CN118147210A - 一种单碱基编辑als和acc基因的玉米种质的创制方法 - Google Patents

一种单碱基编辑als和acc基因的玉米种质的创制方法 Download PDF

Info

Publication number
CN118147210A
CN118147210A CN202410377113.7A CN202410377113A CN118147210A CN 118147210 A CN118147210 A CN 118147210A CN 202410377113 A CN202410377113 A CN 202410377113A CN 118147210 A CN118147210 A CN 118147210A
Authority
CN
China
Prior art keywords
genes
single base
als
editing
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410377113.7A
Other languages
English (en)
Inventor
李燕莉
赵津津
沈小娟
赵山岑
邓飞
段肖霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Huayouyi Biotechnology Co ltd
Shenzhen Huada Agricultural Application Research Institute
Original Assignee
Shenzhen Huayouyi Biotechnology Co ltd
Shenzhen Huada Agricultural Application Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Huayouyi Biotechnology Co ltd, Shenzhen Huada Agricultural Application Research Institute filed Critical Shenzhen Huayouyi Biotechnology Co ltd
Priority to CN202410377113.7A priority Critical patent/CN118147210A/zh
Publication of CN118147210A publication Critical patent/CN118147210A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8278Sulfonylurea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01002Acetyl-CoA carboxylase (6.4.1.2)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于基因编辑领域,具体涉及一种单碱基编辑ALS和ACC基因的玉米种质的创制方法。本发明利用nCas9融合deaminase和UGI及nCas9融合TadA构建得到玉米胞嘧啶和腺嘌呤碱基编辑器。构建靶向Zm ALS或Zm ACC活性位点的胞嘧啶碱基编辑载体,农杆菌侵染法转化磺酰脲类除草剂敏感的骨干自交系茎尖或幼胚,得到无转基因的纯合单碱基编辑阳性植株。并通过对T1代单碱基编辑阳性植株进行除草剂处理实验,证实与野生型B104相比,单碱基突变使得自交系玉米材料具有较强的除草剂耐性,降低了其对磺酰脲类(SU)除草剂的敏感性,对玉米耐除草剂新品种的选育提供了可行性依据。

Description

一种单碱基编辑ALS和ACC基因的玉米种质的创制方法
技术领域
本发明属于基因编辑领域,具体涉及一种单碱基编辑ALS和ACC基因的玉米种质的创制方法。
背景技术
我国玉米田间杂草接近上百种,其中一年生杂草发生量较大,占总发生量的80%以上,多年生杂草仅不到20%。其中影响严重的杂草主要有马齿苋、狗尾草、牛筋草、马唐等。磺酰脲类和咪唑啉酮类除草剂是具有代表性的乙酰乳酸合成酶(AcetolactateSynthase,ALS)抑制剂类除草剂,具有高效、低毒、广谱、选择性强等优良特性。磺酰脲类和咪唑啉酮类除草剂均通过抑制ALS活性,阻断支链氨基酸合成而达到杀除杂草的目的,对人和哺乳动物毒性低,在农业生产中得到了广泛的应用。乙酰辅酶A羧化酶(ACCase)是另一种主要的除草剂作用位点。ACCase抑制剂类除草剂主要包括芳氧苯氧丙酸酯类(APP)除草剂和肟醚类环己二酮(CHD)除草剂,通过抑制乙酰辅酶A的羧化反应阻断脂肪酸合成关键步骤而达到除草目的,能够苗后防除一年或多年生禾本科杂草。
ALS和ACC抑制剂类除草剂不仅具有持续增长的市场空间,而且具有多样、宽泛的杀草谱。随着ALS和ACC基因结构和功能研究的深入和基因编辑技术的发展,参照传统诱变育种所获得的除草剂耐性品种的基因型(如Clearfield和Provisia系列产品),通过生物技术手段培育耐ALS和ACC抑制剂类除草剂的作物新种质已成为可能。
基因编辑技术主要是利用序列特异性核酸酶(Sequence specific nucleases,SSNs)在特定基因位点或区域产生DNA双链断裂(Double-stranded break, DSB),从而激活编辑受体自身的DNA修复系统-非同源末端连接(Non-homologous end joining, NHEJ)或同源重组(Homologous recombination HR),从而实现基因敲除、染色体重组以及基因定点插入或替换,最终实现基因组序列的突变。目前应用最广泛的基因组编辑技术为CRISPR/Cas系统,它由CRISPR序列与Cas基因家族组成,其中CRISPR由一系列高度保守的重复序列(Repeat)与间隔序列(Spacer)相间排列组成。在CRISPR序列附近存在高度保守的Cas相关基因,这些基因编码的蛋白具有核酸酶功能,可以对DNA序列进行特异性切割。
碱基编辑系统能够在不产生双链断裂(DSB)的情况下实现靶点的碱基替换,它通过将可作用于单链DNA的脱氨酶与失去催化活性的dCas蛋白(deactivated Cas,简称dCas)或只有一条链切割活性的nCas蛋白(nickase Cas,简称nCas)进行融合,从而达到单碱基替换的效果。目前碱基编辑系统依据融合的不同碱基修饰酶分为胞嘧啶碱基编辑器(cytosine base editors, CBE)和腺嘌呤碱基编辑器(adenine base editors, ABE)。这两种碱基编辑器能在不产生DSB的情况下,分别利用胞嘧啶脱氨酶或经过改造的腺嘌呤脱氨酶对靶位点上一定范围的胞嘧啶(C)或腺嘌呤(A)进行脱氨基反应,最终经DNA修复或复制,实现精准的C-T或A-G的替换。
基因编辑技术能够对基因进行精准修饰和编辑,避免了外源转基因的安全顾虑,利用基因编辑技术进行抗除草剂培育的研究蓬勃发展。如:在玉米中,Svitashev等通过基因敲入的方法编辑玉米ALS2基因,得到氯磺隆抗性植株,但效率仅为0.2%~0.4%;Sun等通过CRISPR/Cas9系统介导的同源重组,对水稻ALS基因的两个氨基酸位点的密码子进行定点替换,通过后代分离,获得不含有转基因元件的抗除草剂水稻,但通过同源重组方法进行的基因插入和替换效率很低,应用推广存在很大困难。
故基于此,提出本发明技术方案。
发明内容
为了解决现有技术存在的问题,本发明提供了一种单碱基编辑靶向乙酰乳酸合成酶基因ALS和乙酰辅酶A羧化酶基因ACC方法,从而得到新的玉米种质。本发明利用nCas9融合deaminase和UGI及nCas9融合TadA构建得到玉米胞嘧啶和腺嘌呤碱基编辑器。构建靶向Zm ALS或Zm ACC活性位点的CBE胞嘧啶碱基编辑载体,农杆菌侵染法转化磺酰脲类除草剂敏感的骨干自交系茎尖或幼胚,得到无转基因的纯合单碱基编辑阳性植株。
并通过对T1代单碱基编辑阳性植株进行除草剂处理实验,证实与野生型B104相比,单碱基突变使得自交系玉米材料具有较强的除草剂耐性,降低了其对磺酰脲类(SU)除草剂的敏感性,对玉米耐除草剂新品种的选育提供了可行性依据。
本发明的方案是提供一种单碱基编辑ALS和ACC基因的玉米种质的创制方法,所述创制方法包括如下步骤:
(一)对ALS与ACC基因sgRNA靶序列进行选择:首先对ALS1&ALS2基因的sgRNA靶序列选择;然后对ACC1&ACC2基因的sgRNA靶序列进行选择;
(二)构建ACC1&ACC2双基因以及ALS1&ALS2&ACCA&ACC2四基因的sgRNA表达载体:首先对靶序列寡核苷酸进行合成,其次构建双子叶植物CBE终载体pCambia1300 ATUBQ::rAPOBEC1-nCas9-UGI,然后构建单子叶植物适用的pCambia1300 ZmUbi:: nCas9-PmCDA1-UGI载体,最后构建ACC-CBE及ACC&ALS-CBE单碱基编辑载体;
(三)单碱基编辑载体及GFP阳性对照转化原生质体进行效率检测;
(四)农杆菌介导的玉米幼胚转化法:首先进行外植体制备,然后进行农杆菌介导的玉米幼胚遗传转化,即可得到玉米种质。
优选地,步骤(一)中,首先获得ALS1 CDS序列SEQ ID NO:1与ALS2 CDS序列SEQ IDNO:2,并在ALS1&ALS2基因外显子编码区寻找符合5'-N(20)NGG-3'规则的靶序列SEQ IDNO:3。
优选地,步骤(一)中,然后获得ACC1 CDS序列SEQ ID NO:5与ACC2 CDS序列SEQ IDNO:6,并在ACC1&ACC2基因外显子编码区寻找符合5'-N(20)NGG-3'规则的靶序列SEQ IDNO:4。
优选地,步骤(二)中,首先合成ACC1&ACC2基因靶序列对应的正向寡核苷酸序列和反向寡核苷酸序列,具体为:
BBLa-N3-sgRNA-F:5’-GATTGCTTGGTAGGATAATGAAGGT-3’;
BBLa-N3-gRNA-R:5’-AAACACCTTCATTATCCTACCAAGC-3’;
同时合成ACC1&ACC2&ALS1&ALS2基因靶序列对应的正向寡核苷酸序列和反向寡核苷酸序列,具体为:
A/L-A3-sgRNA-F:5’-GATTGGTGGTGATTTCCACTGTCGG-3’;
A/L-A3-gRNA-R:5’-AAACCCGACAGTGGAAATCACCACC-3’。
优选地,步骤(二)中,其次单碱基编辑终载体基于pCambia1300 AtUBQ::Cas9载体的基础上改造,在pUC19中插入RPS5a,构建中间载体Puc19 RPS5a;将AtUBQ::Cas9克隆至pUC19 RPS5a,形成中间载体pUC19 ATUBQ::Cas9;对于BE系统而言,后续再将UGI与rAPOBEC1陆续克隆进pUC19 ATUBQ::Cas9,构建中间载体pUC19 ATUBQ:: rAPOBEC1-nCas9-UGI,最后将ATUBQ::nCas9-UGI序列克隆进pCambia1300,形成终载体pCambia1300 ATUBQ::rAPOBEC1-nCas9-UGI,筛选抗性为潮霉素。
优选地,步骤(二)中,然后在已构建载体基础上将双子叶植物CBE终载体pCambia1300 ATUBQ::rAPOBEC1-nCas9-UGI进行启动子及去氨基转移酶的替换合成,构建单子叶植物适用的pCambia1300 ZmUbi:: nCas9-PmCDA1-UGI,将植物抗生素筛选标记转化为Bar基因,并引入了单sgRNA (BM66)和双sgRNA (BM16)表达元件,载体构建完成。
优选地,步骤(二)中,最后根据待转化受体Zm ALS和Zm ACC基因靶标区域序列设计分别及同时替换该两个基因靶标碱基的sg RNA。
优选地,步骤(三)中,纤维素酶和果胶酶裂解细胞壁分别得到B104玉米的原生质体,将GFP阳性对照以及单碱基编辑载体ACC-CBE,ACC-ALS-CBE通过PEG转化玉米原生质体,检测荧光表达,放大镜下可以检测到40%以上原生质体中的GFP荧光,收集单碱基编辑载体转化后48h的原生质体,提取DNA,随机对编辑基因ACC1和ALS1进行特异PCR扩增,并进行二代测序检验碱基替换效率。
优选地,步骤(四)中,首先取授粉的雌穗并剥去苞叶,将顶端切去后依次浸泡、清洗,剥取幼胚即得到外植体。
优选地,步骤(四)中,然后以玉米幼胚作为外植体,诱导愈伤组织,农杆菌侵染后,愈伤组织分化出芽,生根后再生成苗即可。
本发明的有益效果为:
本发明通过碱基编辑方式失活乙酸乳酸合成酶ALS的编码基因、抑制乙酰辅酶A羧化酶ACC的编码基因活性,创制非转基因的耐氯磺隆与禾草灵(芳香苯氧丙酸酯)类除草剂的玉米新种质。其中:
(i)磺酰脲类除草剂抑制乙酸乳酸合成酶(Acetolactate-synthase,ALS)活性,以阻止支链氨基酸的生物合成而除草。此途径在人和动物体内不存在,这类除草剂对人和动物比较安全。
(ii)单碱基编辑改良通过设计向导RNA使其靶向玉米编辑基因的氨基酸关键位点,进行C>T,A>G的精确核苷酸替换,获得对除草剂不敏感且生长发育正常的抗性植株。
(iii)创制融合不同物种来源的碱基脱氨酶提高单碱基编辑器的脱氨基效率,大大缩短了育种年限。
(iv)通过单碱基基因编辑技术创制的抗性玉米通过自交或回交,可获得已发生精确替换却不含转基因成分的氯磺隆除草剂抗性后代,生态安全性高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是双子叶植物CBE和ABE终载体构建策略图。
图2是单子叶植物CBE终载体构建策略图。
图3是ACC-CBE及ACC&ALS-CBE单碱基编辑载体构建图。
图4是转化原生质体及单碱基编辑效率检测图。
图5是玉米幼胚转化流程图。
图6是单碱基编辑载体在玉米未成熟胚中的遗传转化及阳性植株鉴定图。
图7是T0代基因编辑烟草特异PCR扩增产物Sanger测序结果图。
图8是T0代单碱基编辑玉米自交系田间生长状态图。
图9是T1代基因编辑烟草特异PCR扩增产物Sanger测序结果图。
图10是T1代单碱基编辑玉米自交系除草剂敏感性实验对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
实施例
本实施例提供一种单碱基编辑ALS和ACC基因的玉米种质的创制方法,所述创制方法包括如下步骤:
(一)ALS与ACC基因sgRNA靶序列的选择
(I)ALS1&ALS2基因的sgRNA靶序列选择
(1)在MaizeGDB查找ALS1与ALS2基因组信息,获得ALS1 CDS序列(SEQ ID NO:1)与ALS2 CDS序列(SEQ ID NO:2)。在ALS1&ALS2基因外显子编码区寻找符合5'-N(20)NGG-3'规则的靶序列(SEQ ID NO:3),其中N(20) 表示20个连续的碱基,其中每个N 表示A或T或C或G,符合上述规则的靶序列位于正义链或反义链;
(2)ALS1和ALS2基因是两个同源基因,DNA序列相似性达到88%,ALS1&ALS2基因的sgRNA靶序列是挑选能够共同靶向两个基因的同一序列,符合5'-N(20)NGG-3'的规则,针对ALS1以及ALS2基因,N(20)中20个连续的碱基完全相同;
(3)利用在线序列分析工具(http://skl.scau.edu.cn/targetdesign/)分析以上靶序列在玉米基因组中的同源情况,舍弃存在显着同源的靶序列,根据评分进一步挑选在ALS1和ALS2基因上唯一的靶序列进行合成与载体构建。
(II)ACC1&ACC2基因的sgRNA靶序列的选择
(1)ACC1和ACC2基因sgRNA靶序列(SEQ ID NO:4)选择的标准与上述ALS1&ALS2基因靶序列选择标准相同,获得ACC1 CDS序列(SEQ ID NO:5)与ACC2 CDS序列(SEQ ID NO:6);
(2)ACC1和ACC2基因是两个同源基因,DNA序列相似性达到84.8%,ACC1&ACC2基因的sgRNA靶序列是挑选能够共同靶向两个基因的不同序列,ACC1外显子在N(16)处碱基与ACC2不同,但仍符合5'-N(20)NGG-3'的规则,针对ACC1以及ACC2基因,N(20)中20个连续的碱基完全相同。
(二)构建ACC1&ACC2双基因以及ALS1&ALS2&ACCA&ACC2四基因的sgRNA表达载体
(I)靶序列寡核苷酸合成
本实施例研究了ACC1&ACC2双基因共同靶序列和ALS1&ALS2&ACC1&ACC2四基因不同靶序列的多敲除效果。合成上述设计的正向和反向寡核苷酸序列如下:
ACC1&ACC2基因靶序列对应的正向寡核苷酸序列和反向寡核苷酸序列如下:
BBLa-N3-sgRNA-F:5’-GATTGCTTGGTAGGATAATGAAGGT-3’;
BBLa-N3-gRNA-R:5’-AAACACCTTCATTATCCTACCAAGC-3’。
ACC1&ACC2&ALS1&ALS2基因靶序列对应的正向寡核苷酸序列和反向寡核苷酸序列如下:
A/L-A3-sgRNA-F:5’-GATTGGTGGTGATTTCCACTGTCGG-3’;
A/L-A3-gRNA-R:5’-AAACCCGACAGTGGAAATCACCACC-3’。
(II)构建双子叶植物CBE终载体:pCambia1300 ATUBQ::rAPOBEC1-nCas9-UGI
单碱基编辑终载体基于pCambia1300 AtUBQ::Cas9载体的基础上改造,首先在pUC19中插入RPS5a,构建中间载体Puc19 RPS5a(如图1A, top panel);将AtUBQ::Cas9克隆至pUC19 RPS5a,形成中间载体pUC19 ATUBQ::Cas9(如图1A, bottom panel)。对于BE系统而言,后续再将UGI与rAPOBEC1陆续克隆进pUC19 ATUBQ::Cas9,构建中间载体pUC19ATUBQ:: rAPOBEC1-nCas9-UGI,最后将ATUBQ::nCas9-UGI序列克隆进pCambia1300,形成终载体pCambia1300 ATUBQ::rAPOBEC1-nCas9-UGI,筛选抗性为潮霉素(图1B, top panel)。采用上述类似策略构建ABE系统的终载体pCambia1300 ATUBQ::TadA+TadA*7.10-nCas9,筛选抗性为潮霉素(图1 B, bottom panel)。
(III)构建单子叶植物适用的pCambia1300 ZmUbi:: nCas9-PmCDA1-UGI载体
在已构建载体基础上将双子叶植物CBE终载体pCambia1300 ATUBQ::rAPOBEC1-nCas9-UGI进行启动子及去氨基转移酶的替换合成,构建单子叶植物适用的pCambia1300ZmUbi:: nCas9-PmCDA1-UGI,为了方便后续转基因植物筛选,在此基础上将植物抗生素筛选标记转化为Bar基因,并引入了单sgRNA (BM66)和双sgRNA (BM16)表达元件,载体构建完成(图2,A和B)。
(IV)ACC-CBE及ACC&ALS-CBE单碱基编辑载体构建
玉米单碱基编辑载体CBE的结构如前所述,在此基础上,根据待转化受体Zm ALS和Zm ACC基因靶标区域序列设计分别及同时替换该两个基因靶标碱基的sg RNA,利用在线搜索软件(CRISPR-P)在N’的CDS区域寻找靶点,通过软件评分或者blast搜索确定最佳靶点(红色标记的 NGG是 PAM 序列)(图3,A和B)。
(三)单碱基编辑载体及GFP阳性对照转化原生质体进行效率检测
纤维素酶和果胶酶裂解细胞壁分别得到B104玉米的原生质体,将GFP阳性对照以及单碱基编辑载体ACC-CBE,ACC-ALS-CBE通过PEG转化玉米原生质体,检测荧光表达。10倍物镜下可以检测到40%以上原生质体中的GFP荧光。收集单碱基编辑载体转化后48h的原生质体,提取DNA,随机对编辑基因ACC1和ALS1进行特异PCR扩增,并进行二代测序检验碱基替换效率,如图4所示。其中编辑的碱基窗口大致位于PAM远端3~6位,突变效率为3%左右。
(四)农杆菌介导的玉米幼胚转化法
(I)外植体制备
取授粉9~12d左右的雌穗,剥去苞叶,将顶端切去1cm左右后浸泡在70%乙醇中,15min后取出并用无菌水洗净,在超净工作台上剥取幼胚,幼胚大小0.5~2.0mm,置于含有1.5mLIM的EP管中备用,每管中含有50多个大小相同的幼胚。
(II)农杆菌介导的玉米幼胚遗传转化
以玉米幼胚作为外植体,诱导愈伤组织,农杆菌侵染后,愈伤组织分化出芽,生根后再生成苗(图5)。培养基中通过1/500的草铵膦进行阳性转化植株的筛选(图6,A和B)。
检测对比例
(一)T0代单碱基编辑自交系玉米突变基因型检测
(I)玉米T0代叶片DNA抽提:
挑取目的植株的组织;将其放入2mL(含1个小钢珠)的离心管中,冻干;用研磨仪磨碎冻干样品,加入预热的CTAB 0.5ml;65℃水浴30min,每5min摇匀一次;12000rpm离心5min;吸取350μL上清,加入等体积氯仿/异戊醇(24:1),上下轻柔颠倒数次,12000rpm离心5min;吸取300μL上清于新EP管中,加等体积的异丙醇,混匀,室温放置10min,12000rpm离心10min;去上清,加适量75%酒精浸洗两次,干燥;加50μL ddH2O溶解,放于-20℃保存。
(2)基因特异性鉴定引物如下:
ACC1-F CTTGATTCCCATGAGCGATC;
ACC1-R GACCCAGCCTGAAGAATACC;
ACC2-F CTGTGGAGACACAGACCATG;
ACC2-R CTCTTTGTCCACCAGAGAAGCC;
ALS1-F CCTAGTCTCTGCGCTCGCAG;
ALS1-R GACGTCGAGGACCAGGTAGTTG;
ALS2-F CCACCAACCTTGTCTCCGC;
ALS2-R GAAAGCCTCCTGCACGACG。
(3)基因编辑烟草材料的T7酶切鉴定:
PCR扩增后,编辑个体的PCR产物与野生型B104的PCR产物混合,退火(95℃,5 min;95℃-85℃,RAMP at 2℃/sec;85℃-25℃,RAMP at 0.1℃/sec;4℃,hold),进行T7E1孵育酶切,然后通过琼脂糖凝胶电泳检测。
(4)基因编辑玉米材料的Sanger测序结果与统计:
将T7内切酶鉴定正确的样品的特异PCR扩增产物进行Sanger测序,结果如图7所示,获得了T0-1617-3、T0-1617-11、T0-1403-8、T0-1403-4双基因突变体。T0-1617-3双基因突变体中ACC1/2的sg RNA第3位碱基C替换为碱基T,该突变导致野生型编码的ACC1和ACC2蛋白(SEQ ID NO:9,SEQ ID NO:10)2003位的丝氨酸突变为苯丙氨酸(图7,A和B);T0-1617-11双基因突变体中ACC1/2的sg RNA第3位碱基G替换为碱基T,该突变导致野生型编码的ACC1和ACC2蛋白(SEQ ID NO:9,SEQ ID NO:10)2003位的丝氨酸突变为半胱氨酸(图7,A和B);T0-1403-8双基因突变体中ACC1/2突变类型与T0-1617-3相同(图7,C和D);T0-1403-4双基因突变体中ALS1的sg RNA第10位碱基C替换为碱基T,该突变导致ALS1和ALS2蛋白(SEQID NO:7,SEQ ID NO:8)166位的精氨酸突变为终止密码子,可导致蛋白翻译提前终止;另外,T0-1403-4双基因突变体中ALS2的sg RNA第3位和第4位碱基之间插入了一个碱基T。(图7,E和F)
(二)T0代单碱基编辑玉米自交系田间表型
为了探究Zm ALS和Zm ACC基因单碱基替换后是否对玉米其他主要生物性状造成影响。选取发生单碱基替换的玉米植株,以野生型植株作为对照,对玉米的株高、穗位高以及叶片数进行了测定,单碱基编辑植株与野生型未有明显差异,如图8所示。
(三)T1代单碱基编辑玉米自交系突变基因型检测与除草剂处理实验
(I)单碱基编辑玉米材料的Sanger测序结果与统计
提取T1代种子幼苗DNA,以DNA为模板对编辑序列进行扩增,扩增产物进行Sanger测序,结果如图所示,T1-1617-3遗传了T0代的突变类型,突变体中ACC2的sg RNA第3位碱基C替换为碱基T,该突变导致野生型编码的ACC1和ACC2蛋白(SEQ ID NO:9,SEQ ID NO:10)2003位的丝氨酸突变为苯丙氨酸(图9A);T1-1617-11除遗传了T0代sg RNA第3位碱基C替换为碱基T的突变类型,导致野生型编码的ACC1和ACC2蛋白(SEQ ID NO:9,SEQ ID NO:10)2003位的丝氨酸突变为半胱氨酸外,还有两株在sg RNA第4位碱基T替换为碱基C,但该突变并不影响氨基酸的变化(图9B);而T1-1403-4并未遗传T0代突变类型,而是在ALS2的sg RNA第1位碱基C替换为碱基T,该突变导致半胱氨酸突变为终止密码子,使蛋白翻译提前终止(图9C);T1-1403-8遗传了T0代的突变类型,突变体中ACC2的sg RNA第3位碱基C替换为碱基T,该突变导致野生型编码的丝氨酸突变为苯丙氨酸,另外,T1-1403-8突变体中ACC2的sgRNA第4位碱基T替换为碱基C,但该突变并不影响氨基酸的变化(图9D)。
(II)除草剂处理实验
野生型玉米B104与T1-1403-4、T1-1403-8单碱基编辑阳性植株在出苗后第3周进行除草剂喷施,以每m2有效成分含量为4.2 mg -6.0mg的烟嘧磺隆除草剂连续喷施一周,记录植株生长情况。20天后发现,野生型B104全部死亡,T1-1403-8与野生型类似,也表现出对除草剂的不耐受,而T1-1403-4与野生型B104相比,存活率较高,表现出除草剂抗性(图10),说明在ALS2的sg RNA第1位碱基C替换为碱基T,半胱氨酸突变为终止密码子,可使蛋白翻译提前终止,初步说明该单碱基突变赋予了玉米自交系较强的除草剂耐性,降低了其对磺酰脲类(SU)除草剂的敏感性。

Claims (10)

1.一种单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,所述创制方法包括如下步骤:
(一)对ALS与ACC基因sgRNA靶序列进行选择:首先对ALS1&ALS2基因的sgRNA靶序列选择;然后对ACC1&ACC2基因的sgRNA靶序列进行选择;
(二)构建ACC1&ACC2双基因以及ALS1&ALS2&ACCA&ACC2四基因的sgRNA表达载体:首先对靶序列寡核苷酸进行合成,其次构建双子叶植物CBE终载体pCambia1300 ATUBQ::rAPOBEC1-nCas9-UGI,然后构建单子叶植物适用的pCambia1300 ZmUbi:: nCas9-PmCDA1-UGI载体,最后构建ACC-CBE及ACC&ALS-CBE单碱基编辑载体;
(三)单碱基编辑载体及GFP阳性对照转化原生质体进行效率检测;
(四)农杆菌介导的玉米幼胚转化法:首先进行外植体制备,然后进行农杆菌介导的玉米幼胚遗传转化,即可得到玉米种质。
2.根据权利要求1所述单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,步骤(一)中,首先获得ALS1 CDS序列SEQ ID NO:1与ALS2 CDS序列SEQ ID NO:2,并在ALS1&ALS2基因外显子编码区寻找符合5'-N(20)NGG-3'规则的靶序列SEQ ID NO:3。
3.根据权利要求1所述单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,步骤(一)中,然后获得ACC1 CDS序列SEQ ID NO:5与ACC2 CDS序列SEQ ID NO:6,并在ACC1&ACC2基因外显子编码区寻找符合5'-N(20)NGG-3'规则的靶序列SEQ ID NO:4。
4.根据权利要求1所述单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,步骤(二)中,首先合成ACC1&ACC2基因靶序列对应的正向寡核苷酸序列和反向寡核苷酸序列,具体为:
BBLa-N3-sgRNA-F:5’-GATTGCTTGGTAGGATAATGAAGGT-3’;
BBLa-N3-gRNA-R:5’-AAACACCTTCATTATCCTACCAAGC-3’;
同时合成ACC1&ACC2&ALS1&ALS2基因靶序列对应的正向寡核苷酸序列和反向寡核苷酸序列,具体为:
A/L-A3-sgRNA-F:5’-GATTGGTGGTGATTTCCACTGTCGG-3’;
A/L-A3-gRNA-R:5’-AAACCCGACAGTGGAAATCACCACC-3’。
5.根据权利要求1所述单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,步骤(二)中,其次单碱基编辑终载体基于pCambia1300 AtUBQ::Cas9载体的基础上改造,在pUC19中插入RPS5a,构建中间载体Puc19 RPS5a;将AtUBQ::Cas9克隆至pUC19 RPS5a,形成中间载体pUC19 ATUBQ::Cas9;对于BE系统而言,后续再将UGI与rAPOBEC1陆续克隆进pUC19ATUBQ::Cas9,构建中间载体pUC19 ATUBQ:: rAPOBEC1-nCas9-UGI,最后将ATUBQ::nCas9-UGI序列克隆进pCambia1300,形成终载体pCambia1300 ATUBQ::rAPOBEC1-nCas9-UGI,筛选抗性为潮霉素。
6.根据权利要求1所述单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,步骤(二)中,然后在已构建载体基础上将双子叶植物CBE终载体pCambia1300 ATUBQ::rAPOBEC1-nCas9-UGI进行启动子及去氨基转移酶的替换合成,构建单子叶植物适用的pCambia1300 ZmUbi:: nCas9-PmCDA1-UGI,将植物抗生素筛选标记转化为Bar基因,并引入了单sgRNA (BM66)和双sgRNA (BM16)表达元件,载体构建完成。
7.根据权利要求1所述单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,步骤(二)中,最后根据待转化受体Zm ALS和Zm ACC基因靶标区域序列设计分别及同时替换该两个基因靶标碱基的sg RNA。
8.根据权利要求1所述单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,步骤(三)中,纤维素酶和果胶酶裂解细胞壁分别得到B104玉米的原生质体,将GFP阳性对照以及单碱基编辑载体ACC-CBE,ACC-ALS-CBE通过PEG转化玉米原生质体,检测荧光表达,放大镜下可以检测到40%以上原生质体中的GFP荧光,收集单碱基编辑载体转化后48h的原生质体,提取DNA,随机对编辑基因ACC1和ALS1进行特异PCR扩增,并进行二代测序检验碱基替换效率。
9.根据权利要求1所述单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,步骤(四)中,首先取授粉的雌穗并剥去苞叶,将顶端切去后依次浸泡、清洗,剥取幼胚即得到外植体。
10.根据权利要求1所述单碱基编辑ALS和ACC基因的玉米种质的创制方法,其特征在于,步骤(四)中,然后以玉米幼胚作为外植体,诱导愈伤组织,农杆菌侵染后,愈伤组织分化出芽,生根后再生成苗即可。
CN202410377113.7A 2024-03-29 2024-03-29 一种单碱基编辑als和acc基因的玉米种质的创制方法 Pending CN118147210A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410377113.7A CN118147210A (zh) 2024-03-29 2024-03-29 一种单碱基编辑als和acc基因的玉米种质的创制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410377113.7A CN118147210A (zh) 2024-03-29 2024-03-29 一种单碱基编辑als和acc基因的玉米种质的创制方法

Publications (1)

Publication Number Publication Date
CN118147210A true CN118147210A (zh) 2024-06-07

Family

ID=91290694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410377113.7A Pending CN118147210A (zh) 2024-03-29 2024-03-29 一种单碱基编辑als和acc基因的玉米种质的创制方法

Country Status (1)

Country Link
CN (1) CN118147210A (zh)

Similar Documents

Publication Publication Date Title
Cai et al. CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean
US11820990B2 (en) Method for base editing in plants
JP7239266B2 (ja) 一過性遺伝子発現により植物を正確に改変するための方法
WO2018086623A1 (en) A method for base editing in plants
CN108866092A (zh) 抗除草剂基因的产生及其用途
EP4137577A1 (en) Method for improving plant genetic transformation and gene editing efficiency
CA3064502A1 (en) Compositions and methods for increasing shelf-life of banana
CN113544290A (zh) 同时基因编辑和单倍体诱导
Komatsu et al. Genome editing in PDS genes of tomatoes by non-selection method and of Nicotiana benthamiana by one single guide RNA to edit two orthologs
CN110881367A (zh) 一种玉米事件t抗-4及其使用方法
JP2021509023A (ja) 修飾dhs遺伝子を有する植物
WO2022185312A1 (en) Domestication and improvement of cocoa plant
CN118147210A (zh) 一种单碱基编辑als和acc基因的玉米种质的创制方法
CN116445497B (zh) 甘蓝BoDMP9基因及其在母本单倍体诱导中的应用
Subedi et al. Eliciting targeted mutations in Medicago sativa using CRISPR/Cas9-mediated genome editing: A potential tool for the improvement of disease resistance
US20240327853A1 (en) Double decapitation of plants
US20230227835A1 (en) Method for base editing in plants
CN114763555B (zh) 利用基因编辑实现高产优质育种的方法及试剂
US20240309394A1 (en) Herbicide resistant cannabis plant
CA3179867A1 (en) Cucumber plant habit
CN117925633A (zh) 甘蓝BoCENH3基因及其在单倍体诱导中的应用
CN118308418A (zh) 玉米基因dwf4和功能位点及其用途
CN118291517A (zh) 一种利用农杆菌浸染诱导系幼胚遗传转化的方法
CN117858952A (zh) 编辑香蕉基因的方法
Cai et al. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination