CN118207554A - 电氧化合成苯并环庚烷衍生物的生成方法 - Google Patents

电氧化合成苯并环庚烷衍生物的生成方法 Download PDF

Info

Publication number
CN118207554A
CN118207554A CN202410469653.8A CN202410469653A CN118207554A CN 118207554 A CN118207554 A CN 118207554A CN 202410469653 A CN202410469653 A CN 202410469653A CN 118207554 A CN118207554 A CN 118207554A
Authority
CN
China
Prior art keywords
derivative
benzocycloheptane
reaction
producing
electrooxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410469653.8A
Other languages
English (en)
Inventor
李洁
张岩
马文静
郇伟伟
陆高洁
马秀雅
马湛
李梦忍
朱晓璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang A&F University ZAFU
Zhejiang Normal University CJNU
Original Assignee
Zhejiang A&F University ZAFU
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang A&F University ZAFU, Zhejiang Normal University CJNU filed Critical Zhejiang A&F University ZAFU
Priority to CN202410469653.8A priority Critical patent/CN118207554A/zh
Publication of CN118207554A publication Critical patent/CN118207554A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/05Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/09Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/11Halogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了电氧化合成苯并环庚烷衍生物的生成方法,属于有机合成技术领域。所述合成方法包括以下步骤:以邻位烯炔取代的芳烃衍生物和烯丙基取代的乙酸酯衍生物为反应原料,在电解池中通电反应,得到苯并环庚烷衍生物。本发明通过在恒定电流和电解质存在的条件下,烯丙基取代的乙酸酯衍生物氧化形成烷基自由基;该烷基自由基首先化学选择性进攻炔基,得到一个烯基自由基,接着烯基自由基通过5‑exo‑trig环化得到一个新的烷基自由基,最后它通过7‑endo‑trig加成到烯基或者芳基上,实现七元环的构建,最后氧化脱质子得到苯并环庚烷衍生物。

Description

电氧化合成苯并环庚烷衍生物的生成方法
技术领域
本发明涉及有机合成技术领域,特别涉及一种电氧化合成苯并环庚烷衍生物的生成方法。
背景技术
苯并环庚烷骨架出现在一些药物或天然产物分子中(如下),是重要的一类药效团单元。但是与普通的五元环和六元环的构建相比,七元环化合物的合成更具有挑战性,因为要克服熵因素的影响。因此,寻找绿色高效的合成苯并环庚烷类化合物的方法是一项十分有挑战和研究价值的工作。
与过去报道的过渡金属催化或者离子型反应构建七元环相比(Copper-catalyzedcascade annulation between a-bromocarbonyls and biaryl or(Z)-arylvinylacetylenes enabling a direct synthesis of dibenzocycloheptanes andrelated compounds,Chem.Commun.,2016,52,13971),但该方法需要用过渡金属催化,同时加入配体,且底物需要溴代进行预活化(如下)。而本发明直接用电氧化将惰性的碳氢键直接活化,步骤更短,操作更简单,更加绿色经济。利用自由基加成环化反应来实现七元环化合物的合成是另外一条十分高效的策略。另外,电化学合成近十年来重新受到人们的重视。通过电极氧化代替传统的化学氧化剂更显绿色经济。通过电极的作用使得反应物发生单电子转移形成自由基,再发生后续的自由基加成,是本发明的主要设计理念。
发明内容
本发明的目的在于提供电氧化合成苯并环庚烷衍生物的生成方法。
为实现上述目的,本发明提供了如下技术方案:电氧化合成苯并环庚烷衍生物的生成方法。
本发明技术方案之一:提供电氧化合成苯并环庚烷衍生物的生成方法,包括以下步骤:
以邻位烯炔取代的芳烃衍生物和烯丙基取代的乙酸酯衍生物为反应原料,在一体式电解池中通电反应,得到苯并环庚烷类衍生物;
所述邻位烯炔取代的芳烃衍生物的结构如式(I)所示:
以及/>
式(I)中,Ar表示芳环(如苯环、取代的苯环、噻吩环、呋喃环以及吡啶环等);
R1为烷基、苯基或硝基;
R2为H、烷基、卤素原子、酯基、硝基、氰基、芳基或烷氧基;
所述烯丙基取代的乙酸酯衍生物的结构如式(II)所示:
式(II)中,R为酰基、烷氧酰基、砜基以及氰基;
R'为烷氧基、烷基、苯基以及胺基。
优选地,所述芳环包括烷基、芳基、卤素、氰基或酯基取代的苯环,呋喃,吡啶或噻吩。
优选的,所述R1为烷基。
优选的,所述R2为H、烷基、卤素原子、酯基、硝基、氰基、芳基或烷氧基。
优选地,所述邻位烯炔取代的芳烃衍生物和烯丙基取代的乙酸酯衍生物的摩尔比为1:(1~3)。
优选地,所述电解池中电解质溶液的浓度为0.1mol/L,其中电解质溶液的电解质为四丁基四氟硼酸铵、高氯酸锂、四丁基碘酸铵、四乙基铵高氯酸盐、四乙基六氟磷酸铵或四丁基高氯酸铵,溶剂为乙腈、水、二氯乙烷、甲醇、异丙醇、乙酸乙酯、N,N-二甲基甲酰胺和四氢呋喃中的一种,反应需要加入金属或者非金属的电子中介体,反应需要加入适当地碱,如碳酸钠、碳酸钾、醋酸钠、磷酸氢二钠以及醋酸钾。
更优选的,所述电解质为高氯酸四乙基胺,所述溶剂为乙腈,电子中介体为二茂铁,所需碱为醋酸钠。
优选的,所述电解池中阳极材料为碳电极石墨毡,阴极为铂或镍,所述通电反应的反应温度为30~80℃,电流为3mA~10mA的恒定电流,反应时间为2~10h。
更优选的,所述通电反应的反应温度为65℃,电流为7.5mA的恒定电流,反应时间为3h。
反应温度过高,会使得副反应增多,反应温度过低,会降低目标产品的收率。
本发明利用邻位烯炔取代的芳烃衍生物在乙腈溶剂中与烯丙基取代的乙酸酯衍生物作用,在电解池的阳极氧化条件下,通过自由基串联环化得到苯并环庚烷类化合物。自由基源以使用烯丙基取代的丙二酸二甲酯为例来描述,本发明所述的制备苯并环庚烷类化合物的反应式如下:
上述反应中,邻位烯炔取代的芳烃衍生物和烯丙基取代的乙酸酯衍生物在电解质、电子中介体和溶剂中通电流条件下反应,得到苯并环庚烷类化合物。推测该反应机理如下:
首先,烯丙基取代的丙二酸二甲酯在阳极附近被氧化介质氧化,失去电子生成烷基自由基;该自由基首先与另一反应物的炔基部位作用得到苄位烯基自由基A,该自由基A发生分子内的环化首先构建起一个五元环,同时生成热力学更加稳定的自由基B,B经7-endo-trig环化加成到苯环形成芳基自由基,后者再失去一个电子生成芳基正离子,最后脱质子形成苯并环庚烷类化合物。
本发明技术方案之二:提供一种上述方法合成的苯并环庚烷衍生物。
本发明的有益技术效果如下:
本发明通过在恒定电流和电解质存在的条件下,直接氧化烯丙基取代的乙酸酯衍生物中的具有一定酸性的亚甲基部位得到烷基自由基;然后经过两次自由基加成/环化过程得到苯并环庚烷类化合物。这个转化过程中不需要额外的化学氧化剂,反应条件较为温和,绿色经济。
附图说明
图1为实施例1制得的产物的1H NMR谱图;
图2为实施例1制得的产物的13C NMR谱图;
图3为实施例2制得的产物的1H NMR谱图;
图4为实施例2制得的产物的13C NMR谱图;
图5为实施例3制得的产物的1H NMR谱图;
图6为实施例3制得的产物的13C NMR谱图;
图7为实施例4制得的产物的1H NMR谱图;
图8为实施例4制得的产物的13C NMR谱图;
图9为实施例5制得的产物的1H NMR谱图;
图10为实施例5制得的产物的13C NMR谱图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。
另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1
在反应管中,准确加入邻位烯炔取代的芳烃衍生物1a(36mg,0.2mmol,1.0equiv.)、丙二酸二甲酯2a(103.2mg,0.6mmol,3.0equiv.)、二茂铁(4mg,10mol%)以及高氯酸四乙基胺(92mg,0.4mmol,0.1M),最后加入溶剂MeCN(4mL)中。通恒定电流在65℃下进行反应3h。将所有溶剂转移到圆底烧瓶中。在烧瓶中加入二氧化硅,真空蒸发溶剂。以石油醚/乙酸乙酯(v/v,5:1)为洗脱液,用硅胶柱柱层析法进行纯化处理,得到相应的产物3a,收率为70%。该反应式如下:
产物核磁共振数据:1H NMR(600MHz,CDCl3)δ7.50(d,J=7.1Hz,1H),7.47(td,J=7.3,1.9Hz,1H),7.39–7.34(m,4H),7.30–7.27(m,1H),7.22(d,J=7.8Hz,1H),5.74(s,1H),3.87–3.83(m,1H),3.80(s,3H),3.64(s,3H),3.07(dd,J=14.0,6.1Hz,1H),2.85–2.81(m,1H),2.57(dd,J=14.0,2.0Hz,1H),2.19(t,J=13.2Hz,1H).13C NMR(151MHz,CDCl3)δ171.3,170.9,151.6,140.9,139.6,136.0,135.8,130.3,130.0,128.7,128.6,127.5,127.3,127.1,127.0,125.2,65.1,53.9,52.7,52.5,37.6,35.1.
实施例2
在反应管中,准确加入邻位烯炔取代的芳烃衍生物1b(70.8mg,0.2mmol,1.0equiv.)、丙二酸二甲酯2a(103.2mg,0.6mmol,3.0equiv.)、二茂铁(16mg,10mol%)以及高氯酸四乙基胺(92mg,0.4mmol,0.1M),最后加入溶剂MeCN(4mL)中。通恒定电流在65℃下进行反应3h。将所有溶剂转移到圆底烧瓶中。在烧瓶中加入二氧化硅,真空蒸发溶剂。以石油醚/乙酸乙酯(v/v,5:1)为洗脱液,用硅胶柱柱层析法进行纯化处理,得到相应的产物3b,收率为57%。该反应式如下:
产物核磁共振数据:1H NMR(400MHz,CDCl3)δ7.44–7.42(m,2H),7.34–7.30(m,1H),7.27(s,1H),6.98(s,1H),5.70(d,J=2.8Hz,1H),3.78(s,3H),3.77(s,1H),3.74(s,3H),3.66(s,3H),2.90(dd,J=14.3,2.1Hz,1H),2.79–2.71(m,2H),2.32(d,J=1.3Hz,6H),2.01–1.95(m,1H).13C NMR(151MHz,CDCl3)δ171.4,171.1,156.3,152.2,152.2,140.3,137.3,135.8,133.8,130.7,129.3,129.1,129.0,128.6,127.3,126.9,124.7,65.2,60.1,54.2,52.9,52.7,37.7,29.7,16.3,13.1.
实施例3
在反应管中,准确加入邻位烯炔取代的芳烃衍生物1c(38.4mg,0.2mmol,1.0equiv.)、丙二酸二甲酯2a(103.2mg,0.6mmol,3.0equiv.)、二茂铁(4mg,10mol%)以及高氯酸四乙基胺(92mg,0.4mmol,0.1M),最后加入溶剂MeCN(4mL)中。通恒定电流在65℃下进行反应3h。将所有溶剂转移到圆底烧瓶中。在烧瓶中加入二氧化硅,真空蒸发溶剂。以石油醚/乙酸乙酯(v/v,5:1)为洗脱液,用硅胶柱柱层析法进行纯化处理,得到相应的产物3c,收率为35%。该反应式如下:
产物核磁共振数据:1H NMR(600MHz,CDCl3)δ7.33–7.32(m,1H),7.30(s,1H),7.27–7.24(m,1H),7.22(d,J=7.6Hz,1H),7.19–7.17(m,2H),5.67(d,J=2.7Hz,1H),3.78(s,3H),3.77–3.74(m,1H),3.64(s,3H),3.03(dd,J=13.9,6.1Hz,1H),2.77(dd,J=6.6,12.6Hz,1H),2.54(dd,J=14.0,1.6Hz,1H),2.45(s,3H),2.13–2.09(m 1H).13C NMR(151MHz,CDCl3)δ171.5,171.2,151.7,141.1,139.60,138.4,136.3,133.0,130.4,130.1,129.6,128.2,127.3,127.2,127.1,125.0,65.1,53.9,52.9,52.7,37.8,35.3,21.5.
实施例4
在反应管中,准确加入邻位烯炔取代的芳烃衍生物1d(51.2mg,0.2mmol,1.0equiv.)、丙二酸二甲酯2a(103.2mg,0.6mmol,3.0equiv.)、二茂铁(16mg,10mol%)以及高氯酸四乙基胺(92mg,0.4mmol,0.1M),最后加入溶剂MeCN(4mL)中。通恒定电流在65℃下进行反应3h。将所有溶剂转移到圆底烧瓶中。在烧瓶中加入二氧化硅,真空蒸发溶剂。以石油醚/乙酸乙酯(v/v,5:1)为洗脱液,用硅胶柱柱层析法进行纯化处理,得到相应的产物3d,收率为60%。该反应式如下:
产物核磁共振数据:1H NMR(400MHz,CDCl3)δ7.46–7.43(m,2H),7.39–7.35(m,1H),7.33–7.29(m,2H),7.25(d,J=8.2Hz,1H),7.19(d,J=2.1Hz,1H),5.72(d,J=2.9Hz,1H),3.84–3.80(m,1H),3.78(s,3H),3.68(s,3H),3.01(dd,J=13.9,6.2Hz,1H),2.80(dd,J=12.4,6.5Hz,1H),2.51(dd,J=14.0,1.8Hz,1H),2.12–2.07(m,1H).13C NMR(101MHz,CDCl3)δ171.3,170.9,151.1,139.6,138.6,138.6,138.1,135.8,133.0,131.4,130.2,128.9,128.8,127.9,127.3,125.8,65.2,53.8,52.9,52.8,37.7,35.2,29.8.
实施例5
在反应管中,准确加入邻位烯炔取代的芳烃衍生物1e(47.2mg,0.2mmol,1.0equiv.)、丙二酸二甲酯2a(103.2mg,0.6mmol,3.0equiv.)、二茂铁(16mg,10mol%)以及高氯酸四乙基胺(92mg,0.4mmol,0.1M),最后加入溶剂MeCN(4mL)中。通恒定电流在65℃下进行反应3h。将所有溶剂转移到圆底烧瓶中。在烧瓶中加入二氧化硅,真空蒸发溶剂。以石油醚/乙酸乙酯(v/v,5:1)为洗脱液,用硅胶柱柱层析法进行纯化处理,得到相应的产物3e,收率为32%。该反应式如下:
产物核磁共振数据:1H NMR(400MHz,CDCl3)δ8.16(d,J=1.6Hz,1H),8.02(dd,J=7.9,1.7Hz,1H),7.39(d,J=7.9Hz,1H),7.37–7.35(m,2H),7.33–7.29(m,1H),7.19(d,J=7.1Hz,1H),5.75(d,J=2.7Hz,1H),3.97(s,3H),3.83–3.80(m,1H),3.78(s,3H),3.64(s,3H),3.01(dd,J=6.4,14Hz,1H),2.79(dd,J=6.4,12.4Hz,1H),2.56(dd,J=14.0,1.7Hz,1H),2.17–2.11(m,1H).13C NMR(101MHz,CDCl3)δ171.2,170.9,167.0,150.9,140.5,140.1,140.1,136.1,130.5,130.5,130.4,130.1,128.7,127.9,127.4,127.4,126.3,65.3,53.9,53.0,52.7,52.4,37.8,35.2.
本实施例对反应条件进行了优化:
参数优化过程及产率见表1:
表1
反应参数条件:Undivided cell,GF anode,Pt cathode,恒定电流:7.5mA,1a(0.20mmol),2a(0.60mmol,3.0equiv),电解质0.1M,溶剂4mL。醋酸钠0.5equiv,N2氛围,反应时间:3h。a T=60℃.b T=70℃.c CCE=7mA.d CCE=8mA.e GF(+)|Ni(-)instead of GF(+)|Pt(-).f Cp2Fe(0.05equiv).
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (9)

1.电氧化合成苯并环庚烷衍生物的生成方法,其特征在于,包括以下步骤:
以邻位烯炔取代的芳烃衍生物和烯丙基取代的乙酸酯衍生物为反应原料,在电解池中通电反应,得到苯并环庚烷类化合物;
所述邻位烯炔取代的芳烃衍生物结构如式(I)所示:
以及/>
式(I)中,Ar表示芳环(如苯环、取代的苯环、噻吩环、呋喃环以及吡啶环等);
R1为烷基、苯基或硝基;
R2为H、烷基、卤素原子、酯基、硝基、氰基、芳基或烷氧基;
所述烯丙基取代的乙酸酯衍生物的结构如式(II)所示:
式(II)中,R为酰基、烷氧酰基、砜基以及氰基;
R'为烷氧基、烷基、苯基以及胺基。
2.根据权利要求1所述的电氧化合成苯并环庚烷衍生物的生成方法,其特征在于,所述芳环包括给电子基团和供电子基取代的苯环,呋喃,吡咯或噻吩。
3.根据权利要求1所述的电氧化合成苯并环庚烷衍生物的生成方法,其特征在于,所述R1为烷基、苯基或硝基。
4.根据权利要求1所述的电氧化合成苯并环庚烷衍生物的生成方法,其特征在于,所述R2为H、烷基、卤素原子、酯基、硝基、氰基、芳基或烷氧基。
5.根据权利要求1所述的电氧化合成苯并环庚烷衍生物的生成方法,其特征在于,所述电解池中电解质溶液的浓度为0.1mol/L,其中电解质溶液的电解质为四丁基四氟硼酸铵、高氯酸锂、四丁基碘酸铵、四乙基铵高氯酸盐、四乙基六氟磷酸铵或四丁基高氯酸铵,溶剂为乙腈、水、二氯乙烷、甲醇、异丙醇、乙酸乙酯、N,N-二甲基甲酰胺和四氢呋喃中的一种,反应需要加入金属或者非金属的电子中介体,反应需要加入适当地碱,如碳酸钠、碳酸钾、醋酸钠、磷酸氢二钠以及醋酸钾。
6.根据权利要求5所述的电氧化合成苯并环庚烷衍生物的生成方法,其特征在于,所述电解质为高氯酸四乙基胺,所述溶剂为乙腈,所需的电子中介体为二茂铁(10mol%),所需要的碱为醋酸钠(0.5equiv)。
7.根据权利要求1所述的电氧化合成苯并环庚烷衍生物的生成方法,其特征在于,所述电解池中阳极材料为碳电极石墨毡,阴极为铂或镍,所述通电反应的反应温度为30~80℃,电流为3mA~10mA的恒定电流,反应时间为4~10h。
8.根据权利要求5所述的电氧化合成苯并环庚烷衍生物的生成方法,其特征在于,所述通电反应的反应温度为65℃,电流为7.5mA的恒定电流,反应时间为3h。
9.根据权利要求1所述的电氧化合成苯并环庚烷衍生物的生成方法,其特征在于,反应需要添加氧化反应过程中的电子中介体对烯丙基取代的乙酸酯衍生物进行直接氧化。
CN202410469653.8A 2024-04-18 2024-04-18 电氧化合成苯并环庚烷衍生物的生成方法 Pending CN118207554A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410469653.8A CN118207554A (zh) 2024-04-18 2024-04-18 电氧化合成苯并环庚烷衍生物的生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410469653.8A CN118207554A (zh) 2024-04-18 2024-04-18 电氧化合成苯并环庚烷衍生物的生成方法

Publications (1)

Publication Number Publication Date
CN118207554A true CN118207554A (zh) 2024-06-18

Family

ID=91448257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410469653.8A Pending CN118207554A (zh) 2024-04-18 2024-04-18 电氧化合成苯并环庚烷衍生物的生成方法

Country Status (1)

Country Link
CN (1) CN118207554A (zh)

Similar Documents

Publication Publication Date Title
Zhang et al. Electrocatalytic three-component annulation-halosulfonylation of 1, 6-enynes toward 1-indanones using sodium halides as both halogen sources and electrolytes
Kong et al. Electrochemical synthesis of enaminones via a decarboxylative coupling reaction
Xu et al. Catalyst-free, direct electrochemical synthesis of annulated medium-sized lactams through C–C bond cleavage
Fang et al. A new copper (I)–triazenido electro-catalyst for catalyzing hydrogen evolution from acetic acid and water
CN112126942B (zh) 一种利用电化学反应实现仲芳胺n-n偶联的方法
Sen et al. Metal-free regioselective bromination of imidazo-heteroarenes: the dual role of an organic bromide salt in electrocatalysis
Liu et al. Electrooxidative tandem cyclization of N-propargylanilines with sulfinic acids for rapid access to 3-arylsulfonylquinoline derivatives
CN111334817B (zh) 一种2-取代苯并噻唑类化合物的电化学合成方法
Zeng et al. Synthesis of aziridines by electrochemical oxidative annulation of chalcones with primary amines
Wang et al. Electrochemical multicomponent [2+ 2+ 1] cascade cyclization of enaminones and primary amines towards the synthesis of 4-acylimidazoles
Yuan et al. Switchable electrosynthesis of furoquinones in batch and continuous-flow modes
Jiang et al. Regioselective electrochemical cascade C–H sulfonylation–bromination of indolizines to access difunctionalized indolizines
Naresh et al. Electricity-driven, oxidative CH selenylative and tellurylative annulation of N-(2-alkynyl) anilines: Sustainable synthesis of 3-selanyl/tellanylquinolines
Cen et al. Electrochemical Selenylation of Alkynyl Aryl Ketones: Efficient Synthesis of 3‐Selenylated Chromones under Catalyst‐and Chemical‐Oxidant‐Free Conditions
CN114892187A (zh) 一种电化学合成咪唑类多环芳香族化合物的方法
CN113957463B (zh) 一种电氧化条件下自由基串联环化合成二苯并环庚酮衍生物的方法
Sun et al. Electrochemical oxidative dehydrogenative annulation of 1-(2-aminophenyl) pyrroles with cleavage of ethers to synthesize pyrrolo [1, 2-a] quinoxaline derivatives
CN118207554A (zh) 电氧化合成苯并环庚烷衍生物的生成方法
CN111235599B (zh) 一种基于电化学合成四芳基肼类化合物的方法
Swaroop et al. Electrochemical Syntheses of Heterocyclic Compounds Using Transition Metal Catalysts
Zhou et al. An electrochemical tandem Michael addition, azidation and intramolecular cyclization strategy for the synthesis of imidazole derivatives
Zhang et al. Synthesis of Selenooxazoles through Electrochemical Oxidative Selenocyclization of N‐Propargylamides
Choi et al. Divergent C− H Amidations and Imidations by Tuning Electrochemical Reaction Potentials
CN114438523B (zh) 一种绿色高效的苯并噻吩类化合物电化学合成方法
CN115747837A (zh) 含七元环骨架的磺酰胺并多环类化合物的电化学合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination