apparatus for performing timing synchronization
US6411892B1 (en) 2000-07-13 2002-06-25 Global Locate, Inc. Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
US6301545B1 (en) 1999-04-30 2001-10-09 Sirf Technology, Inc. Global positioning system tag system
US6351486B1 (en) 1999-05-25 2002-02-26 Conexant Systems, Inc. Accelerated selection of a base station in a wireless communication system
CA2379692A1 (en) 1999-07-20 2001-01-25 Norman F. Krasner Method for determining a change in a communication signal and using this information to improve sps signal reception and processing
US20050026589A1 (en) * 1999-07-29 2005-02-03 Bryan Holland Remote locator system using A E911-enabled wireless system
US20050020241A1 (en) * 1999-07-29 2005-01-27 Bryan Holland Locator system
US7016687B1 (en) 1999-07-29 2006-03-21 Bryan Holland Portable locator system and method
US6392565B1 (en) 1999-09-10 2002-05-21 Eworldtrack, Inc. Automobile tracking and anti-theft system
US6819258B1 (en) 1999-09-10 2004-11-16 Eworldtrack, Inc. Personal shoe tracking system
US20040162875A1 (en) * 1999-09-10 2004-08-19 Brown William W. Internet pet tracking system
US6278403B1 (en) 1999-09-17 2001-08-21 Sirf Technology, Inc. Autonomous hardwired tracking loop coprocessor for GPS and WAAS receiver
US6526322B1 (en) 1999-12-16 2003-02-25 Sirf Technology, Inc. Shared memory architecture in GPS signal processing
JP2003523565A (ja) * 1999-12-29 2003-08-05 グローリキアン,ハリー・エイ クライアントの旅行者を地理的に関連するデータに接続するインターネットシステム
US6295023B1 (en) * 2000-01-21 2001-09-25 Ericsson Inc. Methods, mobile stations and systems for acquiring global positioning system timing information
WO2001072067A1 (en) 2000-03-21 2001-09-27 Airbiquity Inc. Voiceband modem for data communications over digital wireless networks
US6603978B1 (en) * 2000-03-24 2003-08-05 Ericsson Inc. Accurate GPS time estimate based on information from a wireless communications system
FI108171B (fi) * 2000-03-24 2001-11-30 Nokia Mobile Phones Ltd Menetelmä sijainnin määrityksen suorittamiseksi ja elektroniikkalaite
GB0007474D0 (en) * 2000-03-29 2000-05-17 Hewlett Packard Co Location-Dependent User Interface
IL151526A0 (en) * 2000-03-30 2003-04-10 Cellguide Ltd Locating a mobile unit
US6346911B1 (en) 2000-03-30 2002-02-12 Motorola, Inc. Method and apparatus for determining time in a GPS receiver
US6931055B1 (en) 2000-04-18 2005-08-16 Sirf Technology, Inc. Signal detector employing a doppler phase correction system
US6714158B1 (en) 2000-04-18 2004-03-30 Sirf Technology, Inc. Method and system for data detection in a global positioning system satellite receiver
US6788655B1 (en) 2000-04-18 2004-09-07 Sirf Technology, Inc. Personal communications device with ratio counter
US6952440B1 (en) 2000-04-18 2005-10-04 Sirf Technology, Inc. Signal detector employing a Doppler phase correction system
US7885314B1 (en) * 2000-05-02 2011-02-08 Kenneth Scott Walley Cancellation system and method for a wireless positioning system
US6665541B1 (en) * 2000-05-04 2003-12-16 Snaptrack, Incorporated Methods and apparatuses for using mobile GPS receivers to synchronize basestations in cellular networks
US6671620B1 (en) 2000-05-18 2003-12-30 Sirf Technology, Inc. Method and apparatus for determining global position using almanac information
US8078189B2 (en) 2000-08-14 2011-12-13 Sirf Technology, Inc. System and method for providing location based services over a network
US8116976B2 (en) 2000-05-18 2012-02-14 Csr Technology Inc. Satellite based positioning method and system for coarse location positioning
US7813875B2 (en) * 2002-10-10 2010-10-12 Sirf Technology, Inc. Layered host based satellite positioning solutions
US6462708B1 (en) 2001-04-05 2002-10-08 Sirf Technology, Inc. GPS-based positioning system for mobile GPS terminals
US7970411B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US6389291B1 (en) 2000-08-14 2002-05-14 Sirf Technology Multi-mode global positioning system for use with wireless networks
US7929928B2 (en) 2000-05-18 2011-04-19 Sirf Technology Inc. Frequency phase correction system
US7546395B2 (en) * 2002-10-10 2009-06-09 Sirf Technology, Inc. Navagation processing between a tracker hardware device and a computer host based on a satellite positioning solution system
US7949362B2 (en) 2000-05-18 2011-05-24 Sirf Technology, Inc. Satellite positioning aided communication system selection
US6778136B2 (en) 2001-12-13 2004-08-17 Sirf Technology, Inc. Fast acquisition of GPS signal
US6427120B1 (en) 2000-08-14 2002-07-30 Sirf Technology, Inc. Information transfer in a multi-mode global positioning system used with wireless networks
US7970412B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7126527B1 (en) 2000-06-23 2006-10-24 Intel Corporation Method and apparatus for mobile device location via a network based local area augmentation system
JP3656526B2 (ja) 2000-07-17 2005-06-08 株式会社日立製作所 無線通信基地局、無線位置測定システム、送信タイミング測定装置ならびに位置測定センタ装置
US7616705B1 (en) 2000-07-27 2009-11-10 Sirf Technology Holdings, Inc. Monolithic GPS RF front end integrated circuit
US6856794B1 (en) 2000-07-27 2005-02-15 Sirf Technology, Inc. Monolithic GPS RF front end integrated circuit
EP1184674A1 (en) * 2000-08-10 2002-03-06 Lucent Technologies Inc. A method of aligning predicted navigation information
US6961019B1 (en) * 2000-08-10 2005-11-01 Sirf Technology, Inc. Method and apparatus for reducing GPS receiver jamming during transmission in a wireless receiver
US6374179B1 (en) * 2000-08-11 2002-04-16 Motorola, Inc. Method and system for distributing position information
US7236883B2 (en) 2000-08-14 2007-06-26 Sirf Technology, Inc. Aiding in a satellite positioning system
US7436907B1 (en) 2000-08-24 2008-10-14 Sirf Technology, Inc. Analog compression of GPS C/A signal to audio bandwidth
WO2002016960A1 (en) 2000-08-24 2002-02-28 Sirf Technology, Inc. Apparatus for reducing auto-correlation or cross-correlation in weak cdma signals
US7680178B2 (en) 2000-08-24 2010-03-16 Sirf Technology, Inc. Cross-correlation detection and elimination in a receiver
US6331836B1 (en) 2000-08-24 2001-12-18 Fast Location.Net, Llc Method and apparatus for rapidly estimating the doppler-error and other receiver frequency errors of global positioning system satellite signals weakened by obstructions in the signal path
US6665612B1 (en) * 2000-08-29 2003-12-16 Sirf Technology, Inc. Navigation processing for a satellite positioning system receiver
US6931233B1 (en) 2000-08-31 2005-08-16 Sirf Technology, Inc. GPS RF front end IC with programmable frequency synthesizer for use in wireless phones
US7463893B1 (en) 2000-09-22 2008-12-09 Sirf Technology, Inc. Method and apparatus for implementing a GPS receiver on a single integrated circuit
AT4838U1 (de) * 2000-10-04 2001-12-27 Steyr Daimler Puch Ag Achsantriebsblock für ein kraftfahrzeug
US6437734B1 (en) * 2000-10-11 2002-08-20 Seiko Epson Corporation Satellite navigation receiver and method
US7196660B2 (en) 2000-11-17 2007-03-27 Global Locate, Inc Method and system for determining time in a satellite positioning system
US6937187B2 (en) * 2000-11-17 2005-08-30 Global Locate, Inc. Method and apparatus for forming a dynamic model to locate position of a satellite receiver
US7443340B2 (en) 2001-06-06 2008-10-28 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information
US20070200752A1 (en) 2001-06-06 2007-08-30 Global Locate, Inc. Method and apparatus for maintaining integrity of long-term orbits in a remote receiver
US6417801B1 (en) 2000-11-17 2002-07-09 Global Locate, Inc. Method and apparatus for time-free processing of GPS signals
US7047023B1 (en) 2000-12-01 2006-05-16 Sirf Technology, Inc. GPS RF front end IC with frequency plan for improved integrability
US7747236B1 (en) 2000-12-11 2010-06-29 Sirf Technology, Inc. Method and apparatus for estimating local oscillator frequency for GPS receivers
US7113552B1 (en) 2000-12-21 2006-09-26 Sirf Technology, Inc. Phase sampling techniques using amplitude bits for digital receivers
US7671489B1 (en) 2001-01-26 2010-03-02 Sirf Technology, Inc. Method and apparatus for selectively maintaining circuit power when higher voltages are present
US6680703B1 (en) 2001-02-16 2004-01-20 Sirf Technology, Inc. Method and apparatus for optimally tuning a circularly polarized patch antenna after installation
US6452541B1 (en) 2001-02-20 2002-09-17 Motorola, Inc. Time synchronization of a satellite positioning system enabled mobile receiver and base station
US6703971B2 (en) * 2001-02-21 2004-03-09 Sirf Technologies, Inc. Mode determination for mobile GPS terminals
US7076256B1 (en) 2001-04-16 2006-07-11 Sirf Technology, Inc. Method and apparatus for transmitting position data using control channels in wireless networks
FI110725B (fi) * 2001-04-20 2003-03-14 Nokia Corp Menetelmä vastaanottimen tahdistamisessa ja vastaanotin
US6891880B2 (en) * 2001-05-18 2005-05-10 Global Locate, Inc. Method and apparatus for performing signal correlation
US7190712B2 (en) * 2001-05-18 2007-03-13 Global Locate, Inc Method and apparatus for performing signal correlation
US7995682B2 (en) * 2001-05-18 2011-08-09 Broadcom Corporation Method and apparatus for performing signal processing using historical correlation data
US7769076B2 (en) 2001-05-18 2010-08-03 Broadcom Corporation Method and apparatus for performing frequency synchronization
US7006556B2 (en) 2001-05-18 2006-02-28 Global Locate, Inc. Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
US7567636B2 (en) * 2001-05-18 2009-07-28 Global Locate, Inc. Method and apparatus for performing signal correlation using historical correlation data
US6819707B2 (en) * 2001-05-18 2004-11-16 Global Locate, Inc. Method and apparatus for performing signal correlation using historical correlation data
US7668554B2 (en) 2001-05-21 2010-02-23 Sirf Technology, Inc. Network system for aided GPS broadcast positioning
US7877104B2 (en) * 2001-05-21 2011-01-25 Sirf Technology Inc. Method for synchronizing a radio network using end user radio terminals
US8244271B2 (en) * 2001-05-21 2012-08-14 Csr Technology Inc. Distributed data collection of satellite data
US7925210B2 (en) 2001-05-21 2011-04-12 Sirf Technology, Inc. Synchronizing a radio network with end user radio terminals
US20080186229A1 (en) * 2001-06-06 2008-08-07 Van Diggelen Frank Method and Apparatus for Monitoring Satellite-Constellation Configuration To Maintain Integrity of Long-Term-Orbit Information In A Remote Receiver
US8212719B2 (en) * 2001-06-06 2012-07-03 Global Locate, Inc. Method and apparatus for background decoding of a satellite navigation message to maintain integrity of long term orbit information in a remote receiver
US8358245B2 (en) * 2001-06-06 2013-01-22 Broadcom Corporation Method and system for extending the usability period of long term orbit (LTO)
US7548816B2 (en) 2001-06-06 2009-06-16 Global Locate, Inc. Method and apparatus for generating and securely distributing long-term satellite tracking information
US8090536B2 (en) * 2001-06-06 2012-01-03 Broadcom Corporation Method and apparatus for compression of long term orbit data
US7283567B2 (en) 2001-06-22 2007-10-16 Airbiquity Inc. Network delay identification method and apparatus
US6515620B1 (en) 2001-07-18 2003-02-04 Fast Location.Net, Llc Method and system for processing positioning signals in a geometric mode
US6529160B2 (en) 2001-07-18 2003-03-04 Fast Location.Net, Llc Method and system for determining carrier frequency offsets for positioning signals
US6628234B2 (en) * 2001-07-18 2003-09-30 Fast Location.Net, Llc Method and system for processing positioning signals in a stand-alone mode
US6882309B2 (en) * 2001-07-18 2005-04-19 Fast Location. Net, Llc Method and system for processing positioning signals based on predetermined message data segment
US9052374B2 (en) 2001-07-18 2015-06-09 Fast Location.Net, Llc Method and system for processing positioning signals based on predetermined message data segment
US6651000B2 (en) 2001-07-25 2003-11-18 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information in a compact format
US6633256B2 (en) 2001-08-24 2003-10-14 Topcon Gps Llc Methods and systems for improvement of measurement efficiency in surveying
US6731701B2 (en) * 2001-08-27 2004-05-04 Topcon Gps Llc Navigation data prediction for GPS and GLONASS weak signal tracking
US6459407B1 (en) 2001-09-10 2002-10-01 Nokia Mobile Phones Cross-correlation system for time recovery in network-assisted GPS positioning
US6785543B2 (en) 2001-09-14 2004-08-31 Mobile Satellite Ventures, Lp Filters for combined radiotelephone/GPS terminals
US7215965B2 (en) * 2001-11-01 2007-05-08 Airbiquity Inc. Facility and method for wireless transmission of location data in a voice channel of a digital wireless telecommunications network
US7656350B2 (en) * 2001-11-06 2010-02-02 Global Locate Method and apparatus for processing a satellite positioning system signal using a cellular acquisition signal
US20030125045A1 (en) * 2001-12-27 2003-07-03 Riley Wyatt Thomas Creating and using base station almanac information in a wireless communication system having a position location capability
US6985903B2 (en) 2002-01-25 2006-01-10 Qualcomm, Incorporated Method and system for storage and fast retrieval of digital terrain model elevations for use in positioning systems
US6654686B2 (en) * 2002-02-19 2003-11-25 Seiko Epson Corporation No preamble frame sync
US8126889B2 (en) 2002-03-28 2012-02-28 Telecommunication Systems, Inc. Location fidelity adjustment based on mobile subscriber privacy profile
US7426380B2 (en) 2002-03-28 2008-09-16 Telecommunication Systems, Inc. Location derived presence information
US8918073B2 (en) 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US20030186699A1 (en) * 2002-03-28 2003-10-02 Arlene Havlark Wireless telecommunications location based services scheme selection
US8027697B2 (en) 2007-09-28 2011-09-27 Telecommunication Systems, Inc. Public safety access point (PSAP) selection for E911 wireless callers in a GSM type system
US9154906B2 (en) 2002-03-28 2015-10-06 Telecommunication Systems, Inc. Area watcher for wireless network
US6944540B2 (en) 2002-03-28 2005-09-13 Motorola, Inc. Time determination in satellite positioning system receivers and methods therefor
US8290505B2 (en) 2006-08-29 2012-10-16 Telecommunications Systems, Inc. Consequential location derived information
US6937872B2 (en) * 2002-04-15 2005-08-30 Qualcomm Incorporated Methods and apparatuses for measuring frequencies of basestations in cellular networks using mobile GPS receivers
US7460870B2 (en) * 2002-04-25 2008-12-02 Qualcomm Incorporated Method and apparatus for location determination in a wireless assisted hybrid positioning system
DE10219216B4 (de) * 2002-04-29 2005-04-07 Eads Astrium Gmbh Verfahren und Endgerät zur Verarbeitung eines Navigationssignals in einem Satelliten-Navigationssystem
US6661371B2 (en) 2002-04-30 2003-12-09 Motorola, Inc. Oscillator frequency correction in GPS signal acquisition
AU2003232041A1 (en) * 2002-05-02 2003-11-17 Topcon Gps Llc Moving antenna phase array systems related to multipath signals in global positioning applications, and methods of using
US7545319B2 (en) * 2002-06-20 2009-06-09 Sirf Technology, Inc. Configurable satellite positioning system receivers with programmable inputs
US6738013B2 (en) * 2002-06-20 2004-05-18 Sirf Technology, Inc. Generic satellite positioning system receivers with selective inputs and outputs
WO2004017092A1 (en) * 2002-08-15 2004-02-26 Sirf Technology, Inc. Interface for a gps system
US6670915B1 (en) * 2002-09-17 2003-12-30 Eride, Inc. Synthetic NAV-data for a high-sensitivity satellite positioning system receiver
WO2004043050A1 (en) * 2002-11-07 2004-05-21 Koninklijke Philips Electronics N.V. Mobile radio receiver with improved real-time precision
US6683564B1 (en) * 2002-11-19 2004-01-27 Eride, Inc. High-sensitivity satellite positioning system receivers and reception methods
US7170447B2 (en) * 2003-02-14 2007-01-30 Qualcomm Incorporated Method and apparatus for processing navigation data in position determination
US8010124B2 (en) * 2003-03-24 2011-08-30 Sony Ericsson Mobile Communications Ab Methods, systems and computer program products for providing location determination information to an assisted location service
US7139225B2 (en) * 2003-03-27 2006-11-21 Qualcomm, Incorporated Virtual real-time clock based on time information from multiple communication systems
HUE030446T2 (en) 2003-06-27 2017-05-29 Qualcomm Inc Method and apparatus for locating wireless network hybrid
US8483717B2 (en) * 2003-06-27 2013-07-09 Qualcomm Incorporated Local area network assisted positioning
US8971913B2 (en) * 2003-06-27 2015-03-03 Qualcomm Incorporated Method and apparatus for wireless network hybrid positioning
US7123928B2 (en) 2003-07-21 2006-10-17 Qualcomm Incorporated Method and apparatus for creating and using a base station almanac for position determination
US7911988B2 (en) * 2003-07-23 2011-03-22 Qualcomm Incorporated Selecting a navigation solution used in determining the position of a device in a wireless communication system
US8138972B2 (en) * 2003-09-02 2012-03-20 Csr Technology Inc. Signal processing system for satellite positioning signals
US8013787B2 (en) 2003-09-02 2011-09-06 Sirf Technology Inc. Control and features for satellite positioning system receivers
US7822105B2 (en) 2003-09-02 2010-10-26 Sirf Technology, Inc. Cross-correlation removal of carrier wave jamming signals
US7321776B2 (en) * 2003-09-25 2008-01-22 Sony Ericsson Mobile Communications Ab Estimating GPS time at cellular terminals based on timing of information from base stations and satellites
US7424293B2 (en) * 2003-12-02 2008-09-09 Telecommunication Systems, Inc. User plane location based service using message tunneling to support roaming
US7260186B2 (en) 2004-03-23 2007-08-21 Telecommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US7447253B2 (en) * 2004-02-06 2008-11-04 Glocal Locate, Inc. Method and apparatus for processing satellite positioning system signals to obtain time information
US20070011339A1 (en) * 2004-02-09 2007-01-11 Brown William W Internet pet tracking system
US7365680B2 (en) * 2004-02-10 2008-04-29 Sirf Technology, Inc. Location services system that reduces auto-correlation or cross-correlation in weak signals
JP4315832B2 (ja) * 2004-02-17 2009-08-19 三菱電機株式会社 熱型赤外センサ素子および熱型赤外センサアレイ
US20050209762A1 (en) * 2004-03-18 2005-09-22 Ford Global Technologies, Llc Method and apparatus for controlling a vehicle using an object detection system and brake-steer
BRPI0418696A (pt) 2004-04-02 2007-06-12 Qualcomm Inc métodos e equipamentos para sistemas de determinação de posição assistida por sinalizador
US7319878B2 (en) 2004-06-18 2008-01-15 Qualcomm Incorporated Method and apparatus for determining location of a base station using a plurality of mobile stations in a wireless mobile network
US20060031696A1 (en) * 2004-07-20 2006-02-09 King Thomas M Method and apparatus for determining time
US20060021231A1 (en) * 2004-07-28 2006-02-02 Carey Nancy D Adaptive scissors
US20060034354A1 (en) * 2004-08-16 2006-02-16 Camp William O Jr Apparatus, methods and computer program products for positioning system signal processing using parallel computational techniques
US7453956B2 (en) 2004-08-16 2008-11-18 Sony Ericsson Mobile Communications Ab Apparatus, methods and computer program products for signal acquisition using common demodulation templates
US7358897B2 (en) * 2004-08-16 2008-04-15 Sony Ericsson Mobile Communicatios Ab Apparatus, methods and computer program products for GPS signal acquisition using an adaptive search engine
JP4052294B2 (ja) * 2004-08-23 2008-02-27 セイコーエプソン株式会社 測位システム、測位端末、情報提供装置、測位方法、測位システムの制御プログラム、測位システムの制御プログラムを記録したコンピュータ読み取り可能な記録媒体
US8013789B2 (en) * 2004-10-06 2011-09-06 Ohio University Systems and methods for acquisition and tracking of low CNR GPS signals
US7113128B1 (en) 2004-10-15 2006-09-26 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US7411546B2 (en) 2004-10-15 2008-08-12 Telecommunication Systems, Inc. Other cell sites used as reference point to cull satellite ephemeris information for quick, accurate assisted locating satellite location determination
US6985105B1 (en) 2004-10-15 2006-01-10 Telecommunication Systems, Inc. Culled satellite ephemeris information based on limiting a span of an inverted cone for locating satellite in-range determinations
US7629926B2 (en) 2004-10-15 2009-12-08 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US7623066B2 (en) * 2004-11-12 2009-11-24 Motorola, Inc. Satellite positioning system receiver time determination in minimum satellite coverage
US7508810B2 (en) 2005-01-31 2009-03-24 Airbiquity Inc. Voice channel control of wireless packet data communications
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US8054924B2 (en) * 2005-05-17 2011-11-08 General Motors Llc Data transmission method with phase shift error correction
US8014942B2 (en) * 2005-06-15 2011-09-06 Airbiquity, Inc. Remote destination programming for vehicle navigation
US8660573B2 (en) 2005-07-19 2014-02-25 Telecommunications Systems, Inc. Location service requests throttling
DE102005038674A1 (de) * 2005-08-16 2007-02-22 Jentro Technologies Gmbh Beschleunigung der satellitengestützten Positionserstbestimmung
US20070049288A1 (en) * 2005-08-24 2007-03-01 Lamprecht Leslie J Creating optimum temporal location trigger for multiple requests
US7257413B2 (en) * 2005-08-24 2007-08-14 Qualcomm Incorporated Dynamic location almanac for wireless base stations
US7522099B2 (en) * 2005-09-08 2009-04-21 Topcon Gps, Llc Position determination using carrier phase measurements of satellite signals
US9282451B2 (en) 2005-09-26 2016-03-08 Telecommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
US7825780B2 (en) 2005-10-05 2010-11-02 Telecommunication Systems, Inc. Cellular augmented vehicle alarm notification together with location services for position of an alarming vehicle
US8467320B2 (en) 2005-10-06 2013-06-18 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
US7907551B2 (en) 2005-10-06 2011-03-15 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
EP1938630B1 (en) 2005-10-20 2013-01-09 QUALCOMM Incorporated Method and apparatus for automatical position determination
US8194526B2 (en) * 2005-10-24 2012-06-05 General Motors Llc Method for data communication via a voice channel of a wireless communication network
US8259840B2 (en) * 2005-10-24 2012-09-04 General Motors Llc Data communication via a voice channel of a wireless communication network using discontinuities
US8194779B2 (en) * 2005-10-24 2012-06-05 General Motors Llc Method for data communication via a voice channel of a wireless communication network
EP1952173A2 (en) 2005-10-28 2008-08-06 SiRF Technology, Inc. Global positioning system receiver timeline management
US9042917B2 (en) * 2005-11-07 2015-05-26 Qualcomm Incorporated Positioning for WLANS and other wireless networks
US7893869B2 (en) * 2006-01-05 2011-02-22 Qualcomm Incorporated Global navigation satellite system
EP2423710A1 (en) 2006-01-10 2012-02-29 Qualcomm Incorporated Global navigation satellite system
US20070190950A1 (en) * 2006-02-15 2007-08-16 General Motors Corporation Method of configuring voice and data communication over a voice channel
US20070189270A1 (en) * 2006-02-15 2007-08-16 Borislow Daniel M Network adapter
US8150363B2 (en) 2006-02-16 2012-04-03 Telecommunication Systems, Inc. Enhanced E911 network access for call centers
US8059789B2 (en) 2006-02-24 2011-11-15 Telecommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
US9167553B2 (en) 2006-03-01 2015-10-20 Telecommunication Systems, Inc. GeoNexus proximity detector network
US7471236B1 (en) 2006-03-01 2008-12-30 Telecommunication Systems, Inc. Cellular augmented radar/laser detector
US7899450B2 (en) 2006-03-01 2011-03-01 Telecommunication Systems, Inc. Cellular augmented radar/laser detection using local mobile network within cellular network
JP2009530622A (ja) * 2006-03-15 2009-08-27 クゥアルコム・インコーポレイテッド 全地球的航法衛星システム
ATE555399T1 (de) * 2006-04-04 2012-05-15 Cambridge Positioning Sys Ltd Assoziieren einer universellen zeit mit einem empfangenen signal
US7924934B2 (en) 2006-04-07 2011-04-12 Airbiquity, Inc. Time diversity voice channel data communications
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
US8121238B2 (en) 2006-06-30 2012-02-21 Csr Technology Inc. System and method for synchronizing digital bits in a data stream
US7724186B2 (en) * 2006-06-30 2010-05-25 Sirf Technology, Inc. Enhanced aiding in GPS systems
US20080068261A1 (en) * 2006-08-16 2008-03-20 Jentro Technologies Gmbh Exchanging Condition Information Between A GPS Receiver And A Display Unit Device
US7966013B2 (en) 2006-11-03 2011-06-21 Telecommunication Systems, Inc. Roaming gateway enabling location based services (LBS) roaming for user plane in CDMA networks without requiring use of a mobile positioning center (MPC)
US9226257B2 (en) * 2006-11-04 2015-12-29 Qualcomm Incorporated Positioning for WLANs and other wireless networks
US7260026B1 (en) * 2006-11-06 2007-08-21 The Boeing Company Time-of-day tracking with INS input
US7466209B2 (en) * 2007-01-05 2008-12-16 Sirf Technology, Inc. System and method for providing temperature correction in a crystal oscillator
US20080167018A1 (en) * 2007-01-10 2008-07-10 Arlene Havlark Wireless telecommunications location based services scheme selection
WO2008092008A2 (en) * 2007-01-24 2008-07-31 Ohio University Method and apparatus for using multipath signal in gps architecture
US8050386B2 (en) 2007-02-12 2011-11-01 Telecommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
US20080247531A1 (en) * 2007-04-03 2008-10-09 Borislow Daniel M Techniques for Populating a Contact List
US9048784B2 (en) * 2007-04-03 2015-06-02 General Motors Llc Method for data communication via a voice channel of a wireless communication network using continuous signal modulation
US7724612B2 (en) * 2007-04-20 2010-05-25 Sirf Technology, Inc. System and method for providing aiding information to a satellite positioning system receiver over short-range wireless connections
US7912149B2 (en) * 2007-05-03 2011-03-22 General Motors Llc Synchronization and segment type detection method for data transmission via an audio communication system
US7535414B2 (en) * 2007-06-07 2009-05-19 Sirf Technology Holdings, Inc. Navigational positioning without timing information
US8160617B2 (en) 2007-06-22 2012-04-17 Nokia Corporation Apparatus and method for use in location determination
US8055441B2 (en) * 2007-07-27 2011-11-08 Mitac International Corporation Supplemental powered information receiver
WO2009038726A1 (en) 2007-09-17 2009-03-26 Telecommunication Systems, Inc. Emergency 911 data messaging
US7979095B2 (en) 2007-10-20 2011-07-12 Airbiquity, Inc. Wireless in-band signaling with in-vehicle systems
US7995683B2 (en) * 2007-10-24 2011-08-09 Sirf Technology Inc. Noise floor independent delay-locked loop discriminator
US7642957B2 (en) * 2007-11-27 2010-01-05 Sirf Technology, Inc. GPS system utilizing multiple antennas
US7929530B2 (en) 2007-11-30 2011-04-19 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US9130963B2 (en) 2011-04-06 2015-09-08 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US8144053B2 (en) * 2008-02-04 2012-03-27 Csr Technology Inc. System and method for verifying consistent measurements in performing GPS positioning
US20090209224A1 (en) * 2008-02-20 2009-08-20 Borislow Daniel M Computer-Related Devices and Techniques for Facilitating an Emergency Call Via a Cellular or Data Network
US20110205115A1 (en) * 2008-02-25 2011-08-25 Sirf Technology, Inc. Always on GPS Device
US8699984B2 (en) 2008-02-25 2014-04-15 Csr Technology Inc. Adaptive noise figure control in a radio receiver
US7616064B2 (en) * 2008-02-28 2009-11-10 Noshir Dubash Digital synthesizer for low power location receivers
US8478305B2 (en) * 2008-04-09 2013-07-02 Csr Technology Inc. System and method for integrating location information into an internet phone system
GB2459333A (en) * 2008-04-24 2009-10-28 Nordnav Technologies Ab Method of synchronizing a receiver with a signal transmitted by a remote transmitter on-board a satellite
US8897801B2 (en) 2008-06-13 2014-11-25 Qualcomm Incorporated Transmission of location information by a transmitter as an aid to location services
US8072376B2 (en) * 2008-06-27 2011-12-06 Sirf Technology Inc. Method and apparatus for mitigating the effects of cross correlation in a GPS receiver
US8073414B2 (en) * 2008-06-27 2011-12-06 Sirf Technology Inc. Auto-tuning system for an on-chip RF filter
US20100019967A1 (en) * 2008-07-25 2010-01-28 Farrokh Farrokhi Method and apparatus for determining location
US8068587B2 (en) 2008-08-22 2011-11-29 Telecommunication Systems, Inc. Nationwide table routing of voice over internet protocol (VOIP) emergency calls
US7983310B2 (en) 2008-09-15 2011-07-19 Airbiquity Inc. Methods for in-band signaling through enhanced variable-rate codecs
US8594138B2 (en) 2008-09-15 2013-11-26 Airbiquity Inc. Methods for in-band signaling through enhanced variable-rate codecs
US8525681B2 (en) 2008-10-14 2013-09-03 Telecommunication Systems, Inc. Location based proximity alert
US8892128B2 (en) 2008-10-14 2014-11-18 Telecommunication Systems, Inc. Location based geo-reminders
US8478228B2 (en) * 2008-10-20 2013-07-02 Qualcomm Incorporated Mobile receiver with location services capability
US8370063B2 (en) * 2008-10-29 2013-02-05 Telenav, Inc. Navigation system having filtering mechanism and method of operation thereof
US8433283B2 (en) 2009-01-27 2013-04-30 Ymax Communications Corp. Computer-related devices and techniques for facilitating an emergency call via a cellular or data network using remote communication device identifying information
US8036600B2 (en) 2009-04-27 2011-10-11 Airbiquity, Inc. Using a bluetooth capable mobile phone to access a remote network
US9301191B2 (en) 2013-09-20 2016-03-29 Telecommunication Systems, Inc. Quality of service to over the top applications used with VPN
US8867485B2 (en) 2009-05-05 2014-10-21 Telecommunication Systems, Inc. Multiple location retrieval function (LRF) network having location continuity
US20110009086A1 (en) * 2009-07-10 2011-01-13 Todd Poremba Text to 9-1-1 emergency communication
US8600297B2 (en) * 2009-07-28 2013-12-03 Qualcomm Incorporated Method and system for femto cell self-timing and self-locating
US8418039B2 (en) 2009-08-03 2013-04-09 Airbiquity Inc. Efficient error correction scheme for data transmission in a wireless in-band signaling system
US20110039578A1 (en) * 2009-08-14 2011-02-17 Qualcomm Incorporated Assistance data for positioning in multiple radio access technologies
US8249865B2 (en) 2009-11-23 2012-08-21 Airbiquity Inc. Adaptive data transmission for a digital in-band modem operating over a voice channel
US8259012B2 (en) 2010-04-14 2012-09-04 The Boeing Company Software GNSS receiver for high-altitude spacecraft applications
WO2012005769A1 (en) 2010-07-09 2012-01-12 Telecommunication Systems, Inc. Location privacy selector
US8336664B2 (en) 2010-07-09 2012-12-25 Telecommunication Systems, Inc. Telematics basic mobile device safety interlock
US8571089B2 (en) 2010-08-09 2013-10-29 Qualcomm Incorporated Time-setting in satellite positioning system receivers
US8942743B2 (en) 2010-12-17 2015-01-27 Telecommunication Systems, Inc. iALERT enhanced alert manager
US8688087B2 (en) 2010-12-17 2014-04-01 Telecommunication Systems, Inc. N-dimensional affinity confluencer
WO2012087353A1 (en) 2010-12-22 2012-06-28 Telecommunication Systems, Inc. Area event handling when current network does not cover target area
US20120183023A1 (en) * 2011-01-14 2012-07-19 Qualcomm Incorporated Implementations for wireless signal processing
WO2012141762A1 (en) 2011-02-25 2012-10-18 Telecommunication Systems, Inc. Mobile internet protocol (ip) location
US8649806B2 (en) 2011-09-02 2014-02-11 Telecommunication Systems, Inc. Aggregate location dynometer (ALD)
US9479344B2 (en) 2011-09-16 2016-10-25 Telecommunication Systems, Inc. Anonymous voice conversation
US8848825B2 (en) 2011-09-22 2014-09-30 Airbiquity Inc. Echo cancellation in wireless inband signaling modem
US8831556B2 (en) 2011-09-30 2014-09-09 Telecommunication Systems, Inc. Unique global identifier header for minimizing prank emergency 911 calls
US9264537B2 (en) 2011-12-05 2016-02-16 Telecommunication Systems, Inc. Special emergency call treatment based on the caller
US9313637B2 (en) 2011-12-05 2016-04-12 Telecommunication Systems, Inc. Wireless emergency caller profile data delivery over a legacy interface
US8984591B2 (en) 2011-12-16 2015-03-17 Telecommunications Systems, Inc. Authentication via motion of wireless device movement
US9384339B2 (en) 2012-01-13 2016-07-05 Telecommunication Systems, Inc. Authenticating cloud computing enabling secure services
US8688174B2 (en) 2012-03-13 2014-04-01 Telecommunication Systems, Inc. Integrated, detachable ear bud device for a wireless phone
US9307372B2 (en) 2012-03-26 2016-04-05 Telecommunication Systems, Inc. No responders online
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US9338153B2 (en) 2012-04-11 2016-05-10 Telecommunication Systems, Inc. Secure distribution of non-privileged authentication credentials
US9313638B2 (en) 2012-08-15 2016-04-12 Telecommunication Systems, Inc. Device independent caller data access for emergency calls
US9208346B2 (en) 2012-09-05 2015-12-08 Telecommunication Systems, Inc. Persona-notitia intellection codifier
US9456301B2 (en) 2012-12-11 2016-09-27 Telecommunication Systems, Inc. Efficient prisoner tracking
US8983047B2 (en) 2013-03-20 2015-03-17 Telecommunication Systems, Inc. Index of suspicion determination for communications request
CN103383539B (zh) * 2013-06-28 2016-08-17 中国航天科技集团公司第五研究院第五一三研究所 一种基于双时钟系统的时间测量方法
US9408034B2 (en) 2013-09-09 2016-08-02 Telecommunication Systems, Inc. Extended area event for network based proximity discovery
US9516104B2 (en) 2013-09-11 2016-12-06 Telecommunication Systems, Inc. Intelligent load balancer enhanced routing
US9479897B2 (en) 2013-10-03 2016-10-25 Telecommunication Systems, Inc. SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
CN105158778B (zh) * 2015-09-02 2017-08-08 上海海积信息科技股份有限公司 多系统联合实施载波相位差分故障卫星剔除方法及其系统
US11125888B2 (en) 2016-06-06 2021-09-21 Brian G. Agee Multi-subband methods for reduced complexity, wideband blind resilient detection and geo-observable estimation of global navigation satellite signals
US10775510B2 (en) 2016-06-06 2020-09-15 Brian G. Agee Blind despreading of civil GNSS signals for resilient PNT applications
DE112019004718T5 (de) * 2018-09-21 2021-06-10 Sony Semiconductor Solutions Corporation Empfangsvorrichtung und empfangsverfahren
US11686855B2 (en) 2019-10-15 2023-06-27 Onenav, Inc. Modernized global navigation satellite system (GNSS) receivers and commercially viable consumer grade GNSS receivers
JP7529244B2 (ja) 2020-05-22 2024-08-06 株式会社国際電気通信基礎技術研究所 アンテナシステム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445118A (en) * 1981-05-22 1984-04-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Navigation system and method
US4449830A (en) * 1981-07-31 1984-05-22 Combustion Engineering, Inc. Method and apparatus for measuring elapsed time between an initiating event and a dependent event
US4734701A (en) * 1986-03-12 1988-03-29 Magnavox Government And Industrial Electronics Company Null processing receiver apparatus and method
GB2241623A (en) * 1990-02-28 1991-09-04 Philips Electronic Associated Vehicle location system
US5117232A (en) * 1990-06-04 1992-05-26 Raytheon Company Global system positioning receiver
JPH0486581A (ja) * 1990-07-30 1992-03-19 Sony Corp 移動体測位システム
US5434787A (en) * 1991-04-12 1995-07-18 Sharp Kabushiki Kaisha System for measuring position by using global positioning system and receiver for global position system
US5225842A (en) * 1991-05-09 1993-07-06 Navsys Corporation Vehicle tracking system employing global positioning system (gps) satellites
US5379224A (en) * 1991-11-29 1995-01-03 Navsys Corporation GPS tracking system
US5317322A (en) * 1992-01-06 1994-05-31 Magnavox Electronic Systems Company Null processing and beam steering receiver apparatus and method
US5319374A (en) * 1993-02-02 1994-06-07 Trimble Navigation Limited Precise universal time for vehicles
US5317323A (en) * 1993-03-05 1994-05-31 E-Systems, Inc. Passive high accuracy geolocation system and method
US5420592A (en) * 1993-04-05 1995-05-30 Radix Technologies, Inc. Separated GPS sensor and processing system for remote GPS sensing and centralized ground station processing for remote mobile position and velocity determinations
US5510797A (en) * 1993-04-15 1996-04-23 Trimble Navigation Limited Provision of SPS timing signals
US5521887A (en) * 1993-07-30 1996-05-28 Trimble Navigation Limited Time transfer system
US5438337A (en) * 1993-09-24 1995-08-01 Northrop Grumman Corporation Navigation system using re-transmitted GPS
US5625556A (en) * 1995-04-28 1997-04-29 Trimble Navigation Limited Accurate time standard for vehicle operation
GB2301725B (en) * 1995-05-31 2000-02-02 Gen Electric A reduced-power GPS-based system for tracking multiple objects from a central location
AU705213B2 (en) * 1995-06-06 1999-05-20 Terion, Inc. Determining propagating and clear frequency in wireless data communications network
US5570097A (en) * 1995-08-11 1996-10-29 Northrop Grumman Corporation Retransmitted GPS interferometric system
US5841026A (en) * 1996-05-15 1998-11-24 Trimble Navigation Limited Automatic transference between real-time operation and post-processing in a GPS survey system
US5812087A (en) * 1997-02-03 1998-09-22 Snaptrack, Inc. Method and apparatus for satellite positioning system based time measurement

Also Published As

Publication number Publication date
US5812087A (en) 1998-09-22
AU6648298A (en) 1998-08-25
JP4757291B2 (ja) 2011-08-24
JP2009063583A (ja) 2009-03-26
EP0958530B1 (en) 2003-01-08
DE69810592D1 (de) 2003-02-13
BR9807295A (pt) 2000-04-18
US6239742B1 (en) 2001-05-29
BR9807295B1 (pt) 2010-11-30
DE69810592T2 (de) 2003-08-14
EP0958530A1 (en) 1999-11-24
ES2191281T3 (es) 2003-09-01
JP2002515121A (ja) 2002-05-21
CN1246934A (zh) 2000-03-08
DK0958530T3 (da) 2003-03-31
WO1998034164A1 (en) 1998-08-06
US6052081A (en) 2000-04-18
HK1025156A1 (en) 2000-11-03
BR9816304B1 (pt) 2013-12-24
JP4316676B2 (ja) 2009-08-19

Similar Documents

Publication Publication Date Title
CN1192291C (zh) 基于卫星定位系统的时间测量方法以及相应的设备和系统
US8009086B2 (en) System and method for geo-locating a receiver with reduced power consumption
KR100847714B1 (ko) 위성 측위 시스템에서의 신호 처리를 위한 방법 및 장치
CN1106617C (zh) 用于测量数字信号段间相关的低功率并行相关器
US6856282B2 (en) Directly acquiring precision code GPS signals
CN100354646C (zh) 在卫星定位系统中使用卫星状态信息的方法和装置
CN1130844C (zh) 用于扩频接收机的方法和结构
JP5128732B2 (ja) 衛星位置決めシステム信号を得る方法および装置
US7348921B2 (en) GPS receiver using stored navigation data bits for a fast determination of GPS clock time
US8111736B2 (en) Rapid acquisition methods and apparatus for GPS signals
CN100430749C (zh) 高灵敏度卫星定位系统接收机和接收方法
CN100409027C (zh) 处理gps信号的gps接收机及方法
CN1225174A (zh) 高功效接收机
CN1344372A (zh) 卫星定位系统(sps)时间测量的方法和装置
KR19990064130A (ko) Gps신호를 처리하는 방법 및 gps수신기
CN102141626B (zh) 混合型卫星定位接收机
WO2009067267A1 (en) Navigation data acquisition and signal post-processing
CN1761887A (zh) 用于在位置确定中处理导航数据的方法和设备
CN1109413C (zh) 在gps接收机中消除多普勒复制谐波的方法
Grenier et al. A survey on low-power GNSS
US6750814B1 (en) Efficient algorithm for processing GPS signals
KR20040091155A (ko) 비콘 신호의 수신 시간을 결정하는 방법, 수신기 및 시스템
CA2350006A1 (en) A method of aligning predicted navigation information
CN1454323A (zh) 减少编码相位搜索空间的方法和装置
CN1225207A (zh) 消除在gps接收机中的预获频偏的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20050309

CX01 Expiry of patent term