CN118147202A - 水稻低温敏感基因Psb27的应用 - Google Patents

水稻低温敏感基因Psb27的应用 Download PDF

Info

Publication number
CN118147202A
CN118147202A CN202410310060.7A CN202410310060A CN118147202A CN 118147202 A CN118147202 A CN 118147202A CN 202410310060 A CN202410310060 A CN 202410310060A CN 118147202 A CN118147202 A CN 118147202A
Authority
CN
China
Prior art keywords
rice
gene
psb27
temperature stress
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410310060.7A
Other languages
English (en)
Inventor
侯昕
石亚飞
柯祥生
岳晓虹
蔡倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Shenzhen Research Institute of Wuhan University
Original Assignee
Wuhan University WHU
Shenzhen Research Institute of Wuhan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU, Shenzhen Research Institute of Wuhan University filed Critical Wuhan University WHU
Priority to CN202410310060.7A priority Critical patent/CN118147202A/zh
Publication of CN118147202A publication Critical patent/CN118147202A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种水稻低温敏感调控基因Psb27的应用,属于生物技术领域。本发明发现正常温度生长条件下,psb27突变体的株高和鲜重略低于野生型,过表达植株的株高和鲜重与野生型一致;在低温胁迫(12℃)生长条件下,psb27突变体的株高较野生型显著降低、生长受到明显抑制,其叶片出现黄化、甚至死亡现象;而过表达植株与野生型相比,株高则有显著增加。这些结果表明Psb27基因是植物适应低温胁迫环境的必需基因。因此,本发明供了水稻Psb27基因或其编码蛋白调控水稻耐低温胁迫的应用。本发明为增强植物对低温逆境的适应能力提供了一条新途径,为挖掘农作物产量潜力提供了重要的基因资源和理论依据。

Description

水稻低温敏感基因Psb27的应用
技术领域
本发明属于生物技术领域,涉及一种水稻低温敏感基因Psb27的应用。
背景技术
植物在生长发育过程中会受到光照、温度、水分、矿质元素等各种外界非生物胁迫的影响,近年来随着环境恶化程度日趋严重、自然灾害和极端天气频发,植物的生长发育以及作物的产量都会受到较大的影响。温度是影响植物光合作用的重要因素之一,低温几乎影响光合作用的所有过程。叶绿体是植物中最先受到低温影响的细胞器,受到的伤害也最为严重。环境中的温度可直接影响植物的光合作用效率。因此,研究温度对植物体的生长发育,提高光合作用效率,增加粮食产量等方面有着重要的意义。
低温胁迫影响植物的许多生物过程,包括光合结构的破坏、光合膜损伤的诱导以及叶绿体中淀粉代谢的改变(Zhuang K,Kong F,Zhang S,et al.Whirly1 enhancestolerance to chilling stress in tomato via protection of photosystem II andregulation of starch degradation[J].New Phytologist,2019.)。低温造成植物中叶绿体膨胀、类囊体变形,淀粉粒数量减少;低温甚至会造成叶绿体膜破裂、叶绿体粘连、光合色素含量降低,最终导致叶绿体对光能的吸收利用效率降低(Kratsch H A,Wise R R.Theultrastructure of chilling stress[J].Plant Cell&Environment,2000;Oliveira J,Alves P,AP Vitória.Alterations in chlorophyll a fluorescence,pigmentconcentrations and lipid peroxidation to chilling temperature in coffeeseedlings[J].Environmental&Experimental Botany,2009.)。作为半自主型细胞器的叶绿体,是绿色植物最重要的能量转换工厂,能够利用太阳能将二氧化碳和水转化成化学能进而以有机物的形式储存能量,并且释放出氧气。在结构上,叶绿体从外向内分为:叶绿体双层膜、基质、类囊体膜和类囊体腔。进行光合作用的4种主要复合体—光系统II、细胞色素复合体、光系统I、ATP合酶复合体都定位在类囊体膜上。类囊体是光反应进行的场所,包括原初反应及电子传递链。光合放氧作用由光系统I(Photosystem I,PSI)和光系统II(Photosystem II,PSII)驱动,氧化H2O分子进入到电子传递链,最终将NADP+还原成为NADPH。同时,ATP合酶利用光合作用产生的跨膜电位将ADP磷酸化为ATP。由于ATP合酶的催化基团伸向基质,因此暗反应碳同化过程是在基质中完成的。NADPH和ATP等存储能量的高能磷酸化合物最终产生的有机物可供几乎地球上所有生命活动使用。已有研究表明,光系统II功能的抑制是低温胁迫期间最显着的标志之一(Ogaya,Penuelas,Asensio,etal.Chlorophyll fluorescence responses to temperature and water availabilityin two co-dominant Mediterranean shrub and tree species in along-term fieldexperiment simulating climate change RID D-9704-2011[J].ENVIRON EXP BOT,2011;Kong F,Deng Y,Zhou B,et al.A chloroplast-targeted DnaJ protein contributes tomaintenance of photosystem II under chilling stress[J].Journal ofExperimental Botany,2014(1):143-158.)。光抑制是植物的光合系统中所接受的光能超过光合作用所能利用的数量时,剩余能量造成的光合作用效率降低的现象。当冷敏感植物从最适温度转移到低温生长时,低温下光能利用效率的降低会导致激发能量的增加,从而诱导活性氧(ROS)的产生,导致光系统II和光系统I产生光抑制(Huang W,Yang Y J,Hu H,et al.Moderate Photoinhibition of Photosystem IIProtects Photosystem I fromPhotodamage at Chilling Stress in Tobacco Leaves[J].Frontiers in PlantScience,2016;Zza B,Pei W,Wza B,et al.Calcium is involved in exogenous NO-induced enhancement of photosynthesis in cucumber(Cucumis sativus L.)seedlings under low temperature[J].Scientia Horticulturae,2020.)。与光系统II不同的是,光系统I在一定温度下叶片中的保护机制被破坏时才会发生光抑制,并且光系统I的恢复变得非常缓慢(Sonoike K.The different roles of chilling temperatures inthe photoinhibition of photosystem I and photosystem II[J].Journal ofPhotochemistry and Photobiology B Biology,1999;Sonoike K.Photoinhibition ofphotosystem I[J].Physiologia Plantarum,2011.)。最近有研究表明,环式电子传递可能在缓解低温胁迫下光系统I的光抑制中发挥重要作用(Suorsa M,Rossi F,Tadini L,etal.PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear ElectronTransport Rate in Arabidopsis thaliana[J].Molecular Plant,2016;Mikko T,SannaR,Eva-Mari A.Electron flow from PSII to PSI under high light is controlled byPGR5 but not by PSBS[J].Frontiers in Plant Science,2015;Huang,Wei,Liu,etal.Plasticity in roles of cyclic electron flow around photosystem I atcontrasting temperatures in the chilling-sensitive plant Calotropis gigantea[J].Environmental and experimental botany,2017.)。
目前,植物光合作用蛋白对低温胁迫的应答机制方面的研究并不清楚。有研究指出,远红光通过PGR5/PGRL1和NDH介导的环式电子传递链对番茄低温胁迫的光保护起正调控作用(Wang F,Yan J,Ahammed,et al.PGR5/PGRL1 and NDH Mediate Far-Red Light-Induced Photoprotection in Response to Chilling Stress in Tomato[J].Frontiersin Plant Science,2020.)。番茄中SlWHY1与SlpsbA(D1)的上游区域(A/GTTACCCT/A)结合,增强叶绿体中D1的从头合成。此外,SlWHY1通过维持PSII的功能和降解淀粉来增强番茄对低温胁迫的抵抗力(Kunyang,Zhuang,Fanying,et al.Whirly1 enhances tolerance tochilling stress in tomato via protection of photosystem II and regulation ofstarch degradation.[J].New Phytologist,2018.)。过表达玉米ZmMYB-IF35可减轻拟南芥中光合系统II的光抑制,从而增强对寒冷和氧化应激的抵抗力(Overexpression ofmaize MYB-IF35 increases chilling tolerance in Arabidopsis.[J].PlantPhysiology&Biochemistry,2018.)。叶绿体ATP合酶在跨类囊体膜的质子动力(pmf)和质子梯度(ΔpH)的调节中起重要作用。ATP合酶(gH+)活性降低,对低温下植物类囊体腔ΔpH的积累、光合系统I的氧化还原状态的调节起着重要的作用(Yang Y J,Zhang S B,HuangW.Chloroplastic ATP Synthase Alleviates Photoinhibition of Photosystem I inTobacco Illuminated at Chilling Temperature[J].Frontiers in Plant Science,2018.)。近期研究表明,水稻在18℃培养条件下叶绿体基质片层疏松,在12℃培养48小时后类囊体和基质片层结构无法发育完成。进一步研究发现,光系统II和光系统I蛋白在18℃培养条件下明显下降,在12℃培养48小时后几乎无法检测到PSII和PSI蛋白。(Zhao Y,Han Q,Ding C,et al.Effect of Low Temperature on Chlorophyll Biosynthesis andChloroplast Biogenesis of Rice Seedlings during Greening[J].InternationalJournal of Molecular Sciences,2020.)。
发明内容
本发明的目的在于提供一种水稻低温敏感基因Psb27的应用。
Psb27基因编码的蛋白位于类囊体腔内,Rice网站(http://rice.plantbiology.msu.edu/)编号为LOC_Os03g21560;NCBI基因编号为LOC4332745,核苷酸序列如SEQ ID NO:2。Psb27基因无内含子,且仅有1个转录本;编码165氨基酸(aa),氨基酸序列如SEQ ID NO:1所示,其中N端的44aa是进叶绿体的信号肽。Psb27基因的核酸序列可以是其cDNA序列,也可以是基因组DNA序列,或者是与这些序列具有一致性且编码相同功能蛋白的DNA序列。
本发明运用CRISPR Cas9系统创建水稻psb27突变体,得到psb27-19、psb27-27两种Psb27敲除并且Cas9分离出去的突变体。同时,利用Psb27基因的全长CDs序列,以psb27突变体作为受体材料构建了Psb27互补株系,成功获得了Psb27过量表达的植株OEPsb27-2和OEPsb27-5。
将水稻种植条件分为正常温度(16h光照/8h黑暗,30℃/28℃,300μmol m-2s-1)和低温胁迫(16h光照/8h黑暗,12℃/12℃,300μmol m-2s-1)两种培养条件。在正常温度(30℃)生长条件下,psb27突变体的株高和鲜重略低于野生型,过表达植株的株高和鲜重与野生型一致。在低温胁迫(12℃)的生长条件下,psb27突变体的株高较野生型显著降低、生长受到明显抑制,其叶片出现黄化、甚至死亡现象;而OEPsb27过表达植株与野生型相比,株高则有显著增加。这些结果表明,Psb27基因是植物适应低温胁迫环境的必需基因,是植物响应低温逆境的重要调控因子。
基于Psb27基因的功能,本发明提供了水稻Psb27基因或其编码蛋白在调控水稻耐低温胁迫中的应用,所述的应用包括提高水稻耐低温胁迫、降低耐低温胁迫。将水稻Psb27基因过表达提高水稻耐低温胁迫;将水稻Psb27基因进行突变使该基因功能缺失,或将水稻Psb27基因敲除/降低表达,降低水稻耐低温胁迫。
本发明还提供了水稻Psb27基因或其编码蛋白的如下应用:制备转基因植物、农作物改良育种、制种、合成生物学。所述的植物包括水稻但不局限于水稻。同样,包含Psb27基因的表达载体或细胞(能表达Psb27蛋白的载体或细胞)也具有上述应用,所述的载体为植物表达载体;所述的细胞包括大肠杆菌细胞、农杆菌细胞、植物细胞。
本发明还提供了一种提高水稻耐低温胁迫能力或培育抗寒水稻品种的方法,所述的方法为在水稻中过表达Psb27基因。进一步地,所述的方法包括以下步骤:构建Psb27基因过表达载体,将过表达载体转化到水稻中,使水稻耐低温胁迫能力提高或得到抗寒水稻品种。
所述的Psb27基因的编码蛋白为下述蛋白的任一种:
1)氨基酸序列如SEQ ID NO:2所示的蛋白;
2)在SEQ ID NO:2所示的氨基酸序列中经过取代、缺失/添加一个或者多个氨基酸且具有相同功能的由1)衍生的蛋白;
3)其它物种的与1)具有同源性的蛋白。
所述的Psb27基因为下述基因中的任一种:
1)核苷酸序列如SEQ ID NO:1所示的基因;
2)在SEQ ID NO:1所示的核苷酸序列中经过取代、缺失/添加一个或者多个核苷酸且具有相同功能的由1)衍生的基因;
3)其它物种的与1)具有同源性的基因。
本发明的优点和有益效果:本发明发现了水稻Psb27基因在耐低温胁迫方面的新功能,为提供水稻耐低温胁迫或培育抗寒水稻品种提供了新途径,为挖掘农作物产量潜力提供了重要的基因资源和理论依据,在推进农业现代化进程中具有重要作用。
附图说明
图1是水稻Psb27基因的组织表达谱。
图2是水稻psb27突变体与OEPsb27过表达植株的构建载体。A图是psb27突变体的构建载体,B图是OEPsb27过表达植株的构建载体。
图3是水稻psb27突变体的检测。A图是psb27突变体编辑位点,B图是psb27突变体及野生型的Psb27基因表达水平检测,C图是psb27突变体及野生型的Psb27蛋白表达水平检测。
图4是水稻OEPsb27过表达植株的检测。A图是OEPsb27过表达植株及野生型的Psb27基因表达水平检测,B图是OEPsb27过表达植株及野生型的Psb27蛋白表达水平检测。
图5是psb27突变体与OEPsb27过表达植株在正常温度(30℃)及冷胁迫(12℃)下的表型。A-E分别为表型、30℃株高、12℃株高、30℃鲜重及12℃鲜重。
图6是psb27突变体和OEPsb27过表达植株在冷胁迫(12℃)以及恢复正常温度(30℃)后的表型。A图是psb27突变体和OEPsb27过表达植株在冷胁迫(12℃)下的表型,B图是psb27突变体和OEPsb27过表达植株在冷胁迫(12℃)后恢复正常温度(30℃)10天的表型。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1Psb27基因的组织表达分析
利用水稻NIP组织不同时期和组织部位(水稻一叶一心地上部分、一叶一心地下部分、分蘖期叶片、分蘖期叶鞘、抽穗期叶片、抽穗期叶鞘、抽穗期茎、抽穗期穗)的RNA反转录为cDNA,荧光定量PCR检测不同组织的Psb27基因的表达量。显示Psb27基因在各个时期叶片中都有较高的表达量(见图1)。
荧光定量PCR引物序列为:
Psb27F:ACGTGAGCGAGACGAAGGA,Psb27R:CGCCCTGTCCATGTTGATC。
UBQ5F:ACCACTTCGACCGCCACTACT,UBQ5R:ACGCCTAAGCCTGCTGGTT。
实施例2水稻psb27突变体的获得
运用CRISPR Cas9构建质粒(见图2),创建了水稻psb27突变体(Xie K,MinkenbergB,Yang Y.Boosting CRISPR/Cas9 multiplex editing capability with theendogenous tRNA-processing system.[J].Proc Natl Acad Sci U S A,2015.)。水稻T0代转化植株经PCR测序检测,筛选出双链纯合编辑的psb27突变体材料,分别命名为psb27-19以spsb27-27。其中ospsb27-19材料编辑类型为11个氨基酸后插入C,15个氨基酸之后终止;ospsb27-27材料编辑类型为5个氨基酸后移码,3'UTR的5bp处终止(见图3)。潮霉素标记基因以及Cas9基因检测结果显示上述两种突变体类型已分离出载体。
CRISPR Cas9创建突变体的载体为pRGEB32(https://www.addgene.org/63142/),在水稻PSB27基因的外显子上设计靶位点来敲除Psb27基因,靶位点序列为GGTAGCCGGGGCCGTGAGGA。
潮霉素基因鉴定引物为:F:CTCCATACAAGCCAACCACG;R:GGAAGTGCTTGACA TTGGGG。
Cas9鉴定引物为:F:CGATAAGAACCTGCCCAACG;R:GCTCTTTGATGCCCTCTTC G。
CRISPR编辑检测测序引物为:F:TGGATTCGTTGCCCAAGTTG;R:CCTTCCCGATCACGTCCTTCGTCTC。
实施例3水稻OEPsb27过表达植株的获得
将Psb27基因的全长CDs序列克隆到带有3x FLAG以及3x HA标签的C端质粒中(pCAMBIA1300载体骨架改造,见图2),以psb27突变体作为受体材料构建了psb27突变体的互补株系。水稻T0代转化植株经PCR测序检测,筛选出过量表达的水稻OEPsb27互补株系材料,分别命名为OEPsb27-2以及OEPsb27-5(见图4)。利用荧光定量PCR技术来鉴定过表达材料的RNA表达水平,并使用Western免疫印迹方法来检测蛋白表达水平。荧光定量PCR引物序列如实施例1所示。
实施例4Western免疫印迹检测psb27突变体及OEPsb27过表达植株中Psb27蛋白表达量
水稻叶绿体类囊体膜蛋白的提取方法参照Lima A等人的方法(Lima A,Lima S,Wong J H,et al.A redox-active FKBP-type immunophilin functions inaccumulation of the photosystem II supercomplex in Arabidopsis thaliana.[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2006,103(33):12631-12636.)。在Western免疫印迹分析中,分别使用了不同浓度的NIP(1.25μg、2.5μg、5μg的chl),以及psb27-19(5μg的chl)和psb27-27(5μg的chl)作为上样量(见图3)。结果显示,psb27突变体材料中未检测到Psb27蛋白的表达,这表明水稻Psb27基因敲除突变体已成功构建。对于OEPsb27过表达植株,蛋白上样量如下:NIP(5μg的chl)、psb27-19(5μg的chl)、OEPsb27-2(5μg的chl)以及OEPsb27-2(5μg的chl)(见图4)。Western免疫印迹检测进一步证实了这些过表达植株中Psb27蛋白的显著增加。
实施例5psb27突变体与OEPsb27过表达植株在正常温度(30℃)及冷胁迫(12℃)下的表型
选取饱满的种子去壳,表面消毒后播种在含3%蔗糖的1/2MS培养基上,置于正常温度生长条件(16h光照/8h黑暗,30℃/28℃,300μmol m-2s-1)下的生长室生长。见光生长7天后,挑取生长一致的野生型、突变体以及过表达幼苗,插入装有营养液的水培盒中,继续在正常温度下生长3天。随后将上述水稻幼苗放置正常温度(30℃)和低温胁迫(12℃)的条件下生长3周,以探究导致psb27突变体和OEPsb27过表达植株表型的因素(见图5)。
正常温度生长条件下(16h光照/8h黑暗,30℃/28℃,300μmol m-2s-1),psb27突变体的株高和鲜重均低于野生型植株。然而OEPsb27过表达植株的株高和鲜重与野生型一致。
低温胁迫生长条件下(16h光照/8h黑暗,12℃/12℃,300μmol m-2s-1),低温胁迫3周后psb27突变体的株高和鲜重显著低于野生型植株,且突变体植株甚至出现叶片发黄、甚至死亡现象。相比之下,OEPsb27过表达植株的株高则显著高于野生型。
上述数据均用邓肯式多重分析法(Duncan's multiple range test)进行差异显著性比较分析。
实施例6psb27突变体和OEPsb27过表达植株在冷胁迫(12℃)以及恢复正常温度(30℃)后的表型
将水稻在低温胁迫条件下(16h光照/8h黑暗,12℃/12℃,300μmol m-2s-1)培养3周后,转移至正常生长条件(16h光照/8h黑暗,30℃/28℃,300μmol m-2s-1)下继续培养10天(见图6),野生型和OEPsb27过表达植株均能恢复到正常生长状态,然而psb27突变体植株却出现了整株死亡的现象。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (9)

1.水稻Psb27基因或其编码蛋白在调控水稻耐低温胁迫中的应用,其特征在于:所述的应用包括提高水稻耐低温胁迫、降低耐低温胁迫;
将水稻Psb27基因过表达提高水稻耐低温胁迫;
将水稻Psb27基因进行突变使该基因功能缺失,或将水稻Psb27基因敲除/降低表达,降低水稻耐低温胁迫。
2.水稻Psb27基因或其编码蛋白或含Psb27基因的表达载体或细胞的应用,其特征在于:所述的应用包括制备转基因植物、农作物改良育种、制种、合成生物学。
3.根据权利要求2所述的应用,其特征在于:所述的制备转基因植物、育种或制种为制备或培育耐低温胁迫或抗寒能力高的植物或品种。
4.根据权利要求2所述的应用,其特征在于:所述的植物包括水稻。
5.根据权利要求2所述的应用,其特征在于:所述的载体为植物表达载体;所述的细胞包括大肠杆菌细胞、农杆菌细胞、植物细胞。
6.一种提高水稻耐低温胁迫能力或培育抗寒水稻品种的方法,其特征在于:所述的方法为在水稻中过表达Psb27基因。
7.根据权利要求6所述的方法,其特征在于:包括以下步骤:构建Psb27基因过表达载体,将过表达载体转化到水稻中,使水稻耐低温胁迫能力提高或得到抗寒水稻品种。
8.根据权利要求1-5任一项所述的应用或权利要求6或7所述的方法,其特征在于:
所述的Psb27基因的编码蛋白为下述蛋白的任一种:
1)氨基酸序列如SEQ ID NO:2所示的蛋白;
2)在SEQ ID NO:2所示的氨基酸序列中经过取代、缺失/添加一个或者多个氨基酸且具有相同功能的由1)衍生的蛋白;
3)其它物种的与1)具有同源性的蛋白。
9.根据权利要求1-5任一项所述的应用或权利要求6或7所述的方法,其特征在于:
所述的Psb27基因为下述基因中的任一种:
1)核苷酸序列如SEQ ID NO:1所示的基因;
2)在SEQ ID NO:1所示的核苷酸序列中经过取代、缺失/添加一个或者多个核苷酸且具有相同功能的由1)衍生的基因;
3)其它物种的与1)具有同源性的基因。
CN202410310060.7A 2024-03-19 2024-03-19 水稻低温敏感基因Psb27的应用 Pending CN118147202A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410310060.7A CN118147202A (zh) 2024-03-19 2024-03-19 水稻低温敏感基因Psb27的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410310060.7A CN118147202A (zh) 2024-03-19 2024-03-19 水稻低温敏感基因Psb27的应用

Publications (1)

Publication Number Publication Date
CN118147202A true CN118147202A (zh) 2024-06-07

Family

ID=91300967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410310060.7A Pending CN118147202A (zh) 2024-03-19 2024-03-19 水稻低温敏感基因Psb27的应用

Country Status (1)

Country Link
CN (1) CN118147202A (zh)

Similar Documents

Publication Publication Date Title
CN101679999A (zh) 具有增加的胁迫耐受性和产率的转基因植物
CN102234318B (zh) 植物耐逆性相关蛋白TaTPRPK1及其编码基因和应用
Lin et al. Genes sufficient for synthesizing peptidoglycan are retained in gymnosperm genomes, and MurE from Larix gmelinii can rescue the albino phenotype of Arabidopsis MurE mutation
CN116622760B (zh) LuAccD基因用于调节植物脂肪酸合成和耐盐抗旱性的应用
CN114591966A (zh) 拟南芥转录因子srg1基因在调控植物生长发育中的应用
CN117402227A (zh) 一种调控株高及抗旱性的lea基因、蛋白及其应用
CN116590308B (zh) 马铃薯耐旱性相关热激蛋白基因hsp101及其应用
CN108676804A (zh) 拟南芥at5g49330基因在盐胁迫反应方面的应用
US20130174299A1 (en) Method for production of stolon-forming plant having improved tuber production ability or stolon production ability compared with wild type, and stolon-forming plant produced by the method
CN116042673A (zh) AsNADP-ME 1基因在提高植物耐旱性中的应用
CN115873084A (zh) 一种灰杨金属转运蛋白、基因及其应用
CN115322977A (zh) 忽地笑LaCOMT及其编码基因在提高植物汞胁迫耐受性中的应用
CN118147202A (zh) 水稻低温敏感基因Psb27的应用
CN108795973B (zh) 拟南芥糖基转移酶基因ugt79b8在提高植物光合效率中的应用
CN114516905B (zh) 植物光合调控基因tl7及其蛋白与应用
CN115976074B (zh) AsBgluc 1基因在提高植物耐旱性中的应用
CN114277035B (zh) 木薯MeRS40基因及其蛋白和应用
CN117024538B (zh) 一种玉米抗倒伏基因及其相关蛋白和生物材料的应用
CN116199756B (zh) 一种来自水稻的OsMYB44基因及其应用
CN118388617B (zh) SlKAB1基因在调节植物抗盐中的应用
CN109913474B (zh) 棉花GhRPL2基因在提高植物干旱胁迫耐性中的应用
CN110499326B (zh) Rgga在调控作物农艺性状中的应用
CN118006658A (zh) TaMAT1基因及其用途
CN118291487A (zh) OsbHLH167基因在调控水稻深根比中的应用
CN117511965A (zh) 一种与水稻苗期耐盐性相关的基因OsGRAS34及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination