CN118239793A - 一种微叠层梯度陶瓷/金属复合材料及其制备方法 - Google Patents

一种微叠层梯度陶瓷/金属复合材料及其制备方法 Download PDF

Info

Publication number
CN118239793A
CN118239793A CN202410398702.3A CN202410398702A CN118239793A CN 118239793 A CN118239793 A CN 118239793A CN 202410398702 A CN202410398702 A CN 202410398702A CN 118239793 A CN118239793 A CN 118239793A
Authority
CN
China
Prior art keywords
ceramic
gradient
micro
metal
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410398702.3A
Other languages
English (en)
Inventor
汪洋
刘福田
赵德刚
周媛媛
韩卓群
李健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202410398702.3A priority Critical patent/CN118239793A/zh
Publication of CN118239793A publication Critical patent/CN118239793A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • F41H5/0421Ceramic layers in combination with metal layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • C04B2235/775Products showing a density-gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明涉及一种微叠层梯度陶瓷/金属复合材料及其制备方法,属于陶瓷基仿生复合材料技术领域。首先通过浆料配制、逐层铸造、双向冷冻浇注和真空冷冻干燥的工艺流程制备微叠层梯度多孔陶瓷预制体,随后将金属材料填充于所述陶瓷预制体的孔隙中。该陶瓷材料为Al2O3、B4C、SiC、Si3N4和TiB2的一种或一种以上,该金属为铝、镁、铁或以它们为基体的合金。本发明的有益效果在于,所述的复合材料具有软硬质相交互叠合的多级微叠层梯度结构,可以结合多级叠层和梯度结构在性能增强方面的作用,具有轻质、高强度、高韧性以及优异的抗冲击和抗损伤能力。

Description

一种微叠层梯度陶瓷/金属复合材料及其制备方法
技术领域
本发明涉及本发明属于陶瓷基仿生复合材料技术领域,特别涉及一种微叠层梯度陶瓷/金属复合材料及其制备方法。
背景技术
近年来,防护装甲的需求量大幅提高。由于军事科技的迅猛发展,军事战争环境对武器装备的战略和战术机动性提出了更高的要求。在不损害弹道防护能力的情况下,减轻装甲重量并提升灵活性对提高作战坦克、装甲车辆、军用机的机动能力和战场生存能力至关重要。鉴于此,当今世界强国都致力于设计和制造多功能、轻量化和高性能的装甲材料。
传统的防弹材料主要为陶瓷面板加金属背板的复合轻质防弹材料。前面的坚硬面板可以击碎或钝化弹体,后面的韧性背板可以利用塑性变形来吸收子弹的动能,进而有效抵御弹体的侵彻。然而,陶瓷面板与金属背板之间存在性能的阶跃变化,导致局部应力集中和声阻抗失配。当冲击波经过面板与背板的交界面时,界面波阻抗失配产生的反射拉伸波造成陶瓷面板严重破碎,极大限制了复合靶板的抗多发弹打击能力。
研制功能梯度复合材料是解决陶瓷基轻质复合装甲界面阶跃变化问题的有效途径。在梯度装甲结构中,陶瓷含量沿梯度方向连续或阶梯变化,使材料性能平稳过渡。陶瓷基梯度复合材料既具备陶瓷材料优越的抗冲击性能,又保留了金属材料的高韧性,改善了动态载荷下界面的应力分布,能够提高抗多发弹打击能力。然而,传统的颗粒增强梯度复合材料中,富含金属相的一侧弥散分布着陶瓷相,富含陶瓷相的一端弥散分布着金属相,微观结构如图1中所示。陶瓷增强相的加入在强化基体的同时,不可避免地引起局部硬化和应力集中,同时弥散分布的增强相易发生团聚现象,导致复合材料存在强度和韧性不能同时提高的缺点,难以获得优异的防弹性能和抗多次打击能力。因此,需要发展新的复合制备理念,进而实现高性能陶瓷/金属梯度装甲材料的制备。
经过数百万年的进化,自然界中发展出多种性能优良的天然生物复合材料,其具有独特的由下而上自组装形成的多层次、多尺度结构,可以通过协同工作来吸收冲击能量并减少损伤。近年来,利用仿生方法设计和制备具有优异抗冲击性能的新型轻质复合装甲已成为研究热点。贝壳一直是科研人员的重点关注对象之一,其本质上是一种梯度分层结构,包括角质层、棱柱层和珍珠层。其中,珍珠层由95%的文石片和5%的有机质组成,尽管矿物含量非常高,但珍珠层的韧性可达文石片的3000多倍。珍珠层优异的强韧性匹配及能量吸收能力,得益于其特殊的软硬质相交替叠合的多级叠层结构。这种结构在材料的断裂过程中能够引入裂纹偏转、桥联、片层间互锁等多种强韧化机制。贝壳表面硬层可以承受极大的冲击但不会破坏,而内部较为柔软的层可以吸收来自外部的冲击能量。多级叠层和梯度结构的协同作用,使贝壳各组分间的强度和韧性达到最优化结合,进而获得卓越的抗冲击和抗损伤能力。可见,以贝壳为仿生对象,结合层状结构和梯度结构在性能增强方面的作用,将陶瓷与金属制成多层增韧的贝壳仿生梯度复合材料,可以很好地补充传统复合材料所没有的微观增韧机制,有望为装甲材料的强韧化提供一条崭新的思路。然而,目前对于具有叠层结构梯度复合材料的精细化设计鲜有涉及,特别是在防弹装甲领域方面的研究还未见报道。
发明内容
本发明的目的是解决上述问题,提供一种微叠层梯度陶瓷/金属复合材料及其制备方法。
优选的,该陶瓷材料为Al2O3、B4C、SiC、Si3N4和TiB2的一种或一种以上,该金属为铝、镁、铁或以它们为基体的合金。
优选的,所述的微叠层梯度多孔陶瓷预制体的制备方法包括如下步骤:(1)将所述陶瓷粉体(体积分数为10~70%)、烧结助剂和分散剂在去离子水(体积分数为30-90%)中均匀混合,并按照一定比例加入溶胶,所述溶胶与去离子水的比例为0.01~0.15:1,在室温下球磨得到浆料A;(2)在另一容器内配置溶胶水溶液B,其中,所述溶胶可以在一定条件下转换为凝胶。将溶胶水溶液B加入到浆料A中,进而得到均一稳定的混合浆料C;(3)随后将浆料C输送到模具中,同时保证模具内处于恒定低温,其中,由于溶胶具有凝胶-溶胶可逆转变特性,浆料C被冷却到一定温度时会形成交联网络并凝胶固化;(4)每隔一段时间向模具内加入混料浆料C,在浆料不断定量输送的同时,溶胶水溶液的输送量逐渐增大,溶胶水溶液的比例逐渐增大,而陶瓷浆料的固相含量则不断下降,由此,可以实现凝胶固化的坯体中陶瓷相含量的可调控的梯度变化,保持固相含量在0~70%范围内连续变化;(5)将步骤(4)中凝胶固化后的陶瓷相含量梯度变化的陶瓷浆料利用双向冷冻浇注法对凝胶后的样品冷冻成型,冷冻温度为-273~0℃,随后进行冷冻干燥,得到所述多孔陶瓷坯体;(6)将步骤(5)中的多孔陶瓷坯体烧结,得到所述微叠层梯度多孔陶瓷。
优选的,步骤(1)中,还加入烧结助剂和分散剂;所述烧结助剂的加入量为陶瓷粉体质量的0.1~10wt%;所述分散剂选自聚乙二醇聚、三聚磷酸钠、丙烯酸铵、聚丙烯酸钠和四甲基氢氧化铵中的至少一种,加入量为陶瓷粉体质量的0.5~5wt%。
优选的,步骤(3)中,所述溶胶具有凝胶-溶胶可逆转变特性,在较低温度下会转变为凝胶,其为壳聚糖、明胶、琼脂糖的一种或混合物。
优选的,所述冷冻干燥在冷冻干燥机中进行,冷冻干燥过程采用的真空度为1~20Pa,干燥时间为5~110h。
另一方面,本发明提供一种制备上述所述的微叠层梯度陶瓷/金属复合材料的制备方法,其特征在于,将烧结完成的微叠层梯度多孔陶瓷和金属块体放入熔渗模具并置于真空熔渗炉中,抽真空至10-2Pa以下;再升温至高于金属熔点,升温速率为1-15℃/min,缓慢加压至10~20MPa,并保压保温0.5~1h后降温,完成真空压力熔渗。
另一方面,本发明提供一种制备上述所述的微叠层梯度陶瓷/金属复合材料的制备方法,其特征在于,将烧结完成的微叠层梯度多孔陶瓷将和金属块体放入熔渗模具并置于真空环境下加热,升温速率为1-15℃/min,再升温至高于金属熔点,充入Ar或者N2保护气氛,保温0.5~1h后降温,完成无压熔渗。
再一方面,本发明提供一种制备上述所述的微叠层梯度陶瓷/金属复合材料的制备方法,其特征在于,将烧结完成的微叠层梯度多孔陶瓷放入熔渗模具,并预热到金属块体熔点以下,同时将金属块体在高于熔点条件下加热熔化,将熔化的金属浇注到预热的多孔陶瓷上,挤压金属液,浸渗压力为3~120MPa,保证合金熔体完全浸渗到陶瓷孔隙中,完成挤压铸造熔渗。
本发明的有益效果:(1)区别于传统复合装甲材料,所述的微叠层梯度装甲材料是多层复合,且具有更精细的微观层状结构,可以通过较小的层间距和多界面效应使其具有能量耗散结构的应力场,有效提升材料抵抗透射波和反射波的能力;(2)结合层状结构和梯度结构在性能增强方面的作用,进而获得常规装甲材料所不具备的强韧性,具有更高的能量吸收能力和抗多次打击能力。
附图说明
图1为传统颗粒增强梯度陶瓷/金属复合材料的微观结构示意图。
图2为实施例1中微叠层梯度陶瓷/金属复合材料的微观结构示意图。
图3为实施例2中B4C/Al微叠层梯度复合材料的微观结构图。
图4为实施例3中SiC/Al微叠层梯度复合材料富陶瓷端的断口微观结构图。
图5为实施例3中SiC/Al微叠层梯度复合材料富金属端的断口微观结构图。
具体实施方式
下面将结合本发明实施例中的附图,更清楚地说明本发明实施例的技术方案,显然,下面所描述的附图仅仅是本发明的一些实施例,但是并非仅仅局限于下述实施例,不能理解为对本发明保护范围的限制。对于本领域技术人员来讲,在不付出创造性劳动的前提下,一些非本质的改进和调整均属于本发明的保护范围。
实施例1
一种微叠层梯度陶瓷/金属复合材料,其通过将所述金属材料填充于微叠层梯度多孔陶瓷预制体的孔隙处制备而成,其中,所述的陶瓷材料为Al2O3、B4C、SiC、Si3N4和TiB2的一种或一种以上;所述的金属为铝、镁、铁或以它们为基体的合金。
所述的微叠层梯度陶瓷/金属复合材料的微观结构示意图如图2所示,区别于传统的颗粒增强梯度陶瓷/金属复合材料,其形成了软硬质相交互叠合的多级微叠层梯度结构,可以很好地补充传统复合材料所没有的微观增韧机制,结合层状结构和梯度结构在性能增强方面的作用,进而获得常规装甲材料所不具备的强韧性。
实施例2
制备实施例1中所述微叠层梯度陶瓷/金属复合材料,采用的金属材料为铝合金,陶瓷材料为B4C,制备方法为挤压铸造熔渗,包括以下步骤:
将B4C陶瓷粉体与去离子水、四甲基氢氧化铵混合,其中四甲基氢氧化铵占陶瓷粉体质量的3wt.%,陶瓷体积分数为55vol.%,加入明胶,在60℃时球磨得到混合均匀的陶瓷浆料A,所述明胶与去离子水的质量比为0.1:1。
在另一容器内配置明胶溶液B,将浆料A和明胶水溶液B混合,进而得到混合浆料C,随后将浆料输送到模具中,同时保证模具内处于-5℃,使明胶凝胶。
随着明胶水溶液的添加量不断增加,混合浆料C的固相含量不断下降,维持固相含量在0~55vol.%范围内连续变化。
当陶瓷相含量梯度变化的混合浆料C都凝胶固化后,采用双向冷冻浇注法对凝胶后的样品冷冻成型,冷冻温度为-50℃。
将冷冻后的梯度多孔陶瓷放入-50℃真空干燥机中冷冻干燥72h,使坯体中的冰晶升华去除,从而得到多孔陶瓷坯体,将多孔陶瓷坯体在氩气气氛下高温烧结,烧结温度为2100℃,烧结时间为2h,得到B4C梯度多孔陶瓷。
通过改变固相含量或冷冻速率,可在微观尺度上调控层片状多孔陶瓷的孔隙结构,实现多孔陶瓷微叠层梯度结构的控制,满足不同的使用要求,坯体的烧结方式包括气氛烧结、空气烧结或气氛压力烧结。
将B4C梯度多孔陶瓷放置在耐热钢模具中,并预热到大约550℃,同时将铝合金加热到800℃,将熔化的合金浇注到预热的陶瓷预制体上,利用液压机压铸金属液,浸渗压力为50MPa,冷却至室温后脱模,得到B4C/Al微叠层梯度复合材料,其具有软硬质相交互叠合的多级微叠层梯度结构,其中陶瓷/金属成分不断变化,微观结构如图3所示。
实施例3
制备实施例1中所述微叠层梯度陶瓷/金属复合材料,采用的金属材料为铝合金,陶瓷材料为SiC,制备方法为真空压力浸渗,包括以下步骤:
将SiC陶瓷粉体与去离子水、聚乙二醇混合,其中聚乙二醇占陶瓷粉体质量的2wt.%,陶瓷体积分数为50vol.%,加入壳聚糖,在50℃时球磨得到混合均匀的陶瓷浆料A,所述壳聚糖与去离子水的质量比为0.05:1。
在另一容器内配置明胶溶液B,将浆料A和壳聚糖水溶液B混合,进而得到混合浆料C,随后将浆料输送到模具中,同时保证模具内处于10℃,使壳聚糖固化形成凝胶。
随着壳聚糖水溶液的添加量不断增加,混合浆料C的固相含量不断下降,维持固相含量在0~50vol.%范围内连续变化。
当陶瓷相含量梯度变化的混合浆料C都凝胶固化后,采用双向冷冻浇注法对凝胶后的样品冷冻成型,冷冻温度为-30℃。
将冷冻后的梯度多孔陶瓷放入-40℃真空干燥机中冷冻干燥20h,使坯体中的冰晶升华去除,从而得到多孔陶瓷坯体,将多孔陶瓷坯体在氩气气氛下高温烧结,烧结温度为2000℃,烧结时间为1h,得到SiC梯度多孔陶瓷。
将SiC梯度多孔陶瓷放到铝合金下,随后将其放入熔渗模具并置于真空熔渗炉中,抽真空至10-2Pa,加热速率为10℃/min,再升温至750℃,升温速率为5℃/min,保温15min,随后通过充入氩气缓慢加压至10MPa,并保压保温20min后降温,完成真空压力熔渗,冷却至室温后脱模,得到SiC/Al微叠层梯度复合材料。
图4和图5分别为本实施例中SiC/Al微叠层梯度复合材料富陶瓷端和富金属端的断口微观结构图,其中SiC相和铝合金相都连续分布,形成了层状结构,使复合材料具备更高的承载能力和抗冲击能力。
实施例4
制备实施例1中所述微叠层梯度陶瓷/金属复合材料,采用的金属材料为铝合金,陶瓷材料为Al2O3,制备方法为无压浸渗,包括以下步骤:
将Al2O3陶瓷粉体与去离子水、丙烯酸铵混合,其中丙烯酸铵占陶瓷粉体质量的1.5wt.%,陶瓷体积分数为60vol.%,加入明胶和壳聚糖,在60℃时球磨得到混合均匀的陶瓷浆料A,所述明胶和壳聚糖与去离子水的质量比为0.08:1。
在另一容器内配置明胶和壳聚糖混合溶液B,将浆料A和混合溶液B混合,进而得到浆料C,随后将浆料输送到模具中,同时保证模具内处于-3℃,使明胶和壳聚糖固化形成凝胶。
随着明胶和壳聚糖水溶液的添加量不断增加,混合浆料C的固相含量不断下降,维持固相含量在0~60vol.%范围内连续变化。
当陶瓷相含量梯度变化的混合浆料C都凝胶固化后,采用双向冷冻浇注法对凝胶后的样品冷冻成型,冷冻温度为-196℃。
将冷冻后的梯度多孔陶瓷放入-60℃真空干燥机中冷冻干燥60h,使坯体中的冰晶升华去除,从而得到多孔陶瓷坯体,将多孔陶瓷坯体在空气气氛下高温烧结,烧结温度为1550℃,烧结时间为1h,得到Al2O3梯度多孔陶瓷。
将Al2O3梯度多孔陶瓷放到铝合金下,随后将其置于真空炉中,抽真空至10-2Pa,加热速率为10℃/min,再升温至1000℃,升温速率为20℃/min,保温2h,完成真空熔渗,冷却至室温后脱模,得到Al2O3/Al微叠层梯度复合材料。
实施例5
一种由上述制备的所述微叠层梯度陶瓷/金属复合材料在装甲防护方面的应用。
所述微叠层梯度陶瓷/金属复合材料可以很好地补充传统复合材料所没有的微观增韧机制,进而获得常规装甲材料所不具备的强韧性。由于独特的增韧机制、细观结构的叠层设计和精细的梯度结构,其有望以高硬度、高强度、高弹性模量应对弹体的侵彻,并以高的延展性和韧性满足装甲所需的抗冲击和抗崩落能力,使装甲材料具备更高的能量吸收能力和抗多次打击能力。

Claims (8)

1.一种微叠层梯度陶瓷/金属复合材料及其制备方法,其特征在于,将金属材料填充于微叠层梯度多孔陶瓷预制体的孔隙中复合而成。
2.根据权利要求1所述的微叠层梯度陶瓷/金属复合材料,其特征在于,所述的陶瓷材料为Al2O3、B4C、SiC、Si3N4和TiB2的一种或一种以上;所述的金属材料为铝、镁、铁或以它们为基体的合金。
3.根据权利要求1所述的微叠层梯度陶瓷/金属复合材料,其特征在于,所述的微叠层梯度多孔陶瓷预制体的制备方法包括以下步骤:
(1) 将所述陶瓷粉体(体积分数为10~70%)、烧结助剂和分散剂在去离子水(体积分数为30-90%)中均匀混合,并按照一定比例加入溶胶,所述溶胶与去离子水的比例为0.01~0.15:1,在室温下球磨得到浆料A;
(2) 在另一容器内配置溶胶水溶液B,其中,所述溶胶可以在一定条件下转换为凝胶;
将溶胶水溶液B加入到浆料A中,进而得到均一稳定的混合浆料C;
(3) 随后将浆料C输送到模具中,同时保证模具内处于恒定低温,其中,由于溶胶具有凝胶-溶胶可逆转变特性,浆料C被冷却到一定温度时会形成交联网络并凝胶固化;
(4) 每隔一段时间向模具内加入混料浆料C,在浆料不断定量输送的同时,溶胶水溶液B的输送量逐渐增大,溶胶水溶液的比例逐渐增大,而陶瓷浆料的固相含量则不断下降,由此,可以实现凝胶固化的坯体中陶瓷相含量的可调控的梯度变化,保持固相含量在0~70%范围内连续变化;
(5) 将步骤(4)中凝胶固化后的陶瓷相含量梯度变化的陶瓷浆料利用双向冷冻浇注法对凝胶后的样品冷冻成型,冷冻温度为-273~0℃,随后进行冷冻干燥,得到所述多孔陶瓷坯体;
(6) 将步骤(5)中的多孔陶瓷坯体烧结,得到所述微叠层梯度多孔陶瓷。
4.权利要求3所述的方法,其特征在于,烧结助剂的加入量为陶瓷粉体质量的0.1~10wt%;所述分散剂选自聚乙二醇聚、三聚磷酸钠、丙烯酸铵、聚丙烯酸钠和四甲基氢氧化铵中的至少一种,加入量为陶瓷粉体质量的0.5~5wt%;所述溶胶具有凝胶-溶胶可逆转变特性,在较低温度下会转变为凝胶,其为壳聚糖、明胶、琼脂糖的一种或混合物;所述冷冻干燥在冷冻干燥机中进行,冷冻干燥过程采用的真空度为1~20Pa,干燥时间为5~110h。
5.一种制备权利要求1-3所述的微叠层梯度陶瓷/金属复合材料的方法,其特征在于,采用真空压力熔渗,包括以下步骤:
(1) 将烧结完成的微叠层梯度多孔陶瓷和金属块体放入熔渗模具并置于真空熔渗炉中,抽真空至10-2Pa以下;
(2) 再升温至高于金属熔点,升温速率为1-15℃/min,缓慢加压至10~20MPa,并保压保温0.5~1h后降温,冷却至室温后脱模。
6.一种制备权利要求1-3所述的微叠层梯度陶瓷/金属复合材料的方法,其特征在于,采用无压熔渗,包括以下步骤:
(1) 将烧结完成的微叠层梯度多孔陶瓷将和金属块体放入熔渗模具并置于真空环境下加热,升温速率为1-15℃/min;
(2) 再升温至高于金属熔点,充入Ar或者N2保护气氛,保温0.5~1h后降温,冷却至室温后脱模。
7.一种制备权利要求1-3所述的微叠层梯度陶瓷/金属复合材料的方法,其特征在于,采用挤压铸造熔渗,包括以下步骤:
(1) 烧结完成的微叠层梯度多孔陶瓷放入熔渗模具,并预热到金属块体熔点以下,同时将金属块体在高于熔点条件下加热熔化;
(2) 将熔化的金属浇注到预热的多孔陶瓷上,挤压金属液,浸渗压力为3~120MPa,保证合金熔体完全浸渗到陶瓷孔隙中,冷却至室温后脱模。
8.一种权利要求1-3所述的微叠层梯度陶瓷/金属复合材料在装甲防护方面的应用。
CN202410398702.3A 2024-04-03 2024-04-03 一种微叠层梯度陶瓷/金属复合材料及其制备方法 Pending CN118239793A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410398702.3A CN118239793A (zh) 2024-04-03 2024-04-03 一种微叠层梯度陶瓷/金属复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410398702.3A CN118239793A (zh) 2024-04-03 2024-04-03 一种微叠层梯度陶瓷/金属复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN118239793A true CN118239793A (zh) 2024-06-25

Family

ID=91560425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410398702.3A Pending CN118239793A (zh) 2024-04-03 2024-04-03 一种微叠层梯度陶瓷/金属复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN118239793A (zh)

Similar Documents

Publication Publication Date Title
CN107130133B (zh) 一种梯度双连续结构的陶瓷/金属复合材料以及其制备方法和应用
CN110499434B (zh) 一种含密排体多尺度陶瓷增强铝基复合材料及其制备方法
CN105624451B (zh) 一种高强高韧闭孔泡沫铝及其制备方法
CN108975936B (zh) 一种石墨陶瓷复合型及其制备方法
CN102774075B (zh) 多孔金属封装陶瓷复合防护板及其制备方法
CN112267038B (zh) 一种BN纳米片/1060Al复合材料的制备方法
CN109504869B (zh) 一种具有仿生多级结构的金属基纳米复合材料及其制备方法
CN108796262A (zh) 具有微观定向结构的碳化硅增强金属基复合材料及其制备方法
CN110438362B (zh) 一种多尺度多形状陶瓷相增强铝基抗弹结构复合材料及其制备方法
CN110484795B (zh) 一种碳化硅基复合防弹陶瓷及其制备工艺
CN111825459A (zh) 防弹装甲用碳化硅/石墨烯仿生复合材料及其制备方法
CN111996407B (zh) 一种双模结构石墨烯增强铝基复合材料的制备方法
CN114807683B (zh) 一种钛合金点阵增强铝基复合材料及其制备方法
CN114231778A (zh) 一种密度梯度空心球增强铝基多孔复合材料的制备方法
CN114935279B (zh) 一种金属浇铸预应力陶瓷复合防护装甲及其制备方法
CN115305375A (zh) 一种半固态塑性变形制备成型高强韧铍/铝复合材料的方法
CN108642315B (zh) 利用回收的SiCp/Al复合材料制备团簇型铝基复合材料的方法
CN113388752B (zh) 一种金属基复合材料的制备方法
CN118239793A (zh) 一种微叠层梯度陶瓷/金属复合材料及其制备方法
CN111995413A (zh) 以碳化硅晶须增韧的防弹装甲用氧化铝复合陶瓷材料及其制备方法
CN115679163B (zh) 一种汽车防撞架用铝合金材料及其制备方法
CN115255354B (zh) 一种有序结构高铬铸铁耐磨材料的制备方法
CN114941964B (zh) 一种梯度连接的三维预应力陶瓷复合装甲及其制备方法
CN115533080A (zh) 具备梯度孔隙率的多孔陶瓷增强金属复合装甲的制备方法
CN114226692B (zh) 一种具有双壁核壳结构空心玻璃微珠的多孔金属基复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination