CN118063626A - 利用角质酶融合蛋白实现pet塑料解聚的方法 - Google Patents

利用角质酶融合蛋白实现pet塑料解聚的方法 Download PDF

Info

Publication number
CN118063626A
CN118063626A CN202410234493.9A CN202410234493A CN118063626A CN 118063626 A CN118063626 A CN 118063626A CN 202410234493 A CN202410234493 A CN 202410234493A CN 118063626 A CN118063626 A CN 118063626A
Authority
CN
China
Prior art keywords
fusion protein
pet plastic
pet
iccg
cutinase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410234493.9A
Other languages
English (en)
Inventor
董维亮
沈杰
薛瑞
周杰
姜岷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202410234493.9A priority Critical patent/CN118063626A/zh
Publication of CN118063626A publication Critical patent/CN118063626A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01074Cutinase (3.1.1.74)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开利用角质酶融合蛋白实现PET塑料解聚的方法,将几丁质结合模块与角质酶ICCG连接,获得融合蛋白;将融合蛋白的酶液与PET塑料混合,完成PET塑料解聚;其中,所述几丁质结合模块的氨基酸序列如SEQ ID NO:1所示。本发明的融合蛋白性能优良,显著增强了与底物的结合能力,具有高效的塑料降解能力,对于结晶度为40%的PET薄膜显示出可测量的活性。

Description

利用角质酶融合蛋白实现PET塑料解聚的方法
技术领域
本发明属于蛋白质工程技术领域,具体涉及利用角质酶融合蛋白实现PET塑料解聚的方法。
背景技术
PET(聚对苯二甲酸乙二醇酯)是一种广泛用于制造塑料瓶、纤维和薄膜等产品的高性能聚酯。然而,由于其耐高温、抗化学腐蚀和难以生物降解的特性,PET塑料带来了环境问题。因此,寻找一种高效的降解方法成为一项迫切的任务。
酶解聚对苯二甲酸乙二酯因其绿色性与可持续性得到了了广大研究者的关注。大阪大学的Shigenori Kanaya等研究人员在堆肥中发现了一种角质酶,称之为LCC(leaf-branch compost cutinase),可以切断酯基,将PET分解为对苯二甲酸和乙二醇。相比与其他酶活性高了33倍以上。然而,值得关注的是,LCC酶在高结晶度的PET解聚方面表现相对不足,这对于处理高度结晶的塑料废弃物提出了挑战。
发明内容
本发明的目的在于克服上述现有技术存在的问题,提供利用角质酶融合蛋白实现PET塑料解聚的方法。
为实现上述技术目的,本发明采用如下技术方案:
利用角质酶融合蛋白实现PET塑料解聚的方法,包括:
将几丁质结合模块与角质酶ICCG连接,获得融合蛋白;
将融合蛋白的酶液与PET塑料混合,完成PET塑料解聚;
其中,所述几丁质结合模块的氨基酸序列如SEQ ID NO:1所示。
作为一种优选的实施方式,所述角质酶ICCG与蛋白标签通过连接肽连接。
作为一种优选的实施方式,所述连接肽的氨基酸序列为GGGGSGGGGS。
作为一种优选的实施方式,所述几丁质结合模块通过重叠延伸PCR及同源重组的方式与ICCG连接,构建融合蛋白。
作为一种优选的实施方式,所述酶液的获取方式为:
以大肠杆菌为宿主菌,构建包含所述融合蛋白的工程菌株,利用IPTG诱导工程菌株中融合蛋白的表达,获得融合蛋白的酶液。
作为一种优选的实施方式,所述PET塑料的结晶度≤40%。
作为一种优选的实施方式,所述酶液与PET塑料混合后在40-80℃下搅拌孵育。
作为一种优选的实施方式,所述酶液与PET塑料混合后在65℃下搅拌孵育。
本发明成功地将几丁质结合域(ChBD)融合到来源于叶枝堆肥宏基因组提取出来的突变体ICCG上。融合蛋白在大肠杆菌中功能性表达,结合实验验证了融合蛋白对PET薄膜的吸附能力增强。结果表明了,融合蛋白ICCG- ChBD在低结晶度的PET材料上表现出更好的降解性能,并且融合酶对结晶度高达40%的PET基材上实现了可检测的降解性能。
附图说明
图1为ICCG和融合蛋白ICCG-ChBD以及ICCG-ChBD-GFP的蛋白胶图。
图2为融合蛋白与突变体ICCG结合PET底物的吸附速率图。
图3为不同时间段,65℃和pH=8下通过融合酶测定GF-PET粉末中水解产物。
图4为融合蛋白对不同结晶度的PET塑料粉末的解聚产物。
具体实施方式
下面的实施例将对本发明所提供的方法予以进一步的说明,但本发明不限于所列出的实施例,还应包括在本发明所要求的权利范围内其它任何公知的改变。
实施例1
本实施例具体说明融合蛋白ICCG-ChBD的构建、表达和纯化方法。
突变体ICCG来源于叶枝堆肥宏基因组(核苷酸序列可参见CN113584057A)。ChBD结合模块来自梅源甲壳菌SYBC-H1的几丁质结合结构域,其氨基酸序列如SEQ ID NO:1所示,以此为模板,设计引物,PCR方式扩增,得到目的基因,再将得到的目的基因以连接肽为模板设计上下游引物,再次PCR,重叠延伸得到融合蛋白,将目的基因导入载体,并使用DH5α感受态,对导入后载体后的完整基因进行扩增。引物序列如下表1所示:
表1 引物序列
F1 GGAGATATACATATGGCCTTCACCTGTACTGCCACC
R1 CGACCCACCACCGCCCGAGCCACCGCCACCTGGACAATTGCCGACGATGTAG
F2 GGAGATATACATATGCCTGCACCACTGACTACTACC
R2 CGACCCACCACCGATGTAGCTTCAAAGGTACACCGCCACCGACC
F3 GGTGGCGGTGGCTCGGGCGGTGGTGGGTCGATGAGTAAAGGAGAAGAAC
R3 GTGGTGGTGCTCGAGTTTGTATAGTTCATCCATGCCATGTG
F4 GATGTAGCAGCCGGTGGCGGTGGCTCGGGCGGTGGTGGGTCG
R4 GGTGGCGGTGGCTCGGGCGGTGGTGGGTCGTGCCTGCACCACT
F5 CCACTGACTACTACCCCGGTGGCGGTGGCTCGGGCGGTGGTGGGTCG
R5 GGTGGCGGTGGCTCGGGCGGGGTGGCGGTGGCTCGGGCGG
表中,F1、R1为同源重组ICCG的上、下游引物,F2、R2为ChBD的上、下游引物,F3、R3为绿色荧光蛋白GFP的上、下游引物,F4、R4为连接肽A(连接ICCG与ChBD)的上、下游引物,F5、R5为连接肽B(连接ICCG-ChBD与GFP)的上、下游引物。连接肽A、B的氨基酸序均列为:GGGGSGGGGS。
所有的化学品和试剂均为分析级,购自Sahn Chemical Technology Co. Ltd,限制性内切酶为NdeI、Xhol,DNA聚合酶购自TaKaRa Co.Ltd.。大肠杆菌菌株在37°C的LB培养基中培养。本研究中的所有构建体均使用表达载体pET-29a,用于在大肠杆菌BL21(DE3)中重组表达。
将含有pET29a-ICCG、pET29a-ICCG-ChBD质粒的大肠杆菌接种5mL含有卡那霉素(50 μg/mL)的LB培养基,在37°C和 200 rpm 下孵育 12 小时。然后,取出2mL种子培养液,接种200mL LB培养基,用卡那霉素(50μg/ mL)在37°C和200rpm下孵育4小时。当OD值达到0.6时,加入终浓度为1mM的IPTG,通过在18°C下进一步孵育24小时来诱导重组蛋白表达。通过在 4°C下以12,000 rpm 离心 10 分钟来收获细菌细胞。获得的细胞沉淀用磷酸缓冲液(50 mM,pH 8.0)洗涤两次,并用50 mM磷酸缓冲液(pH 8.0)重悬。然后,用scientz-II D超声发生器破碎细胞,并通过在12,000 rpm和4°C下离心20 min去除细胞碎片。使用生物分子液相色谱系统的NTA纯化具有C端His6标签的重组酶。用咪唑缓冲液洗脱目的蛋白(300 mMNaCl,250 mM 咪唑,pH 8.0)。收集纯化的蛋白,用超滤管浓缩,除去咪唑,使用SDS-PAGE(聚丙烯酰胺)蛋白电泳验证融合蛋白的表达,如图1所示。
实施例2
纯化的酶(LCCG-ChBD-GFP)和预处理的PET基材充分混合10 min,并在4°C下以12,000 rpm离心10 min。 结合模块对塑料基质的吸附效率是根据混合和孵育前后在上清液中测定的蛋白质浓度计算的。在不同的孵育温度(4、20、40 和 65°C)下对这种吸附效率进行了实验,以监测融合酶与PET塑料的最大结合效率。
蛋白质浓度通过Bradford方法测定,使用INFINITE M NANO酶标仪在495nm下,测量蛋白浓度,蛋白浓度测定的线性方程为y=0.0018x+0.7004,R2=0.9988。
使用日立F7000荧光分光光度计检测到的荧光强度测定吸附的ChBD-GFP的量,与之前描述的类似)。
通过荧光法测定有和没有 ChBD 结合模块与 PET 水解酶吸附速率的时间过程,在4°C下孵育80 min后,ICCG -ChBD获得最大吸附率为22.3%。相比之下,ICCG在孵育30分钟后已经达到饱和,其吸附速率约为7%,在40°C下,孵育70 min后达到30.2%的最大吸附效率。这是本研究中使用的几丁质结合域的最佳结合温度。随着孵育温度升高至65°C或72°C,孵育2 h后达到的,最大吸附率略有下降至27%或23.5%,如图2所示。
实施例3
PET的酶促降解在500mL反应器中进行。反应开始时,将0.5μmol酶加入含有120mgPET底物的200mL缓冲液(100mM磷酸钾缓冲液pH=8)中,然后在65°C下以100rpm搅拌孵育12小时。使用HPLC测量反应上清液中的BHET、MHET和TPA的总量来计算酶解聚效率。样品通过0.22μm过滤器过滤,并通过岛津CMB-20 A HPLC系统与C18色谱柱(InerSustain,4.6 ×250 mm,5μm)联用进行分析。用溶剂(18%乙腈、1%甲酸和81%水,pH 2.5)在0–25 min内洗脱C18色谱柱。样品在254 nm处监测。
结果如图3所示。对苯二甲酸单(2-羟乙基)酯(MHET)含量最高,其次是对苯二甲酸(TPA)和双(2-羟乙基)对苯二甲酸酯(BHET)。在长达12 h的孵育时间内,释放的TPA和MHET水平持续增加。在65°C下反应12小时后,LCCG产生0.76 mM TPA、1.25 mM MHET和0.11 mMBHET, 而ICCG-ChBD对GF-PET表现出更高的活性,孵育12小时后释放出0.92 mM TPA、1.5mM MHET和0.32 mM BHET的产量,结合ChBD模块的融合蛋白总产量比没有结合ChBD模块的ICCG酶产量高29%。
实施例4
本实施例研究不同结晶度PET对降解效果的影响,所述不同结晶度PET包括GF-PET(6.7%)、Pcw-PET(16%)和Hc-PET(40%),除PET结晶度区别外,降解体系、降解方法和实施例3相同。
结果如图4所示,ICCG-ChBD融合模块对于不同结晶度PET塑料的解聚均优于突变体LCCG,对于Hc-PET(40%)的PET底物能检测到少量的解聚产物。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.利用角质酶融合蛋白实现PET塑料解聚的方法,其特征在于,包括:
将几丁质结合模块与角质酶ICCG连接,获得融合蛋白;
将融合蛋白的酶液与PET塑料混合,完成PET塑料解聚;
其中,所述几丁质结合模块的氨基酸序列如SEQ ID NO:1所示。
2.根据权利要求1所述的方法,其特征在于,所述角质酶ICCG与蛋白标签通过连接肽连接。
3.根据权利要求2所述的方法,其特征在于,所述连接肽的氨基酸序列为GGGGSGGGGS。
4.根据权利要求1所述的方法,其特征在于,所述几丁质结合模块通过重叠延伸PCR及同源重组的方式与ICCG连接,构建融合蛋白。
5.根据权利要求1所述的方法,其特征在于,所述酶液的获取方式为:
以大肠杆菌为宿主菌,构建包含所述融合蛋白的工程菌株,利用IPTG诱导工程菌株中融合蛋白的表达,获得融合蛋白的酶液。
6.根据权利要求1所述的方法,其特征在于,所述PET塑料的结晶度≤40%。
7.根据权利要求1所述的方法,其特征在于,所述酶液与PET塑料混合后在40-80℃下搅拌孵育。
8.根据权利要求1所述的方法,其特征在于,所述酶液与PET塑料混合后在65℃下搅拌孵育。
CN202410234493.9A 2024-03-01 2024-03-01 利用角质酶融合蛋白实现pet塑料解聚的方法 Pending CN118063626A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410234493.9A CN118063626A (zh) 2024-03-01 2024-03-01 利用角质酶融合蛋白实现pet塑料解聚的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410234493.9A CN118063626A (zh) 2024-03-01 2024-03-01 利用角质酶融合蛋白实现pet塑料解聚的方法

Publications (1)

Publication Number Publication Date
CN118063626A true CN118063626A (zh) 2024-05-24

Family

ID=91105614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410234493.9A Pending CN118063626A (zh) 2024-03-01 2024-03-01 利用角质酶融合蛋白实现pet塑料解聚的方法

Country Status (1)

Country Link
CN (1) CN118063626A (zh)

Similar Documents

Publication Publication Date Title
Yan et al. Thermophilic whole‐cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum
Sulaiman et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach
CN109642221A (zh) 新酯酶及其用途
WO2010075529A2 (en) Heterologous biomass degrading enzyme expression in thermoanaerobacterium saccharolyticum
CN108239627B (zh) 活性提高的脂肪酶及其应用
CN113512541B (zh) 一种新型磷酸化腺苷酰化酶及其制备方法与应用
Hwang et al. Enhanced biodegradation of waste poly (ethylene terephthalate) using a reinforced plastic degrading enzyme complex
CN115011580B (zh) 角质酶突变体及其在聚对苯二甲酸乙二醇酯降解中的应用
CN101942025A (zh) 一种肝素酶ⅲ融合蛋白及其编码基因与表达方法
Yim et al. Rapid combinatorial rewiring of metabolic networks for enhanced poly (3-hydroxybutyrate) production in Corynebacterium glutamicum
CN117821419A (zh) 双烯内酯酶突变体及其应用
CN116606873B (zh) 分解聚酯的酯酶突变体基因及该基因表达的蛋白与应用
CN101942024A (zh) 一种肝素酶ⅱ融合蛋白及其编码基因与表达方法
CN114196652A (zh) 具有纤维素结合域的pet水解酶
CN118063626A (zh) 利用角质酶融合蛋白实现pet塑料解聚的方法
CN116926041A (zh) Pet聚酯塑料解聚酶突变体及其应用
CN114480343B (zh) 具提升活性的pet水解酶
CN116179508B (zh) 一种具有高热稳定性的PET水解酶IsPETase-cSP突变酶及编码基因及工程菌
CN103131659A (zh) 一种耐有机溶剂脂肪酶、其编码基因、产生菌株及应用
CN115125225B (zh) 具有提升的热稳定性的pet降解酶
AU2014297758B2 (en) Method for producing methacrylyl-CoA
CN112251420A (zh) 一种严格厌氧菌来源的菌果聚糖合成酶
CN118063852A (zh) 一种pet塑料解聚方法
CN114164223B (zh) 一种南极土壤来源的酯酶及其编码基因与应用
CN110106217B (zh) 一种淀粉酶在高盐浓度条件下水解淀粉的应用和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication