CN1187607C - 一种电化学传感器及其制备方法和用途 - Google Patents
一种电化学传感器及其制备方法和用途 Download PDFInfo
- Publication number
- CN1187607C CN1187607C CNB021159505A CN02115950A CN1187607C CN 1187607 C CN1187607 C CN 1187607C CN B021159505 A CNB021159505 A CN B021159505A CN 02115950 A CN02115950 A CN 02115950A CN 1187607 C CN1187607 C CN 1187607C
- Authority
- CN
- China
- Prior art keywords
- carbon nano
- electrochemical sensor
- tubes
- coated
- carbon electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
一种电化学传感器,包括玻碳电极,玻碳电极的表面涂覆有敏感膜。其制法为将碳纳米管和含有链长为C12~18的疏水性阳离子表面活性剂或阴离子表面活性剂加入去离子水中分散均匀,得到碳纳米管分散液,将碳纳米管分散液涂覆到玻碳电极表面,蒸发溶剂即得所需传感器。本发明电化学传感器为全固态不含对人体有毒、污染环境的材料,稳定性好、灵敏度高、重现性好,抗环境中其它常见离子干扰的能力强,而且传感器便于携带。本发明可实现环境中铅、镉离子的高灵敏度同时测定;使其检测峰分别达到4×10-9mol/L和6×10-9mol/L;溶出峰电位的差值>250mV。
Description
技术领域
本发明涉及一种电化学传感器及其制备方法和用途。
背景技术
环境中的重金属离子由于其毒性而引起人们的普遍关注。如铅能抑制红血素合成酶,使血红素受阻,血红蛋白水平降低;铅毒还可致红细胞膜脆性增加易于溶血,使其寿命缩短而发生贫血。现代医学证明,低浓度水平的镉可以导致许多癌症的发生。因此,开发出一种能有效检测环境中重金属离子的传感器具有十分重大的意义。
目前,同时测定水体中铅、镉离子传感器的研究的工作在国外已经开展。但多使用汞电极,对环境产生污染;而全固态传感器灵敏度不高,且难实现同时测定。国内外在这一方面的研究还处于探索阶段。研制开发出高灵敏度、全固态、能同时检测铅、镉离子电化学传感器成为人们不懈的追求。
碳纳米管自1991年被发现以来,因其独特的力学、电子特性及化学稳定性,成为世界范围内的研究热点之一。它可以认为是将石墨层折叠成碳圆柱体的结果,分为多壁碳纳米管(MWNT)和单壁碳纳米管(SWNT)。依据其原子结构不同,碳纳米管将表现为金属或半导体,这种独特的电子特性将使它有望成为新型传感器器件。碳纳米管虽然具有许多独特的优越性,但是由于它性质十分稳定,不溶于水及一般的有机溶剂,其在电分析尤其在电化学传感器方面的运用受到限制。
发明内容
本发明就是针对上述问题提供一种能同时检测铅、镉离子的高灵敏度的全固态电化学传感器及其制法和用途。
本发明提供的技术方案是:一种电化学传感器,包括玻碳电极,其特殊之处是玻碳电极的表面涂覆有敏感膜,敏感膜由2.4~75%的多壁碳纳米管和25~97.6%的疏水性阳离子表面活性剂或阴离子表面活性剂组成,以上百分数为质量百分数。
上述疏水性阳离子表面活性剂或阴离子表面活性剂是含有链长为C12~18的双链阳离子表面活性剂或阴离子表面活性剂。
上述电化学传感器的制备方法,将多壁碳纳米管和疏水性阳离子表面活性剂或阴离子表面活性剂加入去离子水中分散均匀,得到多壁碳纳米管分散液,将多壁碳纳米管分散液涂覆到玻碳电极表面,蒸发溶剂即得所需传感器。
上述多壁碳纳米管分散液中碳纳米管含量为1~15克/升,疏水性阳离子表面活性剂或阴离子表面活性剂的含量为5~40克/升。
在上述方法中涂覆到玻碳电极表面的多壁碳纳米管分散液为1~30微升。
上述电化学传感器用于检测铅、镉离子。
本发明电化学传感器为全固态不含对人体有毒、污染环境的材料,稳定性好、灵敏度高、重现性好,抗环境中其它常见离子干扰的能力强,而且传感器便于携带。本发明通过对常规固体电极对表面分子设计,将具有优良电化学性能的碳纳米管和其他一些有优良电化学性能的分子、聚合物、金属氧化物等固定在常规固体电极表面,实现环境中铅、镉离子的高灵敏度同时测定;使其检测峰分别达到4×10-9mol/L和6×10-9mol/L;溶出峰电位的差值>250mV。
附图说明
图1为本发明电化学传感器的结构示意图;
图2为铅、镉离子在传感器上的溶出伏安图。
具体实施方式
参见图1,本发明的电化学传感器包括玻碳电极1,玻碳电极1由玻碳基底3、与玻碳基底3电连接的电极引线4和绝缘层5构成,玻碳基底3表面涂覆有敏感膜2。敏感膜2由2.4~75%的单壁或多壁碳纳米管和25~97.6%的疏水性阳离子表面活性剂(如双十二烷基二甲基溴化铵或双十八烷基二甲基溴化铵等)或阴离子表面活性剂(如双十六烷基磷酸)组成,以上百分数为质量百分数。
上述电化学传感器的制备方法,将1~15克碳纳米管和5~40克疏水性阳离子表面活性剂或阴离子表面活性剂加入1000毫升去离子水中,超声分散直至得到均一、浅黑色的碳纳米管分散液,将1~30微升碳纳米管分散液涂覆到玻碳电极表面,红外灯下照烤蒸发溶剂即得所需传感器。
上述电化学传感器用于检测铅、镉离子的结果见图2,铅、镉离子的浓度为1×10-7mol/L,铅、镉的溶出峰电位分别为-641.4mV和-900.0mV;铅、镉的溶出峰电流分别为1.387μA和1.191μA。测定铅镉离子的条件:测定介质0.1mol/L KI,pH=1.50;富集电位:-1.20V(vs.SCE);富集时间:5分钟。微分脉冲溶出伏安法测定参数:脉冲振幅0.1V;脉冲持续时间40ms;扫描速度50Mv/s。
实施例1:一种电化学传感器,包括玻碳电极、绝缘层,玻碳电极的表面涂覆有敏感膜。敏感膜由2.4%的碳纳米管和97.6%的双十八烷基二甲基溴化铵组成。
上述电化学传感器的制备方法,将1克碳纳米管和40克双十八烷基二甲基溴化铵加入1000毫升去离子水中,超声分散直至得到均一、浅黑色的碳纳米管分散液,将30微升碳纳米管分散液涂覆到玻碳电极表面,红外灯下照烤蒸发溶剂即得所需传感器。
实施例2:一种电化学传感器,包括玻碳电极、绝缘层,玻碳电极的表面涂覆有敏感膜。敏感膜由75%的多壁碳纳米管和25%的双十六烷基磷酸组成。
上述电化学传感器的制备方法,将15克碳纳米管和5克双十六烷基磷酸加入1000毫升去离子水中,超声分散直至得到均一、浅黑色的碳纳米管分散液,将15微升碳纳米管分散液涂覆到玻碳电极表面,红外灯下照烤蒸发溶剂即得所需传感器。
实施例3:一种电化学传感器,包括玻碳电极、绝缘层,玻碳电极的表面涂覆有敏感膜。敏感膜由50%的碳纳米管、25%的双十二烷基二甲基溴化铵和25%的双十六烷基磷酸组成。
上述电化学传感器的制备方法,将20克碳纳米管、10克双十二烷基二甲基溴化铵和10克双十六烷基磷酸加入1000毫升去离子水中,超声分散直至得到均一、浅黑色的碳纳米管分散液,将2微升碳纳米管分散液涂覆到玻碳电极表面,红外灯下照烤蒸发溶剂即得所需传感器。
Claims (5)
1.一种电化学传感器,包括玻碳电极,其特征是:玻碳电极的表面涂覆有敏感膜,敏感膜由2.4~75%的多壁碳纳米管和25~97.6%的含有链长为C12~18的疏水性双链阳离子表面活性剂或阴离子表面活性剂组成,以上百分数为质量百分数。
2.权利要求1所述电化学传感器的制备方法,其特征是:将多壁碳纳米管和含有链长为C12~ 18的疏水性双链阳离子表面活性剂或阴离子表面活性剂加入去离子水中分散均匀,得到多壁碳纳米管分散液,将多壁碳纳米管分散液涂覆到玻碳电极表面,蒸发溶剂即得所需传感器。
3.根据权利要求2所述的制备方法,其特征是:多壁碳纳米管分散液中多壁碳纳米管含量为1~15克/升,疏水性阳离子表面活性剂或阴离子表面活性剂的含量为5~40克/升。
4.根据权利要求3所述的制备方法,其特征是:涂覆到玻碳电极表面的多壁碳纳米管分散液为1~30微升。
5.权利要求1所述电化学传感器用于检测铅、镉离子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021159505A CN1187607C (zh) | 2002-06-10 | 2002-06-10 | 一种电化学传感器及其制备方法和用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021159505A CN1187607C (zh) | 2002-06-10 | 2002-06-10 | 一种电化学传感器及其制备方法和用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1384355A CN1384355A (zh) | 2002-12-11 |
CN1187607C true CN1187607C (zh) | 2005-02-02 |
Family
ID=4743970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021159505A Expired - Fee Related CN1187607C (zh) | 2002-06-10 | 2002-06-10 | 一种电化学传感器及其制备方法和用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1187607C (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7504051B2 (en) * | 2003-09-08 | 2009-03-17 | Nantero, Inc. | Applicator liquid for use in electronic manufacturing processes |
JP4238715B2 (ja) * | 2003-12-15 | 2009-03-18 | 富士ゼロックス株式会社 | 電気化学測定用電極 |
JP4238716B2 (ja) * | 2003-12-15 | 2009-03-18 | 富士ゼロックス株式会社 | 電気化学測定用電極及びその製造方法 |
CN100498321C (zh) * | 2004-03-29 | 2009-06-10 | 中国科学院长春应用化学研究所 | 聚合物/碳纳米管复合物膜电化学发光传感器的制备方法 |
CN100417938C (zh) * | 2005-11-11 | 2008-09-10 | 河北科技大学 | 水中阴离子表面活性剂的测试装置及制备方法 |
CN1982887B (zh) * | 2005-12-16 | 2012-05-09 | 天津市食品加工工程中心 | 表面活性阴离子电化学传感器及其制造方法 |
CN101046461B (zh) * | 2006-03-29 | 2011-04-13 | 福建医科大学 | 一种电化学传感器及其制备方法和用途 |
CN101424693B (zh) * | 2008-12-08 | 2012-12-26 | 盛青松 | 使用一次性传感器的便携式铅离子浓度分析仪 |
CN101706471B (zh) * | 2008-12-12 | 2012-10-03 | 中国科学院烟台海岸带研究所 | 一种测定水样重金属离子浓度的电化学传感器 |
CN102478539A (zh) * | 2010-11-19 | 2012-05-30 | 中国科学院海洋研究所 | 一种羟丙基壳聚糖/碳纳米管修饰的电化学传感器的应用 |
CN102654476B (zh) * | 2012-05-29 | 2014-04-23 | 叶健 | 具有自修复功能的铅离子选择电极及其制备方法 |
CN103954667B (zh) * | 2014-05-20 | 2016-11-02 | 上海第二工业大学 | 一种氮掺杂碳纳米管修饰的电化学传感器及其应用 |
CN104280448B (zh) * | 2014-10-17 | 2016-08-24 | 扬州大学 | 一种测定pm2.5中铅离子浓度的方法 |
-
2002
- 2002-06-10 CN CNB021159505A patent/CN1187607C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1384355A (zh) | 2002-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Karimi-Maleh et al. | Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples | |
Ensafi et al. | A multiwall carbon nanotubes paste electrode as a sensor and ferrocenemonocarboxylic acid as a mediator for electrocatalytic determination of isoproterenol | |
CN1187607C (zh) | 一种电化学传感器及其制备方法和用途 | |
Zhang et al. | Electrochemical behavior of caffeic acid assayed with gold nanoparticles/graphene nanosheets modified glassy carbon electrode | |
Bagheri et al. | Determination of copper ions in foodstuff products with a newly modified potentiometric carbon paste electrode based on a novel nano-sensing layer | |
Ensafi et al. | Carbon paste electrode prepared from chemically modified multiwall carbon nanotubes for the voltammetric determination of isoprenaline in pharmaceutical and urine samples | |
Xu et al. | Electrocatalytic oxidation of catechol at multi‐walled carbon nanotubes modified electrode | |
Pan et al. | Nanocomposite based on graphene and intercalated covalent organic frameworks with hydrosulphonyl groups for electrochemical determination of heavy metal ions | |
Zhuang et al. | Enhanced voltammetric determination of dopamine using a glassy carbon electrode modified with ionic liquid-functionalized graphene and carbon dots | |
US11307163B2 (en) | Carbon nanotube based reference electrodes and all-carbon electrode assemblies for sensing and electrochemical characterization | |
US20150330933A1 (en) | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection | |
Wu et al. | The fabrication of a carbon nanotube film on a glassy carbon electrode and its application to determining thyroxine | |
CN1201146C (zh) | 一种测定多巴胺的电化学传感器 | |
Ganjali et al. | Bio-mimetic ion imprinted polymer based potentiometric mercury sensor composed of nano-materials | |
Wang et al. | Electrochemical oxidation behavior of colchicine on a graphene oxide-Nafion composite film modified glassy carbon electrode | |
Rajabzade et al. | Functionalized carbon nanotubes with gold nanoparticles to fabricate a sensor for hydrogen peroxide determination | |
Gong et al. | A glucose biosensor based on the polymerization of aniline induced by a bio-interphase of glucose oxidase and horseradish peroxidase | |
Rabie et al. | Fabrication of a new electrochemical sensor based on carbon paste electrode modified by silica gel/MWCNTs for the voltammetric determination of salicylic acid in tomato | |
Kumar et al. | Electrochemical determination of guanine and uric acid using NdFeO3 Nps modified graphite paste electrode | |
Lu et al. | Determination of Uric Acid and Norepinephrine by Chitosan‐Multiwall Carbon Nanotube Modified Electrode | |
Ganjali et al. | Bio-mimetic cadmium ion imprinted polymer based potentiometric nano-composite sensor | |
Tao et al. | Tris (2, 2′-bipyridyl) ruthenium (II) electrochemiluminescence sensor based on carbon nanotube/organically modified silicate films | |
Yang et al. | Simultaneous voltammetric determination of dihydroxybenzene isomers using a poly (acid chrome blue K)/carbon nanotube composite electrode | |
Irandoust et al. | Electrochemical study and determination of dinitramine using glassy carbon electrodes modified with multi-walled carbon nanotubes | |
Chen et al. | Facile one-pot method of AuNPs/PEDOT/CNT composites for simultaneous detection of dopamine with a high concentration of ascorbic acid and uric acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |