CN118050844A - 光学层叠体 - Google Patents

光学层叠体 Download PDF

Info

Publication number
CN118050844A
CN118050844A CN202311478560.3A CN202311478560A CN118050844A CN 118050844 A CN118050844 A CN 118050844A CN 202311478560 A CN202311478560 A CN 202311478560A CN 118050844 A CN118050844 A CN 118050844A
Authority
CN
China
Prior art keywords
layer
group
liquid crystal
light
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311478560.3A
Other languages
English (en)
Inventor
名田敬之
幡中伸行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023113873A external-priority patent/JP2024072764A/ja
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of CN118050844A publication Critical patent/CN118050844A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

本发明涉及光学层叠体。提供热成型加工性良好的光学层叠体。其基材层与光吸收各向异性层直接相接。基材层的光弹性系数绝对值30×10‑12Pa‑1以下。光吸收各向异性层含1种以上二向色性色素和液晶性化合物或其聚合物,满足式(1)~(3)。Ax、Ay及Az是光吸收各向异性层波长380nm以上780nm以下吸收极大波长的吸光度,表示沿x、y及z轴方向振动的直线偏振光吸光度。Ax(z=60°)及Ay(z=60°)表示光吸收各向异性层以y及x轴为旋转轴旋转60°时沿x及y轴方向振动的直线偏振光吸光度。Az>(Ax+Ay)/2(1);Ax(z=60°)/Ax≥5(2);Ay(z=60°)/Ay≥5(3)。

Description

光学层叠体
技术领域
本发明涉及光学层叠体。
背景技术
为了防止显示装置的窥视,使用二向色性色素及液晶性化合物进行了垂直取向的光吸收各向异性膜是已知的(例如专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2016-27387号公报
发明内容
发明所要解决的课题
为了提高显示装置的设计性,有时使用通过热成型加工使显示部弯曲而得到的显示装置。由于依据显示部的弯曲形状进行的光吸收各向异性膜的热成型加工,有时产生褶皱,或者观察在偏光板上成型加工后的光吸收各向异性膜时视觉辨认到不均。
本发明的目的是提供热成型加工性良好的光学层叠体。
用于解决课题的手段
本发明提供以下的光学层叠体。
〔1〕光学层叠体,其为具有基材层和光吸收各向异性层的光学层叠体,
前述基材层与前述光吸收各向异性层直接相接,
前述基材层的光弹性系数的绝对值为30×10-12Pa-1以下,
前述光吸收各向异性层包含1种以上的二向色性色素、和液晶性化合物及/或其聚合物,并且满足下述式(1)~(3)的关系。
Az>(Ax+Ay)/2 (1)
Ax(z=60°)/Ax≥5 (2)
Ay(z=60°)/Ay≥5 (3)
[式(1)~(3)中,
Ax、Ay、及Az是前述光吸收各向异性层的波长380nm以上780nm以下的范围内的吸收极大波长的吸光度,并且分别表示沿x轴方向、y轴方向、及z轴方向振动的直线偏振光的吸光度。
Ax(z=60°)是前述吸收极大波长处的吸光度,并且表示使前述光吸收各向异性层以前述y轴为旋转轴旋转了60°时的沿前述x轴方向振动的直线偏振光的吸光度。
Ay(z=60°)是前述吸收极大波长处的吸光度,并且表示使前述光吸收各向异性层以前述x轴为旋转轴旋转了60°时的沿前述y轴方向振动的直线偏振光的吸光度。
其中,前述x轴为前述光吸收各向异性层的面内的任意一个方向,
前述y轴为在前述光吸收各向异性层的面内与前述x轴正交的方向,
前述z轴为与前述x轴及前述y轴正交的方向。]
〔2〕如〔1〕所述的光学层叠体,其中,前述液晶性化合物为形成近晶相的液晶性化合物。
〔3〕如〔1〕或〔2〕所述的光学层叠体,其中,前述基材层的玻璃化转变温度为140℃以下。
〔4〕如〔1〕~〔3〕中任一项所述的光学层叠体,其中,前述基材层的光弹性系数的绝对值为20×10-12Pa-1以下。
〔5〕如〔1〕~〔4〕中任一项所述的光学层叠体,其中,前述基材层为膜基材,
构成前述膜基材的树脂为选自由聚酰亚胺系树脂、环状烯烃系树脂、及聚(甲基)丙烯酸系树脂组成的组中的1种以上。
〔6〕如〔1〕~〔5〕中任一项所述的光学层叠体,其还具有椭圆偏光板。
发明效果
根据本发明,可以提供热成型加工性良好的光学层叠体。
附图说明
[图1]为示意性地示出本发明的一个实施方式涉及的光学层叠体的截面图。
[图2]为示意性地示出本发明的另一个实施方式涉及的光学层叠体的截面图。
附图标记说明
1、2光学层叠体,11光吸收各向异性层,12第1基材层(基材层),20椭圆偏光板,21偏光层,22第1相位差层,23第2相位差层,30光学层叠体。
具体实施方式
以下,参照附图对光学层叠体的优选实施方式进行说明。
(光学层叠体)
图1及图2为示意性地示出本发明的一个实施方式涉及的光学层叠体的截面图。光学层叠体1、2具有第1基材层12(基材层)和光吸收各向异性层11,第1基材层12与光吸收各向异性层11直接相接(图1及图2)。光学层叠体1、2中,第1基材层12的光弹性系数的绝对值为30×10-12Pa-1以下,光吸收各向异性层11包含1种以上的二向色性色素、和液晶性化合物及/或其聚合物,并且满足下述式(1)~(3)的关系。
Az>(Ax+Ay)/2 (1)
Ax(z=60°)/Ax≥5 (2)
Ay(z=60°)/Ay≥5 (3)
[式(1)~(3)中,
Ax、Ay、及Az是光吸收各向异性层11的波长380nm以上780nm以下的范围内的吸收极大波长的吸光度,并且分别表示沿x轴方向、y轴方向、及z轴方向振动的直线偏振光的吸光度。
Ax(z=60°)是上述吸收极大波长处的吸光度,并且表示使光吸收各向异性层11以y轴为旋转轴旋转了60°时的沿x轴方向振动的直线偏振光的吸光度。
Ay(z=60°)是上述吸收极大波长处的吸光度,并且表示使光吸收各向异性层11以x轴为旋转轴旋转了60°时的沿前述y轴方向振动的直线偏振光的吸光度。
其中,x轴为光吸收各向异性层11的面内的任意一个方向,
y轴为在光吸收各向异性层11的面内与x轴正交的方向,
z轴为与x轴及y轴正交的方向。]
所谓第1基材层12与光吸收各向异性层11直接相接,是指:在第1基材层12与光吸收各向异性层11之间不介在有控制用于形成光吸收各向异性层11的液晶性化合物的取向的取向层、用于将第1基材层12与光吸收各向异性层11贴合的贴合层(粘合剂层或粘接剂层),第1基材层12与光吸收各向异性层11直接层叠。作为取向层,例如可举出后述的第2取向层。如后述的那样,第1基材层12可以是为了形成光吸收各向异性层11而涂布包含二向色性色素及液晶性化合物的第1组合物的层。光吸收各向异性层11通常为第1组合物的固化膜(液晶固化膜)或干燥被膜。因此,第1基材层12与光吸收各向异性层11直接相接的结构例如可以通过在第1基材层12上、在不形成取向层的情况下涂布第1组合物并使其固化或干燥而得到。
光学层叠体1、2中,第1基材层12与光吸收各向异性层11直接相接,第1基材层12的光弹性系数的绝对值在上述的范围内。由此,可以提供具有良好的热成型加工性的光学层叠体1、2,即,在对光学层叠体1、2进行了热成型加工的情况下不易在光学层叠体1、2中产生褶皱,抑制了在观看热成型加工后的光学层叠体1、2时观察到不均的情况。
第1基材层12的光弹性系数的绝对值优选为20×10-12Pa-1以下,更优选为15×10- 12Pa-1以下,进一步优选为10×10-12Pa-1以下,特别优选为7×10-12Pa-1以下,最优选为5×10-12Pa-1以下,通常为1×10-12Pa-1以上。第1基材层12的光弹性系数的绝对值可以通过构成第1基材层12的组合物中包含的树脂的种类、形成构成树脂的聚合物的单体的种类及其比例等来调整。第1基材层12的光弹性系数可以利用后述的实施例中记载的方法测定。
第1基材层12的玻璃化转变温度优选为140℃以下,更优选为130℃以下,进一步优选为125℃以下,更进一步优选为120℃以下,特别优选为110℃以下,通常为60℃以上。通过使第1基材层12的玻璃化转变温度在上述的范围内,从而可以提供热成型加工性更良好的光学层叠体1、2。第1基材层12的玻璃化转变温度可以通过构成第1基材层12的组合物中包含的树脂的种类、形成构成树脂的聚合物的单体的种类及其比例等来调整。第1基材层12的玻璃化转变温度可以如后述的实施例中记载的那样使用差示扫描量热计(DSC)进行测定。
认为通过使光吸收各向异性层11满足上述式(1)的关系,从而二向色性色素的吸收轴沿与光吸收各向异性层11的平面垂直的方向取向,因此,光吸收各向异性层11能够使来自正面方向的光有效地透过,并有效地吸收来自倾斜方向的光。
上述式(1)中的z方向的吸光度Az是使光入射至光吸收各向异性层11的侧面来进行测定,因此难以测定。因此,在使作为测定光的直线偏振光的振动面、与光吸收各向异性层11的x-y平面所成的角为90°时,相对于该振动面,使光吸收各向异性层11的x-y平面沿直线偏振光的入射方向倾斜30°及60°来进行测定,由此能够测算z方向的吸光度Az。
具体而言,可以利用以下的方法等进行测算。
在使光吸收各向异性层11以y轴为旋转轴旋转了30°及60°的状态下,使与测定了Ax的直线偏振光相同的直线偏振光入射,由此分别测定吸光度Ax(z=30°)及吸光度Ax(z=60°)。同样地,在使光吸收各向异性层11以x轴为旋转轴旋转了30°及60°的状态下,使与测定了Ay的直线偏振光相同的直线偏振光入射,由此分别测定吸光度Ay(z=30°)及吸光度Ay(z=60°)。
此时,若Ax(z=30°)<Ax(z=60°)并且Ay(z=30°)=Ay(z=60°),则Ax(z=30°)<Ax(z=60°)<Ax(z=90°)=Az,并且,若Ay(z=30°)<Ay(z=60°)并且Ax(z=30°)=Ax(z=60°),则Ay(z=30°)<Ay(z=60°)<Ay(z=90°)=Az,因此,可以说必然满足式(1)的关系。
此处,Ax(z=90°)是通过在使光吸收各向异性层11以y轴为旋转轴旋转了90°的状态下、使与测定了Ax的直线偏振光相同的直线偏振光入射而测定的吸光度。Ay(z=90°)是通过在使光吸收各向异性层11以x轴为旋转轴旋转了90°的状态下、使与测定了Ax的直线偏振光相同的直线偏振光入射而测定的吸光度。
尤其是在光吸收各向异性层11的x-y平面没有吸收各向异性的情况下,即Ax及Ay相等的情况下,Ax(z=30°)=Ay(z=30°)并且Ax(z=60°)=Ay(z=60°)。此处,使Ax(z=30°)=Ay(z=30°)=A(z=30°),使Ax(z=60°)=Ay(z=60°)=A(z=60°),使Ax(z=90°)=Ay(z=90°)=A(z=90°)。如此,若A(z=30°)<A(z=60°),则满足A(z=30°)<A(z=60°)<A(z=90°)=Az的关系。此外,若A(z=30°)>(Ax+Ay)/2,则可以说Az必然满足式(1)。
上述Ax及Ay是指光吸收各向异性层11的正面方向的吸光度,Ax及Ay的值越小,可以说光吸收各向异性层11中的二向色性色素越精度良好地沿与平面垂直的方向取向。Ax及Ay的值优选为0.3以下,大于0.3的情况下,光吸收各向异性层11的正面方向上的着色变强,故而有应用于显示装置时的正面透过色相差的倾向,因此,Ax及Ay的值各自独立地优选为0.1以下,更优选为0.05以下,进一步优选为0.02以下。另外,Ax及Ay的值的下限值各自独立地通常为0.001以上,也可以为0.003以上,也可以为0.005以上。
对于上述式(2)中的Ax(z=60°)/Ax、及式(3)中的Ay(z=60°)/Ay而言,其数值越大,显示出越优异的光吸收各向异性,它们各自独立地优选大于5,更优选为7以上,进一步优选为10以上,另外,优选为50以下。
对于满足上述式(2)及(3)的关系的光吸收各向异性层11而言,认为二向色性色素的吸收轴沿与其平面垂直的方向取向,因此,光吸收各向异性层11能够有效地吸收来自倾斜方向的光。满足上述式(2)及(3)的关系的光吸收各向异性层11例如可以通过光吸收各向异性层11的厚度、光吸收各向异性层11的制造工序的条件(后述)、用于得到光吸收各向异性层11的第1组合物中包含的二向色性色素及液晶性化合物的种类或含量等来调整。
上述Ax(z=60°)及Ay(z=60°)是指光吸收各向异性层11的斜向的吸光度,可根据沿显示装置的斜向漏出的光而适宜地选择。Ax(z=60°)及Ay(z=60°)各自独立地优选为1.0以下,更优选为0.5以下,进一步优选为0.3以下。另外,下限值通常为0.001以上,也可以为0.003以上,从其必要性考虑,为0.01以上。
光学层叠体1、2中,第1基材层12的面内平均折射率与光吸收各向异性层11的面内平均折射率之差的绝对值优选为0.10以下,更优选为0.08以下,进一步优选为0.05以下,特别优选为0.03以下,也可以为0.01以下,也可以为0。上述差的绝对值越小,越能够抑制第1基材层12与光吸收各向异性层11的界面处的反射,因此能够抑制光学层叠体1、2的光线透过率的降低,另外,能够进一步抑制在观看热成型加工后的光学层叠体1、2时观察到不均的情况。
第1基材层12及光吸收各向异性层11的面内平均折射率各自独立地为例如1.40以上1.60以下,也可以为1.45以上1.55以下,也可以为1.47以上1.53以下。第1基材层12的面内平均折射率可以通过构成第1基材层12的组合物中包含的树脂的种类、形成构成树脂的聚合物的单体的种类及其比例、构成第1基材层12的组合物中包含的树脂以外的成分的种类及其比例、第1基材层12的表面状态等来调整。光吸收各向异性层11的面内平均折射率可以通过光吸收各向异性层11中包含的液晶性化合物及/或其聚合物的种类及其比例、二向色性色素的种类及其比例、光吸收各向异性层11的取向状态等来调整。第1基材层12及光吸收各向异性层11的面内平均折射率可以如后述的实施例中记载的那样使用折射率计进行测定。
光吸收各向异性层11中,液晶性化合物及/或其聚合物、和二向色性色素沿与光吸收各向异性层11的平面垂直的方向取向,通常在其膜厚方向上具有较大的折射率,另一方面,其层平面内的折射率几乎没有差异。因此,光吸收各向异性层11中,通过控制相邻的第1基材层12的折射率和光吸收各向异性层11的折射率,能够在光吸收各向异性层11的面内整个区域中对视觉辨认到不均的情况进行抑制。另一方面,液晶性化合物及/或其聚合物及二向色性色素沿与层平面平行的方向取向的光吸收各向异性层(所谓的水平取向型的光吸收各向异性层)中,在层面内存在慢轴和快轴,因此认为,在同一面内与相邻的层的折射率产生差异,难以以折射率差为指标对不均的视觉辨认性进行抑制。
光学层叠体1、2也可以如图2所示的光学层叠体2那样具有椭圆偏光板20。光学层叠体2中,第1基材层12及光吸收各向异性层11(光学层叠体1)优选设置于椭圆偏光板20的偏光层21(后述)侧。椭圆偏光板20可以层叠于光学层叠体1的光吸收各向异性层11侧,也可以层叠于第1基材层12侧。光学层叠体1(图1)与椭圆偏光板20可以直接相接,也可以介由贴合层而层叠。贴合层为粘合剂层或粘接剂层。通过在椭圆偏光板20的偏光层21侧层叠光吸收各向异性层11,从而在将光学层叠体2应用于显示装置时,能够降低在白色显示时从正面观看的情况下的正面色相与从斜向观看的情况下的斜向色相的色相差异。关于椭圆偏光板20的详情,在后文中说明。
以下,对光学层叠体所具有的层、该层中包含的成分的详情等进行详述。
(第1基材层(基材层))
第1基材层优选为具有上述的光弹性系数的绝对值,并且具有上述的玻璃化转变温度。第1基材层不包含用于控制为了形成光吸收各向异性层而使用的液晶性化合物的取向的取向层。
第1基材层能够支撑光吸收各向异性层。第1基材层可以为待涂布用于形成光吸收各向异性层的第1组合物的层,也可以为该层的一部分。第1基材层可以为单层结构,也可以为多层结构。
作为第1基材层,可以为膜基材、在膜基材的一面形成涂层而得到的带有涂层的膜、或在膜基材的与光吸收各向异性层侧相反的一侧的表面层叠保护膜而得到的带有保护膜的膜。基材层也可以为玻璃基材。
基材层优选为膜基材。作为构成膜基材的树脂,例如,可举出聚乙烯、聚丙烯等烯烃树脂;具有环系或降冰片烯结构的环状烯烃系树脂;聚乙烯醇;聚(甲基)丙烯酸系树脂;聚酰亚胺系树脂;聚砜;聚醚砜;聚醚酮;聚苯硫醚;聚苯醚等。所谓“(甲基)丙烯-”,是指“丙烯-”及“甲基丙烯-”中的至少一者。对于(甲基)丙烯酰基等的表述而言也同样。特别地,构成膜基材的树脂优选为选自由聚酰亚胺系树脂、环状烯烃系树脂、及聚(甲基)丙烯酸系树脂组成的组中的1种以上,更优选为环状烯烃系树脂或聚(甲基)丙烯酸系树脂。
作为构成膜基材的环状烯烃树脂,也可以使用市售的环状烯烃系树脂。作为这样的环状烯烃系树脂,可举出“Topas”(注册商标)(Ticona公司(德国)制)、“ARTON”(注册商标)(JSR株式会社制)、“ZEONOR(ゼオノア)”(注册商标)、“ZEONEX(ゼオネックス)”(注册商标)(以上为日本Zeon株式会社制)及“Apel”(注册商标)(三井化学株式会社制)。这些环状烯烃系树脂可以通过溶剂流延法、熔融挤出法等已知的手段进行制膜而制成膜基材。
作为膜基材,也可以使用市售的环状烯烃系树脂基材。作为这样的环状烯烃系树脂基材,可举出“Escena”(注册商标)、“SCA40”(注册商标)(以上为积水化学工业株式会社制)、“ZEONORFILM”(注册商标)(OPTES株式会社制)及“ARTONFILM”(注册商标)(JSR株式会社制)。
构成膜基材的(甲基)丙烯酸系树脂为包含来自(甲基)丙烯酸系单体的结构单元的聚合物。该聚合物典型而言为包含甲基丙烯酸酯的聚合物,优选为将甲基丙烯酸酯作为主体的、即以单体总量为基准包含50重量%以上的来自甲基丙烯酸酯的结构单元的聚合物。(甲基)丙烯酸系树脂可以为甲基丙烯酸酯的均聚物,也可以为以单体总量为基准包含50重量%以上的来自甲基丙烯酸酯的结构单元、和50重量%以下的来自其他聚合性单体的结构单元的共聚物。
作为能构成(甲基)丙烯酸系树脂的甲基丙烯酸酯,可以使用甲基丙烯酸烷基酯,其具体例包括甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丙酯、甲基丙烯酸异丙酯、甲基丙烯酸正丁酯、甲基丙烯酸异丁酯、甲基丙烯酸叔丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸环己酯、甲基丙烯酸2-羟基乙酯这样的烷基的碳原子数为1~8的甲基丙烯酸烷基酯。烷基的碳原子数优选为1~4。(甲基)丙烯酸系树脂中,甲基丙烯酸酯可以仅单独使用1种,也可以并用2种以上。
其中,从耐久性的观点考虑,(甲基)丙烯酸系树脂优选包含来自甲基丙烯酸甲酯的结构单元,更优选以单体总量为基准包含50重量%以上的该结构单元。
作为能构成(甲基)丙烯酸系树脂的其他聚合性单体,例如,可以举出丙烯酸酯、除甲基丙烯酸酯及丙烯酸酯以外的聚合性单体。作为丙烯酸酯,可以使用丙烯酸烷基酯,其具体例包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸异丙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸叔丁酯、丙烯酸2-乙基己酯、丙烯酸环己酯、丙烯酸2-羟基乙酯这样的烷基的碳原子数为1~8的丙烯酸烷基酯。烷基的碳原子数优选为1~4。(甲基)丙烯酸系树脂中,丙烯酸酯可以仅单独使用1种,也可以并用2种以上。
作为除(甲基)丙烯酸酯以外的聚合性单体,例如,可以举出在分子内具有1个聚合性的碳-碳双键的单官能单体、在分子内具有至少2个聚合性的碳-碳双键的多官能单体,优选使用单官能单体。单官能单体的具体例包括苯乙烯、α-甲基苯乙烯、乙烯基甲苯、卤化苯乙烯、羟基苯乙烯这样的苯乙烯系单体;丙烯腈、甲基丙烯腈这样的乙烯基氰;丙烯酸、甲基丙烯酸、马来酸酐、衣康酸酐这样的不饱和酸;N-甲基马来酰亚胺、N-环己基马来酰亚胺、N-苯基马来酰亚胺这样的马来酰亚胺;甲代烯丙基醇、烯丙基醇等烯丙基醇;乙酸乙烯酯、氯乙烯、乙烯、丙烯、4-甲基-1-戊烯、2-羟基甲基-1-丁烯、甲基乙烯基酮、N-乙烯基吡咯烷酮、N-乙烯基咔唑这样的其他单体。
多官能单体的具体例包括乙二醇二甲基丙烯酸酯、丁二醇二甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯这样的多元醇的多不饱和羧酸酯;丙烯酸烯丙酯、甲基丙烯酸烯丙酯、肉桂酸烯丙酯这样的不饱和羧酸的烯基酯;邻苯二甲酸二烯丙酯、马来酸二烯丙酯、氰脲酸三烯丙酯、异氰脲酸三烯丙酯这样的多元酸的多烯基酯、二乙烯基苯这样的芳香族多烯基化合物。除甲基丙烯酸酯及丙烯酸酯以外的聚合性单体可以仅单独使用1种,也可以并用2种以上。
关于(甲基)丙烯酸系树脂的优选的单体组成,以单体总量为基准,甲基丙烯酸烷基酯为50重量%以上100重量%以下,丙烯酸烷基酯为0重量%以上50重量%以下,除它们以外的聚合性单体为0重量%以上50重量%以下,更优选甲基丙烯酸烷基酯为50重量%以上99.9重量%以下,丙烯酸烷基酯为0.1重量%以上50重量%以下,除它们以外的聚合性单体为0重量%以上49.9重量%以下。
从能提高膜的耐久性的方面考虑,(甲基)丙烯酸系树脂可以在高分子主链上具有环结构。环结构优选为环状酸酐结构、环状酰亚胺结构、内酯环结构等杂环结构。具体而言,可举出戊二酸酐结构、琥珀酸酐结构等环状酸酐结构、戊二酰亚胺结构、琥珀酰亚胺结构等环状酰亚胺结构、丁内酯、戊内酯等内酯环结构。越增大主链中的环结构的含量,越能够增高(甲基)丙烯酸系树脂的玻璃化转变温度。环状酸酐结构、环状酰亚胺结构可以通过下述方法导入:通过使马来酸酐、马来酰亚胺等具有环状结构的单体共聚而导入的方法;通过聚合后脱水·脱甲醇缩合反应而导入环状酸酐结构的方法;使氨基化合物反应从而导入环状酰亚胺结构的方法;等等。具有内酯环结构的树脂(聚合物)可以通过下述方法得到:制备在高分子链上具有羟基和酯基的聚合物后,根据需要在有机磷化合物这样的催化剂的存在下,通过加热使所得到的聚合物中的羟基与酯基进行环化缩合,从而形成内酯环结构。
在高分子链上具有羟基和酯基的聚合物可以通过使用例如2-(羟基甲基)丙烯酸甲酯、2-(羟基甲基)丙烯酸乙酯、2-(羟基甲基)丙烯酸异丙酯、2-(羟基甲基)丙烯酸正丁酯、2-(羟基甲基)丙烯酸叔丁酯这样的具有羟基和酯基的(甲基)丙烯酸酯作为单体的一部分而得到。具有内酯环结构的聚合物的更具体的制备方法记载于例如日本特开2007-254726号公报中。
通过使包含上述这样的单体的单体组合物进行自由基聚合,能够制备(甲基)丙烯酸系树脂。单体组合物可以根据需要包含溶剂、聚合引发剂。
膜基材由包含(甲基)丙烯酸系树脂的组合物形成的情况下,该组合物可以包含除上述的(甲基)丙烯酸系树脂以外的其他树脂。该其他树脂的含有率优选为0重量%以上50重量%以下,更优选为0重量%以上25重量%以下,进一步优选为0重量%以上10重量%以下。该树脂可以为例如聚乙烯、聚丙烯、乙烯-丙烯共聚物、聚(4-甲基-1-戊烯)这样的烯烃系聚合物;氯乙烯、氯乙烯树脂这样的含卤素系聚合物;聚苯乙烯、苯乙烯-甲基丙烯酸甲酯共聚物、苯乙烯-丙烯腈共聚物这样的苯乙烯系聚合物;聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯这样的聚酯;由芳香族二醇和芳香族二羧酸形成的聚芳酯;聚乳酸、聚丁二酸丁二醇酯这样的生物降解性聚酯;聚碳酸酯;尼龙6、尼龙66、尼龙610这样的聚酰胺;聚缩醛;聚苯醚;聚苯硫醚;聚醚醚酮;聚醚腈;聚砜;聚醚砜;聚氧戊二烯;聚酰胺酰亚胺等。
膜基材由包含(甲基)丙烯酸系树脂的组合物形成的情况下,优选由在(甲基)丙烯酸系树脂中配合有橡胶粒子的丙烯酸系树脂组合物形成。作为橡胶粒子,可举出将(甲基)丙烯酸酯作为主要构成单体的橡胶状聚合物、将丁二烯作为主要构成单体的橡胶状聚合物、乙烯-乙酸乙烯酯共聚物等。其中,将(甲基)丙烯酸酯作为主要构成单体的橡胶状聚合物即(甲基)丙烯酸橡胶粒子是优选的。作为橡胶粒子,也可以并用(甲基)丙烯酸橡胶粒子和其他橡胶粒子。
将(甲基)丙烯酸系树脂及橡胶粒子的合计质量设为100质量%的情况下,包含(甲基)丙烯酸系树脂的组合物中的橡胶粒子的含量优选为5质量%以上,更优选为15质量%以上,进一步优选为30质量%以上,更进一步优选为40质量%以上。另外,优选为50质量%以下。
(甲基)丙烯酸橡胶粒子可以为以单体总量为基准包含50质量%以上的来自(甲基)丙烯酸丁酯、(甲基)丙烯酸2-乙基己酯等烷基的碳原子数多(例如碳原子数4~8左右)的(甲基)丙烯酸烷基酯的单体单元的粒子。作为用于形成(甲基)丙烯酸橡胶粒子的上述以外的单体,可举出苯乙烯、烷基苯乙烯等苯乙烯系单体;丙烯腈、甲基丙烯腈等不饱和腈等单官能单体;(甲基)丙烯酸烯丙酯、(甲基)丙烯酸甲代烯丙基酯等不饱和羧酸的烯基酯;马来酸二烯丙酯等二元酸的二烯基酯;亚烷基二醇二(甲基)丙烯酸酯等二醇类的不饱和羧酸二酯等多官能单体。
(甲基)丙烯酸橡胶粒子可以是由将(甲基)丙烯酸烷基酯作为主要构成单体的弹性聚合物形成的单层结构的橡胶粒子,也可以为包含该弹性聚合物的层的多层结构的橡胶粒子。作为多层结构的橡胶粒子,可举出在上述弹性聚合物的层的外侧具有将甲基丙烯酸烷基酯作为主体的硬质的聚合物层的2层结构的橡胶粒子、进一步在丙烯酸系弹性聚合物的层的内侧具有将甲基丙烯酸烷基酯作为主体的硬质的聚合物层的3层结构的橡胶粒子。
作为涂层,可举出:在膜基材的表面涂布硬涂剂、易粘接组合物或偶联剂等而形成的层;通过在涂布反应性单体或具有反应性的聚合物等之后照射活性能量射线而使他们进行接枝聚合从而形成的层;等等。作为带有涂层的膜,优选为具有硬涂层作为涂层的硬涂膜。第1基材层为硬涂膜的情况下,优选在硬涂层侧层叠光吸收各向异性层。作为涂层,优选为硬涂层。
硬涂层优选为包含活性能量射线固化型树脂的固化性组合物的固化物层,更优选为包含紫外线固化型树脂的组合物的固化物层。包含紫外线固化型树脂的固化性组合物优选包含(甲基)丙烯酸系化合物作为固化性成分,硬涂层优选由聚(甲基)丙烯酸系树脂形成。(甲基)丙烯酸系化合物为具有至少1个(甲基)丙烯酰基的化合物,可以为单体、低聚物或聚合物。
作为(甲基)丙烯酸系化合物,例如可举出:单官能(甲基)丙烯酸酯化合物、多官能(甲基)丙烯酸酯化合物等(甲基)丙烯酸酯化合物;多官能氨基甲酸酯(甲基)丙烯酸酯化合物等氨基甲酸酯(甲基)丙烯酸酯化合物;多官能环氧(甲基)丙烯酸酯化合物等环氧(甲基)丙烯酸酯化合物;羧基改性环氧(甲基)丙烯酸酯化合物;聚酯(甲基)丙烯酸酯化合物等。它们可以使用1种或2种以上。它们之中,优选为多官能(甲基)丙烯酸酯化合物或氨基甲酸酯(甲基)丙烯酸酯化合物,更优选将多官能(甲基)丙烯酸酯化合物与氨基甲酸酯(甲基)丙烯酸酯组合。
相对于固化性组合物的固态成分100质量份而言,多官能(甲基)丙烯酸酯化合物的含量优选为50质量份以上100质量份以下,更优选为60质量份以上95质量份以下,进一步优选为70质量份以上90质量份以下。本说明书中,所谓固化性组合物的固态成分,在固化性组合物中含有溶剂的情况下,是指从固化性组合物中除去溶剂后的成分的合计量。
固化性组合物可以除了固化性成分之外还包含聚合引发剂。作为聚合引发剂,可举出光聚合引发剂及自由基聚合引发剂等,可以使用已知的聚合引发剂。
对于固化性组合物而言,可以在涂布于膜基材后照射活性能量射线,由此使(甲基)丙烯酸系化合物等固化性成分聚合从而固化。
硬涂层优选在JIS K 5600-5-4:1999“涂料一般试验方法-第5部:涂膜的机械性质-第4节:刮擦硬度(铅笔法)”中所规定的铅笔硬度试验(将膜基材置于玻璃板上来测定)中显示为8B或比8B更硬的值,也可以为5B或比5B更硬。
构成带有保护膜的膜的保护膜以可剥离的方式设置于构成第1基材层的膜基材。保护膜可以具有树脂膜与粘合剂层形成的多层结构,也可以为由单层结构的树脂膜形成的自粘合性的膜。作为具有多层结构的保护膜中使用的树脂膜,可举出由作为构成膜基材的树脂而例示的树脂形成的膜。作为自粘合性的膜,可举出使用了聚丙烯系树脂及聚乙烯系树脂等的膜。保护膜通常在将光吸收各向异性层应用于显示装置后等时除去。
对于第1基材层的待形成光吸收各向异性层的一侧的表面,可以实施表面处理。作为表面处理方法,可举出针对第1基材层的上述表面而在真空至大气压的气氛下进行电晕处理或等离子体处理的方法、进行激光处理的方法、进行臭氧处理的方法、进行火焰处理的方法、对第1基材层的上述表面进行皂化处理的方法等。
第1基材层的厚度从为能够进行实用上的操作的程度的质量的观点考虑优选较薄,但若过薄,则强度降低,有加工性差的倾向。从该观点考虑,第1基材层的厚度各自独立地优选为10μm以上150μm以下,更优选为10μm以上100μm以下,进一步优选为20μm以上80μm以下,特别优选为30μm以上60μm以下。
(光吸收各向异性层)
光吸收各向异性层包含1种以上的二向色性色素、和液晶性化合物及/或其聚合物,并且满足上述式(1)~(3)的关系。由此,光吸收各向异性层能够具有来自正面方向的光容易透过、容易吸收来自倾斜方向的光这样的特性。
光吸收各向异性层包含1种二向色性色素即可,也可以包含2种以上的二向色性色素。关于二向色性色素的详情,在后文中说明。
液晶性化合物优选为形成近晶相的液晶性化合物。通过使用形成近晶相的液晶性化合物,能够得到光吸收各向异性特性更高的光吸收各向异性层。
第1组合物中包含的液晶性化合物只要是具有液晶性的化合物即可,没有特别限定,可以为低分子的液晶性化合物,也可以为高分子的液晶性化合物。液晶性化合物可以为具有聚合性基团的聚合性液晶化合物,也可以不具有聚合性基团。关于液晶性化合物的详情,在后文中说明。
液晶性化合物优选为聚合性液晶化合物。液晶性化合物的聚合物可以显示出液晶性,也可以不显示液晶性。光吸收各向异性层可以由包含液晶性化合物的第1组合物形成,可以为第1组合物中的聚合性液晶化合物进行聚合固化而成的液晶固化膜(第1组合物的固化物层),也可以为对第1组合物进行干燥而成的干燥被膜。
光吸收各向异性层的厚度优选为0.2μm以上5.0μm以下,更优选为0.5μm以上4.0μm以下,进一步优选为0.5μm以上3.0μm以下。若光吸收各向异性层的厚度变小,则来自倾斜方向的光吸收容易变弱,若厚度变大,则容易使二向色性色素的取向紊乱,因此容易降低正面方向的透过特性。
(二向色性色素)
所谓二向色性色素,是指具有分子的长轴方向上的吸光度与分子的短轴方向上的吸光度不同的性质的色素。作为二向色性色素,优选具有吸收可见光的特性,更优选在波长380~680nm的范围内具有吸收极大波长(λmax)。
作为这样的二向色性色素,例如,可举出吖啶色素、噁嗪色素、菁色素、萘色素、偶氮色素、及蒽醌色素等,其中,优选为偶氮色素。作为偶氮色素,可举出单偶氮色素、双偶氮色素、三偶氮色素、四偶氮色素、及茋偶氮色素等,优选为双偶氮色素及三偶氮色素。二向色性色素可以单独也可以组合2种以上,但优选根据光吸收各向异性层中要求光吸收各向异性的波长范围而组合使用2种以上。作为偶氮色素,例如,可举出式(4)表示的化合物。
T1-A1(-N=N-A2)p-N=N-A3-T2 (4)
[式(4)中,
A1、A2、及A3彼此独立地表示可具有取代基的1,4-亚苯基、可具有取代基的萘-1,4-二基、可具有取代基的苯甲酸苯基酯基、可具有取代基的4,4’-亚茋基、或可具有取代基的2价杂环基,
T1及T2表示吸电子基团或电子释放基团,位于相对于偶氮键面内而言实质上呈180°的位置。
p表示0~4的整数,在p为2以上的情况下,各个A2彼此可以相同也可以不同。
在于可见光区域内显示出吸收的范围内,-N=N-键可以替换为-C=C-、-COO-、-NHCO-、-N=CH-键。]
相对于光吸收各向异性层100质量份而言,光吸收各向异性层中的二向色性色素的含量优选为0.1质量份以上30质量份以下,也可以为0.5质量份以上20质量份以下,也可以为1质量份以上10质量份以下,也可以为1质量份以上5质量份以下。光吸收各向异性层中的二向色性色素的含有比例可以以相对于用于形成光吸收各向异性层的第1组合物的固态成分100质量份而言的二向色性色素的比例的形式算出。光吸收各向异性层包含2种以上的二向色性色素时的二向色性色素的含量是指其合计量。所谓第1组合物的固态成分,是指从第1组合物中除去有机溶剂等挥发性成分后的全部成分。
关于第1组合物中包含的二向色性色素的含量(在包含多种的情况下为其合计量),从获得良好的光吸收特性的观点考虑,相对于液晶性化合物100质量份而言,通常为1质量份以上60质量份以下,优选为1质量份以上40质量份以下,更优选为1质量份以上20质量份以下。二向色性色素的含量比该范围少时,则光吸收变得不充分,得不到充分的光吸收各向异性特性,比该范围多时,存在阻碍液晶性化合物的液晶分子的取向的情况。
(液晶性化合物及/或其聚合物)
用于形成光吸收各向异性层的第1组合物中包含的液晶性化合物是为了通过宾主相互作用使二向色性色素取向而使用的。该液晶性化合物可以为低分子的液晶性化合物,也可以为高分子的液晶性化合物。该液晶性化合物可以为聚合性液晶化合物,也可以不具有聚合性基团。液晶性化合物优选为能够形成近晶型液晶相的液晶性化合物。
聚合性液晶化合物是具有聚合性基团并且具有液晶性的化合物。聚合性基团是指参与聚合反应的基团,优选为光聚合性基团。此处,所谓光聚合性基团,是指能利用由后述的光聚合引发剂产生的活性自由基、酸等参与聚合反应的基团。作为聚合性基团,可举出乙烯基、乙烯基氧基、1-氯乙烯基、异丙烯基、4-乙烯基苯基、丙烯酰基氧基、甲基丙烯酰基氧基、氧杂环丙基、氧杂环丁基等。其中,优选为丙烯酰基氧基、甲基丙烯酰基氧基、乙烯基氧基、氧杂环丙基、及氧杂环丁基,更优选为甲基丙烯酰基氧基或丙烯酰基氧基。液晶性可以为热致液晶也可以为溶致液晶,在与上述的二向色性色素混合的情况下,优选为热致液晶。
在通过聚合反应而以液晶固化膜的形式呈现光吸收各向异性特性时,聚合性液晶化合物所显示的液晶状态为近晶相,从高性能化的观点考虑,优选为高阶近晶相。其中,更优选为形成近晶B相、近晶D相、近晶E相、近晶F相、近晶G相、近晶H相、近晶I相、近晶J相、近晶K相、或近晶L相的高阶近晶型液晶化合物,进一步优选为形成近晶B相、近晶F相或近晶I相的高阶近晶型液晶性化合物。若聚合性液晶化合物所形成的液晶相为这些高阶近晶相,则能够制造光吸收各向异性特性更高的光吸收各向异性层。这样光吸收各向异性特性高的光吸收各向异性层在X射线衍射测定中可得到来自六角相、结晶相之类的高阶结构的布拉格峰。该布拉格峰是来自分子取向的周期结构的峰,对于光吸收各向异性层而言,其周期间隔可以为从可获得更高的光吸收各向异性特性这样的观点考虑,优选光吸收各向异性层包含以近晶相的状态进行了取向的聚合性液晶化合物的聚合物。
聚合性液晶化合物可以为单体,也可以为聚合性基团进行聚合而得到的低聚物,也可以为聚合物。作为这样的聚合性液晶化合物,可以使用已知的聚合性液晶化合物,例如可举出日本特开2020-76920号公报及日本专利第6728581号公报等中记载的聚合性液晶化合物。
液晶性化合物为上述的高分子的液晶性化合物的情况下,作为该液晶性聚合物,可以使用已知的液晶性聚合物,例如可举出日本特开2011-237513号公报等中记载的液晶性聚合物。
使用形成近晶相的液晶性化合物的情况下,从抑制由加热对第1基材层造成的不良影响的观点考虑,液晶性化合物的从近晶相向向列相的相转变温度优选为180℃以下,更优选为150℃以下,进一步优选为120℃以下。将第1基材层的玻璃化转变温度设为Tg时,液晶性化合物的上述相转变温度优选为Tg+30℃以下,更优选为Tg+25℃以下,进一步优选为Tg+20℃以下,更进一步优选为Tg+10℃以下,另外,优选为Tg℃以上。光学层叠体的热成型加工于第1基材层的Tg附近的温度进行的情况较多。在该情况下,通过使第1基材层的Tg及液晶性化合物的相转变温度为上述的关系,从而容易抑制由热成型加工时的热导致的光吸收各向异性层的取向的紊乱,容易抑制光学层叠体的色调在热成型加工前后的变化。液晶性化合物的从近晶相向向列相的相转变温度可以利用后述的实施例中记载的方法测定。
液晶性化合物可以单独使用1种,也可以组合使用2种以上。相对于光吸收各向异性层100质量份而言,光吸收各向异性层中的液晶性化合物的含量优选为40质量份以上99.9质量份以下,也可以为60质量份以上99质量份以下,也可以为70质量份以上99质量份以下。若液晶性化合物的含量在上述范围内,则有形成光吸收各向异性层时的液晶性化合物的取向性变高的倾向。光吸收各向异性层中的液晶性化合物及/或其聚合物的含有比例可以以相对于用于形成光吸收各向异性层的第1组合物的固态成分100质量份而言的液晶性化合物的比例的形式算出。
(光吸收各向异性层的形成方法)
光吸收各向异性层例如可以通过在第1基材层上涂布包含二向色性色素和液晶性化合物的第1组合物而形成。对于通过涂布第1组合物而形成的涂布层,可以进行用于将溶剂等除去的干燥处理等从而形成光吸收各向异性层。第1组合物包含聚合性液晶化合物的情况下,可以对干燥处理后的涂布层进行活性能量射线的照射等而使聚合性液晶化合物聚合,由此形成作为第1组合物的固化物层(液晶固化膜)的光吸收各向异性层。第1组合物涂布于第1基材层表面。
第1组合物中的二向色性色素的含量(在包含多种的情况下为其合计量)可以根据二向色性色素的种类等而适宜地确定,从获得良好的光吸收特性的观点考虑,例如,相对于液晶性化合物100质量份而言,可以为1质量份以上60质量份以下,也可以为1质量份以上40质量份以下,也可以为1质量份以上20质量份以下。若二向色性色素的含量比上述的范围少,则光吸收各向异性层的光吸收能力变得不充分,有时得不到充分的光吸收各向异性。若二向色性色素的含量比上述的范围多,则有时阻碍液晶性化合物的取向。
第1组合物可以除了二向色性色素及液晶性化合物之外还包含溶剂。通常液晶性化合物的粘度高,因此,在很多情况下,使其溶解于溶剂而制成包含溶剂的第1组合物,由此,向第1基材层的涂布变得容易,作为结果,容易形成光吸收各向异性层。作为溶剂,优选为能将液晶性化合物完全溶解的溶剂,另外,优选为对于液晶性化合物的聚合反应而言为非活性的溶剂。作为溶剂,例如,可举出甲醇、乙醇、乙二醇、异丙醇、丙二醇、乙二醇甲基醚、乙二醇丁基醚、及丙二醇单甲基醚等醇溶剂;乙酸乙酯、乙酸丁酯、乙二醇甲基醚乙酸酯、γ-丁内酯、丙二醇甲基醚乙酸酯、及乳酸乙酯等酯溶剂;丙酮、甲基乙基酮、环戊酮、环己酮、2-庚酮、及甲基异丁基酮等酮溶剂;戊烷、己烷、及庚烷等脂肪族烃溶剂;甲苯及二甲苯等芳香族烃溶剂;乙腈等腈溶剂;四氢呋喃及二甲氧基乙烷等醚溶剂;氯仿及氯苯等含氯溶剂;二甲基乙酰胺、二甲基甲酰胺、N-甲基-2-吡咯烷酮、及1,3-二甲基-2-咪唑啉酮等酰胺系溶剂等。这些溶剂可以单独使用,也可以组合使用2种以上。
相对于第1组合物的总量而言,第1组合物中的溶剂的含量优选为50~98质量%。换言之,第1组合物中的固态成分的含量优选为2~50质量%,更优选为5~30质量%。若该固态成分的含量为50质量%以下,则第1组合物的粘度变低,因此容易以大致均匀的厚度形成光吸收各向异性层,有不易在光吸收各向异性层中产生不均的倾向。所述固态成分的含量可以考虑要制造的光吸收各向异性层的厚度来进行确定。
第1组合物可以还包含光聚合引发剂或热聚合引发剂等聚合引发剂、具有聚合性基团的非液晶性化合物、流平剂、抗氧化剂、光敏化剂等添加剂。第1组合物可以还包含取向促进剂。
聚合引发剂可在第1组合物包含聚合性液晶化合物等参与聚合反应的化合物的情况下使用,是能引发该化合物的聚合反应的化合物。作为引发聚合性液晶化合物的聚合反应的聚合引发剂,从不依赖于热致液晶的相状态这样的观点考虑,优选为通过光的作用而产生活性自由基的光聚合引发剂。
光聚合引发剂只要是能引发聚合性液晶化合物等的聚合反应的化合物即可,可以使用已知的光聚合引发剂。具体而言,可举出能够通过光的作用而产生活性自由基或酸的光聚合引发剂,其中,优选为通过光的作用而产生自由基的光聚合引发剂。光聚合引发剂可以单独使用或者组合使用两种以上。
光聚合引发剂可以使用已知的光聚合引发剂。例如,作为产生活性自由基的光聚合引发剂,可以使用:
自裂解型的苯偶姻系化合物、苯乙酮系化合物、羟基苯乙酮系化合物、α-氨基苯乙酮系化合物、肟酯系化合物、酰基氧化膦系化合物、偶氮系化合物等,以及,
夺氢型的二苯甲酮系化合物、烷基苯酮系化合物、安息香醚系化合物、苯偶酰缩酮系化合物、二苯并环庚酮系化合物、蒽醌系化合物、呫吨酮系化合物、噻吨酮系化合物、卤代苯乙酮系化合物、二烷氧基苯乙酮系化合物、卤代双咪唑系化合物、卤代三嗪系化合物、三嗪系化合物等。
作为产生酸的光聚合引发剂,可以使用碘鎓盐及锍盐等。
从低温时的反应效率优异这样的观点考虑,光聚合引发剂优选为自裂解型的光聚合引发剂,特别优选为苯乙酮系化合物、羟基苯乙酮系化合物、α-氨基苯乙酮系化合物、肟酯系化合物。
第1组合物中的聚合引发剂的含量可以根据聚合性液晶化合物的种类及其量而适宜地调节,相对于聚合性液晶化合物的含量100质量份而言,通常为0.1~30质量份,优选为0.5~10质量份,更优选为0.5~8质量份。若聚合引发剂的含量在上述范围内,则能够在不使聚合性液晶化合物的取向紊乱的情况下进行聚合。
所谓流平剂,是具有调整组合物的流动性、使涂布组合物而得到的膜更平坦的功能的添加剂。第1组合物可以包含硅系流平剂、聚丙烯酸酯系流平剂、全氟烷基系等氟系流平剂。
取向促进剂是指促进聚合性液晶化合物沿所期望的方向的液晶取向的材料。作为促进聚合性液晶化合物沿垂直方向的取向的取向促进剂,可举出由非金属原子形成的离子性化合物及非离子性硅烷化合物等。形成光吸收各向异性层的第1组合物优选包含由非金属原子形成的离子性化合物及非离子性硅烷化合物中的至少1种,更优选同时包含由非金属原子形成的离子性化合物及非离子性硅烷化合物。
作为硅烷化合物,可使用后述的非离子性硅烷化合物、含有硅烷的离子性化合物等,通过使用这些硅烷化合物,能够提高垂直取向控制力。这些硅烷化合物可以单独使用1种,也可以组合2种以上而使用,还可以与其他材料混合而使用。硅烷化合物为非离子性硅烷化合物的情况下,从容易提高垂直取向控制力的观点考虑,优选为在分子末端具有烷基的硅烷化合物,更优选为具有碳原子数3~30的烷基的硅烷化合物。
形成光吸收各向异性层的第1组合物包含由非金属原子形成的离子性化合物的情况下,在第1基材层上形成的、涂布第1组合物并干燥而成的干燥涂膜中,通过静电相互作用而呈现对聚合性液晶化合物的垂直取向控制力,有聚合性液晶化合物在干燥涂膜内沿与第1基材层的表面垂直的方向取向的倾向。由此,能够保持聚合性液晶化合物进行了垂直取向的状态并形成作为液晶固化膜的光吸收各向异性层。
作为由非金属原子形成的离子性化合物,例如,可举出鎓盐(更具体而言为氮原子具有正电荷的季铵盐、叔锍盐、及磷原子具有正电荷的季鏻盐等)。这些鎓盐之中,从能进一步提高聚合性液晶化合物的垂直取向性的观点考虑,优选为季鎓盐,从提高获得性及量产性的观点考虑,更优选为季鏻盐或季铵盐。鎓盐可以在分子内具有2个以上的季鎓盐部位,也可以为低聚物、聚合物。
离子性化合物的分子量优选为100以上10,000以下。若分子量在上述的范围内,则容易在确保第1组合物的涂布性的情况下提高聚合性液晶化合物的垂直取向性。离子性化合物的分子量更优选为5000以下,进一步优选为3000以下。
作为离子性化合物的阳离子成分,例如,可举出无机阳离子及有机阳离子。其中,从不易产生聚合性液晶化合物的取向缺陷的方面考虑,优选为有机阳离子。作为有机阳离子,例如,可举出咪唑鎓阳离子、吡啶鎓阳离子、铵阳离子、锍阳离子及鏻阳离子等。
离子性化合物通常具有抗衡阴离子。作为成为上述阳离子成分的抗衡离子的阴离子成分,例如,可举出无机阴离子及有机阴离子。其中,从不易产生聚合性液晶化合物的取向缺陷的方面考虑,优选有机阴离子。需要说明的是,阳离子与阴离子并非必须一对一地对应。
作为阴离子成分,具体而言,例如可举出以下的这样的阴离子成分。
氯化物阴离子〔Cl-〕,
溴化物阴离子〔Br-〕,
碘化物阴离子〔I-〕,
四氯铝酸根阴离子〔AlCl4-〕,
七氯二铝酸根阴离子〔Al2Cl7-〕,
四氟硼酸根阴离子〔BF4 -〕,
六氟磷酸根阴离子〔PF6 -〕,
高氯酸根阴离子〔ClO4 -〕,
硝酸根阴离子〔NO3 -〕,
乙酸根阴离子〔CH3COO-〕,
三氟乙酸根阴离子〔CF3COO-〕,
氟磺酸根阴离子〔FSO3 -〕,
甲磺酸根阴离子〔CH3SO3 -〕,
三氟甲磺酸根阴离子〔CF3SO3 -〕,
对甲苯磺酸根阴离子〔p-CH3C6H4SO3 -〕,
双(氟磺酰基)亚胺阴离子〔(FSO2)2N-〕,
双(三氟甲磺酰基)亚胺阴离子〔(CF3SO2)2N-〕,
三(三氟甲磺酰基)甲烷阴离子〔(CF3SO2)3C-〕,
六氟砷酸根阴离子〔AsF6 -〕,
六氟锑酸根阴离子〔SbF6 -〕,
六氟铌酸根阴离子〔NbF6 -〕,
六氟钽酸根阴离子〔TaF6 -〕,
二甲基次膦酸根阴离子〔(CH3)2POO-〕,
(多)氢氟氟化物((Poly)hydrofluorofluoride)阴离子〔F(HF)n -〕(例如,n表示1~3的整数),
二氰胺阴离子〔(CN)2N-〕,
硫氰根阴离子〔SCN-〕,
全氟丁磺酸根阴离子〔C4F9SO3 -〕,
双(五氟乙磺酰基)亚胺阴离子〔(C2F5SO2)2N-〕,
全氟丁酸根阴离子〔C3F7COO-〕,以及
(三氟甲磺酰基)(三氟甲基羰基)亚胺阴离子〔(CF3SO2)(CF3CO)N-〕。
离子性化合物的具体例可以从上述阳离子成分与阴离子成分的组合中适宜地选择。关于作为具体的阳离子成分与阴离子成分的组合的化合物,可举出以下这样的化合物。
(吡啶鎓盐)
N-己基吡啶鎓六氟磷酸盐,
N-辛基吡啶鎓六氟磷酸盐,
N-甲基-4-己基吡啶鎓六氟磷酸盐,
N-丁基-4-甲基吡啶鎓六氟磷酸盐,
N-辛基-4-甲基吡啶鎓六氟磷酸盐,
N-己基吡啶鎓双(氟磺酰基)亚胺,
N-辛基吡啶鎓双(氟磺酰基)亚胺,
N-甲基-4-己基吡啶鎓双(氟磺酰基)亚胺,
N-丁基-4-甲基吡啶鎓双(氟磺酰基)亚胺,
N-辛基-4-甲基吡啶鎓双(氟磺酰基)亚胺,
N-己基吡啶鎓双(三氟甲磺酰基)亚胺,
N-辛基吡啶鎓双(三氟甲磺酰基)亚胺,
N-甲基-4-己基吡啶鎓双(三氟甲磺酰基)亚胺,
N-丁基-4-甲基吡啶鎓双(三氟甲磺酰基)亚胺,
N-辛基-4-甲基吡啶鎓双(三氟甲磺酰基)亚胺,N-己基吡啶鎓对甲苯磺酸盐,N-辛基吡啶鎓对甲苯磺酸盐,N-甲基-4-己基吡啶鎓对甲苯磺酸盐,N-丁基-4-甲基吡啶鎓对甲苯磺酸盐,以及N-辛基-4-甲基吡啶鎓对甲苯磺酸盐。
(咪唑鎓盐)
1-乙基-3-甲基咪唑鎓六氟磷酸盐,1-乙基-3-甲基咪唑鎓双(氟磺酰基)亚胺,1-乙基-3-甲基咪唑鎓双(三氟甲磺酰基)亚胺,1-乙基-3-甲基咪唑鎓对甲苯磺酸盐,1-丁基-3-甲基咪唑鎓甲烷磺酸盐等。
(吡咯烷鎓盐)
N-丁基-N-甲基吡咯烷鎓六氟磷酸盐,
N-丁基-N-甲基吡咯烷鎓双(氟磺酰基)亚胺,N-丁基-N-甲基吡咯烷鎓双(三氟甲磺酰基)亚胺,N-丁基-N-甲基吡咯烷鎓对甲苯磺酸盐等。
(铵盐)
四丁基铵六氟磷酸盐,
四丁基铵双(氟磺酰基)亚胺,
四己基铵双(氟磺酰基)亚胺,
三辛基甲基铵双(氟磺酰基)亚胺,
(2-羟基乙基)三甲基铵双(氟磺酰基)亚胺,四丁基铵双(三氟甲磺酰基)亚胺,
四己基铵双(三氟甲磺酰基)亚胺,
三辛基甲基铵双(三氟甲磺酰基)亚胺,
(2-羟基乙基)三甲基铵双(三氟甲磺酰基)亚胺,四丁基铵对甲苯磺酸盐,
四己基铵对甲苯磺酸盐,
三辛基甲基铵对甲苯磺酸盐,
(2-羟基乙基)三甲基铵对甲苯磺酸盐,
(2-羟基乙基)三甲基铵二甲基次膦酸盐,
1-(3-三甲氧基甲硅烷基丙基)-1,1,1-三丁基铵双(三氟甲磺酰基)亚胺,
1-(3-三甲氧基甲硅烷基丙基)-1,1,1-三甲基铵双(三氟甲磺酰基)亚胺,
1-(3-三甲氧基甲硅烷基丁基)-1,1,1-三丁基铵双(三氟甲磺酰基)亚胺,
1-(3-三甲氧基甲硅烷基丁基)-1,1,1-三甲基铵双(三氟甲磺酰基)亚胺,
N-{(3-三乙氧基甲硅烷基丙基)氨基甲酰基氧基乙基)}-N,N,N-三甲基铵双(三氟甲磺酰基)亚胺,以及
N-[2-{3-(3-三甲氧基甲硅烷基丙基氨基)-1-氧代丙氧基}乙基]-N,N,N-三甲基铵双(三氟甲磺酰基)亚胺。
(鏻盐)
三丁基(2-甲氧基乙基)鏻双(三氟甲磺酰基)亚胺,
三丁基甲基鏻双(三氟甲磺酰基)亚胺,
1,1,1-三甲基-1-[(三甲氧基甲硅烷基)甲基]鏻双(三氟甲磺酰基)亚胺,
1,1,1-三甲基-1-[2-(三甲氧基甲硅烷基)乙基]鏻双(三氟甲磺酰基)亚胺,
1,1,1-三甲基-1-[3-(三甲氧基甲硅烷基)丙基]鏻双(三氟甲磺酰基)亚胺,
1,1,1-三甲基-1-[4-(三甲氧基甲硅烷基)丁基]鏻双(三氟甲磺酰基)亚胺,
1,1,1-三丁基-1-[(三甲氧基甲硅烷基)甲基]鏻双(三氟甲磺酰基)亚胺,
1,1,1-三丁基-1-[2-(三甲氧基甲硅烷基)乙基]鏻双(三氟甲磺酰基)亚胺,以及
1,1,1-三丁基-1-[3-(三甲氧基甲硅烷基)丙基]鏻双(三氟甲磺酰基)亚胺。
这些离子性化合物各自可以单独使用,也可以组合使用2种以上。
从能进一步提高聚合性液晶化合物的垂直取向性的观点考虑,离子性化合物优选在阳离子部位的分子结构中具有Si元素及/或F元素。若离子性化合物在阳离子部位的分子结构中具有Si元素及/或F元素,则容易使离子性化合物在光吸收各向异性层的表面上偏析。其中,作为构成元素全部为非金属元素的离子性化合物,优选为下述离子性化合物(i)~(iii)等。
离子性化合物(i):
[化学式1]
离子性化合物(ii):
[化学式2]
离子性化合物(iii):
[化学式3]
作为提高聚合性液晶化合物的垂直取向性的方法,例如,使用具有链长在一定程度上较长的烷基的表面活性剂对基材表面进行处理的方法是已知的(例如,参见“液晶便览”的第2章液晶的取向和物性(丸善株式会社发行)等)。这样的利用表面活性剂提高液晶化合物的垂直取向性的方法也可以适用于离子性化合物。即,通过使用具有链长在一定程度上较长的烷基的离子性化合物对第1基材层表面进行处理,能够有效地提高聚合性液晶化合物的垂直取向性。
具体而言,离子性化合物优选满足下述关系:
5<M<16。
上述关系的M由下述式表示。
M=(直接键合于具有正电荷的原子上的取代基之中的到分子链末端为止的共价键数最多的取代基的、从具有正电荷的原子到分子链末端为止的共价键数)÷(具有正电荷的原子的数量)
通过使离子性化合物满足上述的关系,能够有效地提高聚合性液晶化合物的垂直取向性。
在离子性化合物的分子中存在2个以上的具有正电荷的原子的情况下,对于含有2个以上的具有正电荷的原子的取代基,将从视作基点的具有正电荷的原子起算、到最近的其他具有正电荷的原子为止的共价键数作为上述M的定义中记载的“从具有正电荷的原子到分子链末端为止的共价键数”。在离子性化合物为具有2个以上的重复单元的低聚物、聚合物的情况下,将结构单元视作一个分子,算出上述M。在具有正电荷的原子被组入环结构中的情况下,将经由环结构到该具有正电荷的原子为止的共价键数、或到键合于环结构的取代基的末端为止的共价键数之中共价键数较多的一方作为上述M的定义中记载的“从具有正电荷的原子到分子链末端为止的共价键数”。
在形成光吸收各向异性层的聚合性液晶组合物包含离子性化合物的情况下,其含量通常相对于第1组合物的固态成分而言优选为0.01~5质量%,更优选为0.05~4质量%,进一步优选为0.1~3质量%。若离子性化合物的含量在上述范围内,则能够维持第1组合物的良好的涂布性,并且有效地促进聚合性液晶化合物的垂直取向性。
在形成光吸收各向异性层的第1组合物包含非离子性硅烷化合物的情况下,存在下述倾向:非离子性硅烷化合物使第1组合物的表面张力降低,在第1基材层上由第1组合物形成的干燥涂膜中,在干燥涂膜的与基材呈相反侧的面存在非离子性硅烷化合物,提高对聚合性液晶化合物的垂直取向控制力,在干燥涂膜内聚合性液晶化合物沿与第1基材层表面垂直的方向进行取向。由此,能够保持聚合性液晶化合物进行了垂直取向的状态并形成作为液晶固化膜的光吸收各向异性层。
非离子性硅烷化合物是非离子性并且包含Si元素的化合物。作为非离子性硅烷化合物,例如,可举出聚硅烷这样的硅聚合物、硅油及有机硅树脂这样的有机硅树脂、以及有机硅低聚物、倍半硅氧烷及烷氧基硅烷这样的有机无机硅烷化合物(更具体而言为硅烷偶联剂等)、流平剂的项中记载的含硅烷的化合物等。
非离子性硅烷化合物可以为有机硅单体类型的化合物,也可以为有机硅低聚物(聚合物)类型的化合物。将有机硅低聚物以(单体)-(单体)共聚物的形式表示时,可举出3-巯基丙基三甲氧基硅烷-四甲氧基硅烷共聚物、3-巯基丙基三甲氧基硅烷-四乙氧基硅烷共聚物、3-巯基丙基三乙氧基硅烷-四甲氧基硅烷共聚物及3-巯基丙基三乙氧基硅烷-四乙氧基硅烷共聚物这样的含有巯基丙基的共聚物;巯基甲基三甲氧基硅烷-四甲氧基硅烷共聚物、巯基甲基三甲氧基硅烷-四乙氧基硅烷共聚物、巯基甲基三乙氧基硅烷-四甲氧基硅烷共聚物及巯基甲基三乙氧基硅烷-四乙氧基硅烷共聚物这样的含有巯基甲基的共聚物;3-甲基丙烯酰基氧基丙基三甲氧基硅烷-四甲氧基硅烷共聚物、3-甲基丙烯酰基氧基丙基三甲氧基硅烷-四乙氧基硅烷共聚物、3-甲基丙烯酰基氧基丙基三乙氧基硅烷-四甲氧基硅烷共聚物、3-甲基丙烯酰基氧基丙基三乙氧基硅烷-四乙氧基硅烷共聚物、3-甲基丙烯酰基氧基丙基甲基二甲氧基硅烷-四甲氧基硅烷共聚物、3-甲基丙烯酰基氧基丙基甲基二甲氧基硅烷-四乙氧基硅烷共聚物、3-甲基丙烯酰基氧基丙基甲基二乙氧基硅烷-四甲氧基硅烷共聚物及3-甲基丙烯酰氧基丙基甲基二乙氧基硅烷-四乙氧基硅烷共聚物这样的含有甲基丙烯酰基氧基丙基的共聚物;3-丙烯酰基氧基丙基三甲氧基硅烷-四甲氧基硅烷共聚物、3-丙烯酰基氧基丙基三甲氧基硅烷-四乙氧基硅烷共聚物、3-丙烯酰基氧基丙基三乙氧基硅烷-四甲氧基硅烷共聚物、3-丙烯酰基氧基丙基三乙氧基硅烷-四乙氧基硅烷共聚物、3-丙烯酰基氧基丙基甲基二甲氧基硅烷-四甲氧基硅烷共聚物、3-丙烯酰基氧基丙基甲基二甲氧基硅烷-四乙氧基硅烷共聚物、3-丙烯酰基氧基丙基甲基二乙氧基硅烷-四甲氧基硅烷共聚物及3-丙烯酰基氧基丙基甲基二乙氧基硅烷-四乙氧基硅烷共聚物这样的含有丙烯酰基氧基丙基的共聚物;乙烯基三甲氧基硅烷-四甲氧基硅烷共聚物、乙烯基三甲氧基硅烷-四乙氧基硅烷共聚物、乙烯基三乙氧基硅烷-四甲氧基硅烷共聚物、乙烯基三乙氧基硅烷-四乙氧基硅烷共聚物、乙烯基甲基二甲氧基硅烷-四甲氧基硅烷共聚物、乙烯基甲基二甲氧基硅烷-四乙氧基硅烷共聚物、乙烯基甲基二乙氧基硅烷-四甲氧基硅烷共聚物及乙烯基甲基二乙氧基硅烷-四乙氧基硅烷共聚物这样的含有乙烯基的共聚物;3-氨基丙基三甲氧基硅烷-四甲氧基硅烷共聚物、3-氨基丙基三甲氧基硅烷-四乙氧基硅烷共聚物、3-氨基丙基三乙氧基硅烷-四甲氧基硅烷共聚物、3-氨基丙基三乙氧基硅烷-四乙氧基硅烷共聚物、3-氨基丙基甲基二甲氧基硅烷-四甲氧基硅烷共聚物、3-氨基丙基甲基二甲氧基硅烷-四乙氧基硅烷共聚物、3-氨基丙基甲基二乙氧基硅烷-四甲氧基硅烷共聚物及3-氨基丙基甲基二乙氧基硅烷-四乙氧基硅烷共聚物这样的含有氨基的共聚物等。这些非离子性硅烷化合物可以单独使用1种,或者组合使用2种以上。其中,从进一步提高与相邻层的密合性的观点考虑,优选为硅烷偶联剂。
硅烷偶联剂是在末端具有选自由乙烯基、环氧基、苯乙烯基、甲基丙烯酸系基团、丙烯酸系基团、氨基、异氰脲酸酯基、脲基、巯基、异氰酸酯基、羧基、及羟基组成的组中的至少1种这样的官能团、和至少1个烷氧基甲硅烷基或硅烷醇基的包含Si元素的化合物。通过适宜地选定这些官能团,能够赋予光吸收各向异性层的机械强度的提高、光吸收各向异性层的表面改性、光吸收各向异性层与相邻层(例如,第1基材层)的密合性提高等优异的效果。从密合性的观点考虑,硅烷偶联剂优选为具有烷氧基甲硅烷基和另一个不同的反应基团(例如,上述官能团)的硅烷偶联剂。硅烷偶联剂优选为具有烷氧基甲硅烷基和极性基团的硅烷偶联剂。若硅烷偶联剂在其分子内具有至少1个烷氧基甲硅烷基、和至少1个极性基团,则有容易进一步提高聚合性液晶化合物的垂直取向性、可显著获得促进垂直取向的效果的倾向。作为极性基团,例如,可举出环氧基、氨基、异氰脲酸酯基、巯基、羧基及羟基。极性基团可以为了控制硅烷偶联剂的反应性而适宜地具有取代基或保护基。
作为硅烷偶联剂,具体而言,例如可举出乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷、N-(2-氨基乙基)-3-氨基丙基甲基二甲氧基硅烷、N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷、3-三乙氧基甲硅烷基-N-(1,3-二甲基-丁叉)丙基胺、3-环氧丙氧基丙基三甲氧基硅烷、3-环氧丙氧基丙基甲基二甲氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-氯丙基甲基二甲氧基硅烷、3-氯丙基三甲氧基硅烷、3-甲基丙烯酰基氧基丙基三甲氧基硅烷、3-巯基丙基三甲氧基硅烷、3-环氧丙氧基丙基三甲氧基硅烷、3-环氧丙氧基丙基三乙氧基硅烷、3-环氧丙氧基丙基二甲氧基甲基硅烷、及3-环氧丙氧基丙基乙氧基二甲基硅烷。
作为市售的硅烷偶联剂,例如,可举出KP321、KP323、KP324、KP326、KP340、KP341、X22-161A、KF6001、KBM-1003、KBE-1003、KBM-303、KBM-402、KBM-403、KBE-402、KBE-403、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-602、KBM-603、KBM-903、KBE-903、KBE-9103、KBM-573、KBM-575、KBM-9659、KBE-585、KBM-802、KBM-803、KBE-846、及KBE-9007这样的信越化学工业(株)制的硅烷偶联剂。
在形成光吸收各向异性层的聚合性液晶组合物包含非离子性硅烷化合物的情况下,其含量通常相对于第1组合物的固态成分而言优选为0.01质量%~5质量%,更优选为0.05质量%~4质量%,进一步优选为0.1质量%~3质量%。若非离子性硅烷化合物的含量在前述范围内,则能够维持第1组合物的良好的涂布性,并且有效地促进聚合性液晶化合物的垂直取向性。
通过使形成光吸收各向异性层的第1组合物包含离子性化合物及非离子性硅烷化合物这两者,从而在第1基材层上由第1组合物形成的干燥涂膜中,利用来自离子性化合物的静电相互作用、和来自非离子性硅烷化合物的表面张力降低效果,容易进一步促进聚合性液晶化合物的垂直取向。由此,能够保持聚合性液晶化合物更加精度良好地垂直取向的状态而形成作为液晶固化膜的光吸收各向异性层。
第1组合物可以通过对二向色性色素及液晶性化合物、以及根据需要使用的溶剂、取向促进剂、聚合引发剂及流平剂等添加剂进行搅拌而得到。
作为涂布第1组合物的方法,可举出旋涂法、挤出法、凹版涂覆法、模涂法、刮棒涂覆法、涂布器法等涂布法、柔版法等印刷法等已知的方法。
优选对在第1基材层上形成的第1组合物的涂布层进行干燥处理。第1组合物包含溶剂的情况下,可以通过对涂布层进行干燥而将涂布层中的溶剂除去。作为干燥方法,可举出已知的方法,可举出自然干燥法、加热干燥法、通风干燥法、减压干燥法等中的1种以上方法。
干燥处理中的干燥条件可以根据第1组合物中包含的成分而适宜地确定。例如,干燥处理中的干燥温度为50℃以上150℃以下,也可以为60℃以上120℃以下。干燥处理中的干燥时间为15秒以上10分钟以下,也可以为0.5分钟以上5分钟以下。
在干燥处理中进行加热处理的情况下,可以加热至使第1组合物中包含的液晶性化合物发生相变的液晶相转变温度以上的温度,由此,在将涂布层中的溶剂除去的同时使液晶性化合物取向。尤其是在使形成近晶相的液晶性化合物沿着与光吸收各向异性层的面垂直的方向取向的情况下,优选在转变为近晶相的温度区域内进行加热。由此,能够使液晶性化合物沿着与光吸收各向异性层的面垂直的方向取向,伴随着液晶性化合物的取向,还能够使二向色性色素取向。
在第1组合物不包含聚合性液晶化合物的情况下,可以在如上述那样使液晶性化合物及二向色性色素取向后将溶剂除去,由此得到光吸收各向异性层。
在第1组合物包含聚合性液晶化合物的情况下,可以对形成于第1基材层上的涂布层进行干燥,在使聚合性液晶化合物及二向色性色素进行了取向的状态下照射活性能量射线,使聚合性液晶化合物进行聚合固化,由此形成液晶性化合物及二向色性色素取向了的光吸收各向异性层。
作为使聚合性液晶化合物聚合的方法,优选为光聚合。光聚合可通过向包含在第1基材层上涂布包含聚合性液晶化合物的第1组合物而得到的涂布层的层叠结构体照射活性能量射线来实施。作为照射的活性能量射线,可根据涂布层中包含的聚合性液晶化合物的种类(尤其是聚合性液晶化合物所具有的光聚合性官能团的种类)、包含光聚合引发剂时的光聚合引发剂的种类、以及它们的量而适宜地选择。具体而言,可举出选自由可见光、紫外光、红外光、X射线、α射线、β射线、及γ射线组成的组中的一种以上的光。其中,从容易控制聚合反应的进行的方面、及可以使用作为光聚合装置而在本领域中广泛应用的装置这样的方面考虑,优选为紫外光,优选以能利用紫外光进行光聚合的方式选择聚合性液晶化合物的种类。
作为活性能量射线的光源,例如,可举出低压汞灯、中压汞灯、高压汞灯、超高压汞灯、氙灯、卤素灯、碳弧灯、钨灯、镓灯、准分子激光、发出波长范围380~440nm的光的LED光源、化学灯、黑光灯、微波激发汞灯、金属卤化物灯等。
紫外线照射强度通常为10mW/cm2~3,000mW/cm2。紫外线照射强度优选为对阳离子聚合引发剂或自由基聚合引发剂的活化有效的波长区域中的强度。照射光的时间通常为0.1秒~10分钟,优选为1秒~5分钟,更优选为5秒~3分钟,进一步优选为10秒~1分钟。以这样的紫外线照射强度进行1次或多次照射时,其累积光量为10mJ/cm2~3,000mJ/cm2,优选为50mJ/cm2~2,000mJ/cm2,更优选为100mJ/cm2~1,000mJ/cm2。在累积光量为该范围以下时,存在聚合性液晶化合物的固化变得不充分、在将光吸收各向异性层转印于被粘物时得不到良好的转印性的情况。相反地,在累积光量为该范围以上时,存在光吸收各向异性层着色的情况。
(椭圆偏光板)
如图2所示,椭圆偏光板20可以具备偏光层21、及具有面内相位差的第1相位差层22。第1相位差层22可以包含具有彼此不同的面内相位差的2层以上的相位差层。为了高度达成作为防反射膜的椭圆偏光板20的防反射功能,优选包含具有可见光全域内的λ/4板功能(即π/2的相位差功能)的λ/4相位差层。λ/4相位差层优选为逆波长分散性的λ/4相位差层。第1相位差层22也可以是将正波长分散性的具有λ/2板功能的相位差层(λ/2相位差层)与正波长分散性的λ/4相位差层组合而成的。
从能补偿倾斜方向上的防反射功能的观点考虑,椭圆偏光板20可以还包含在厚度方向上具有各向异性的第2相位差层23(正C板)。
在构成第1相位差层22的相位差层及第2相位差层23由包含后述的液晶性化合物的组合物得到的情况下,这些相位差层各自独立地可以形成倾斜取向状态,也可以形成胆甾型取向状态。
椭圆偏光板20包含第1相位差层22及第2相位差层23的情况下,光学层叠体2中的椭圆偏光板20可以从光吸收各向异性层11侧起依次具有偏光层21、第1相位差层22、及第2相位差层23,也可以依次具有偏光层21、第2相位差层23、及第1相位差层22。在构成椭圆偏光板20的层之间可以具有贴合层。贴合层为粘合剂层或粘接剂层。
椭圆偏光板20中包含的偏光层21具有光吸收各向异性。偏光层21的详情在后文中说明,但偏光层21例如是作为具有光吸收各向异性的色素的二向色性色素进行单轴取向而成的层。二向色性色素进行单轴取向而成的偏光层可举出:通过在使聚乙烯醇系树脂等聚合物中含浸有碘、有机二向色性染料的状态下进行单轴拉伸而形成的偏光层;由包含二向色性色素的聚合性液晶化合物的聚合物形成的偏光层,其是通过利用包含聚合性液晶化合物及二向色性色素的组合物并使二向色性色素及聚合性液晶化合物取向而形成的。这样的偏光层可以通过利用被包封于拉伸膜、聚合性液晶化合物的聚合物中的二向色性色素对光进行各向异性吸收而呈现出偏光功能。偏光层21也可以制成在其一面或两面层叠保护膜而得到的偏光板之后组装至椭圆偏光板20、光学层叠体1、2中。关于偏光板的详情,在后文中说明。
椭圆偏光板20中包含的第1相位差层22的对于波长λ[nm]的光而言的面内相位差即R(λ)优选满足下述式(5)所示的光学特性,优选满足下述式(5)、下述式(6)及下述式(7)所示的光学特性。
100nm<Re(550)<160nm (5)
Re(450)/Re(550)≤1.00 (6)
1.00≤Re(650)/Re(550) (7)
[式(5)~(7)中,
Re(550)表示第1相位差层的对于波长550nm的光而言的面内相位差值(面内延迟),
Re(450)表示第1相位差层的对于波长450nm的光而言的面内相位差值,
Re(650)表示第1相位差层的对于波长650nm的光而言的面内相位差值。]
若上述式(6)的“Re(450)/Re(550)”大于1.0,则具备λ/4相位差层的椭圆偏光板20中的短波长侧的漏光增大。“Re(450)/Re(550)”优选为0.70以上1.00以下,更优选为0.80以上0.95以下,进一步优选为0.80以上0.92以下,特别优选为0.82以上0.88以下。“Re(450)/Re(550)”的值可以通过调整构成第1相位差层22的多个相位差层的层叠角度、相位差值、在为了得到构成第1相位差层22的相位差层而使用聚合性液晶化合物的情况下调整聚合性液晶化合物的混合比率来任意地调整。
第1相位差层22及构成第1相位差层22的相位差层的面内相位差值可以通过这些层的厚度来调整。面内相位差值由下述式(8)确定,因此,为了使波长λ[nm]处的面内相位差值(Re(λ))为所期望的值,调整Δn(λ)和膜厚d即可。第1相位差层22及构成第1相位差层22的相位差层的厚度各自独立地优选为0.5μm~5μm,更优选为1μm~3μm。该厚度可以利用干涉膜厚计、激光显微镜或触针式膜厚计来测定。需要说明的是,在为了得到构成第1相位差层22的相位差层而使用聚合性液晶化合物的情况下,Δn(λ)取决于该聚合性液晶化合物的分子结构。
Re(λ)=d×Δn(λ) (8)
[式(8)中,
Re(λ)表示波长λ[nm]处的相位差层的面内相位差值,
d表示相位差层的厚度,
Δn(λ)表示波长λ[nm]处的相位差层的双折射率。]
椭圆偏光板20中包含的第2相位差层23优选为正C板。正C板的波长550nm处的厚度方向的相位差值Rth(550)通常为-170nm以上-10nm以下的范围,优选为-150nm以上-20nm以下的范围,更优选为-100nm以上-40nm以下的范围。若正C板的厚度方向的相位差值为该范围,则能够进一步提高防止从倾斜方向的反射的特性。
在第1相位差层22及第2相位差层23为液晶固化膜(后述)的情况下,第1相位差层22及第2相位差层23可以以与支撑它们的第3基材层(后述)层叠的状态组装至椭圆偏光板20、光学层叠体2中。在该情况下,构成第1相位差层22的相位差层与第3基材层可以直接相接,第2相位差层23与第3基材层可以直接相接。
(偏光层)
偏光层具有在使无偏振光的光入射时使具有与吸收轴正交的振动面的直线偏振光透过的性质。偏光层可以为:使具有吸收各向异性的色素吸附于聚乙烯醇系树脂等聚合物而得到的拉伸偏光膜(以下,有时将使用了聚乙烯醇系树脂作为聚合物的拉伸偏光膜称为“PVA偏光膜”。);包含将含有具有吸收各向异性的色素及具有液晶性的化合物的第2组合物涂布于基材膜而形成的液晶固化膜的偏光层的液晶偏光膜。作为具有吸收各向异性的色素,可举出二向色性色素。PVA偏光膜中包含的二向色性色素优选为碘。
PVA偏光膜可以经由下述工序得到:对聚乙烯醇系树脂膜(以下,有时称为“PVA系膜”。)进行单轴拉伸的工序;通过将PVA系膜用二向色性色素染色而使该二向色性色素吸附的工序;利用硼酸水溶液对吸附有二向色性色素的PVA系膜进行处理的工序;以及根据需要在基于硼酸水溶液的处理后进行水洗的工序;等等。
作为PVA偏光膜的偏光层的厚度通常为30μm以下,优选为18μm以下,更优选为15μm以下,进一步优选为10μm以下。该厚度通常为1μm以上,例如可以为5μm以上。
PVA系膜的单轴拉伸可以在基于二向色性色素的染色之前、或与染色同时、或在染色之后进行。在染色之后进行单轴拉伸的情况下,该单轴拉伸可以在硼酸处理之前进行,也可以在硼酸处理中进行。当然,也可以在此处所示的多个阶段进行单轴拉伸。在单轴拉伸中,可以采用在圆周速度不同的辊间沿膜搬运方向进行单轴拉伸的方法、使用热辊沿膜搬运方向进行单轴拉伸的方法、使用拉幅机沿宽度方向进行拉伸的方法等。单轴拉伸可以通过在大气中进行拉伸的干式拉伸来实施,也可以通过在使用水等溶剂使PVA系膜溶胀的状态下进行拉伸的湿式拉伸来实施。拉伸倍率通常为3~8倍左右。
另外,也可以在热塑性树脂膜上涂布包含聚乙烯醇的水溶液后实施干燥处理,与热塑性树脂膜一起通过上述方法进行拉伸。
PVA系膜的基于二向色性色素的染色例如可以通过在含有二向色性色素的水溶液中浸渍PVA系膜的方法来进行。作为二向色性色素,具体而言,可使用碘、二向色性有机染料。
从能任意地控制色相的方面、以及能够大幅度地薄型化的方面、进一步由于不存在基于热的拉伸缓和而具有非收缩性的方面考虑,由含有具有吸收各向异性的色素及具有液晶性的化合物的第2组合物形成的液晶偏光膜可以合适地用于例如柔性显示器用途。
液晶偏光膜例如可以通过下述方式得到:在第2基材层上涂布第2组合物,使第2组合物中包含的二向色性色素取向而形成偏光层。液晶偏光膜中包含的偏光层中,二向色性色素、及具有液晶性的化合物或其聚合物相对于第2基材层面进行了水平取向。
液晶偏光膜中包含的偏光层的厚度优选为0.1μm以上5μm以下,更优选为0.3μm以上4μm以下,进一步优选为0.5μm以上3μm以下。若上述厚度比该范围小,则有时得不到必要的光吸收,并且,若上述厚度比该范围大,则有由第2取向层(后述)产生的取向控制力降低、容易产生取向缺陷的倾向。
对于液晶偏光膜中包含的偏光层(液晶固化膜)而言,对于波长λ[nm]的光而言的取向方向的吸光度A1(λ)、与相对于该取向方向的面内而言垂直的方向的吸光度A2(λ)之比(二向色性比;A1/A2)为7以上时是优选的,为20以上时是更优选的,进一步优选为40以上。二向色性比的值越大,可以说是吸收选择性越优异的偏光层。虽然也取决于二向色性色素的种类,但在液晶偏光膜中包含的液晶固化膜以向列型液晶相的状态进行了固化的情况下,上述二向色性比为5~10左右。
通过将吸收波长不同的2种以上的二向色性色素混合,能够制作各种色相的偏光层,能够制成在可见光全域内具有吸收的偏光层。通过制成具有这样的吸收特性的偏光层,能拓展至各种用途中。
作为第2基材层,可举出作为光学层叠体所具有的第1基材层而说明过的基材层。第2基材层可以在制成防反射膜时剥离除去,也可以不剥离除去而用作偏光层的保护膜。作为液晶偏光膜中使用的二向色性色素,可举出光吸收各向异性层中所使用的二向色性色素等。作为具有液晶性的化合物,可以使用棒状液晶化合物、圆盘状液晶化合物、及它们的混合物。作为具有液晶性的化合物,优选为聚合性液晶化合物。具有液晶性的化合物可以为显示出向列型液晶相的热致性液晶化合物,也可以为显示出近晶型液晶相的热致性液晶化合物。具有液晶性的化合物及聚合性液晶化合物也可以使用光吸收各向异性层中所使用的液晶性化合物。
液晶偏光膜可以包含第2取向层。第2取向层优选为能使具有液晶性的化合物相对于液晶偏光膜的面而言沿水平方向取向的水平取向层。
在第2取向层由取向性聚合物形成的情况下,第2取向层的取向控制力可以通过表面状态、摩擦条件而任意地调整。在第2取向层由光取向性聚合物形成的情况下,可以通过偏振光照射条件等而任意地调整取向控制力。另外,也可以通过选择液晶性化合物的表面张力、液晶性等物性来控制液晶取向。
作为第2取向层,优选为不溶于在第2取向层上形成偏光层时所使用的溶剂、而且具有用于进行溶剂的除去、液晶的取向的加热处理中的耐热性的取向层。作为第2取向层,可举出由取向性聚合物形成的聚合物取向层、光取向层及沟槽(groove)取向层、沿取向方向进行了拉伸的拉伸膜等,在应用于长条的卷状膜的情况下,从能够容易地控制取向方向的方面考虑,优选为光取向层。
第2取向层的厚度通常为10nm~5000nm的范围,优选为10nm~1000nm的范围,更优选为30~300nm。
作为摩擦取向层中使用的取向性聚合物,可举出在分子内具有酰胺键的聚酰胺、明胶类、在分子内具有酰亚胺键的聚酰亚胺及作为其水解物的聚酰胺酸、聚乙烯醇、烷基改性聚乙烯醇、聚丙烯酰胺、聚噁唑、聚乙烯亚胺、聚苯乙烯、聚乙烯吡咯烷酮、聚丙烯酸及聚丙烯酸酯类等。其中,优选为聚乙烯醇。这些取向性聚合物可以单独使用,也可以组合使用2种以上。
作为摩擦的方法,可举出下述方法:使通过将取向性聚合物组合物涂布于第2基材层并进行退火而在第2基材层表面上形成的取向性聚合物的膜与缠绕有摩擦布并进行旋转的摩擦辊接触。
光取向层由具有光反应性基团的聚合物、低聚物或单体形成。对于光取向层而言,可通过向在第2基材层上涂布用于形成光取向层的组合物而形成的涂布层照射偏振光而获得取向控制力。从可以通过对照射的偏振光的偏振方向进行选择来任意地控制取向控制力的方向的方面考虑,更优选为光取向层。
所谓光反应性基团,是指通过照射光而产生液晶取向能力的基团。具体而言,是发生通过照射光而产生的分子的取向诱发或异构化反应、二聚化反应、光交联反应或光分解反应这样的成为液晶取向能力的来源的光反应的基团。该光反应性基团之中,发生二聚化反应或光交联反应的基团从取向性优异的方面考虑是优选的。作为能发生以上这样的反应的光反应性基团,优选为具有不饱和键、尤其是双键的基团,更优选为具有选自由碳-碳双键(C=C键)、碳-氮双键(C=N键)、氮-氮双键(N=N键)、及碳-氧双键(C=O键)组成的组中的至少一种的基团。
作为具有C=C键的光反应性基团,例如,可举出乙烯基、多烯基、茋基、茋唑基、茋唑鎓基、查尔酮基及肉桂酰基等。从容易控制反应性这一点、光取向时的取向控制力的呈现的观点考虑,优选为查尔酮基及肉桂酰基。作为具有C=N键的光反应性基团,可举出具有芳香族席夫碱及芳香族腙等结构的基团。作为具有N=N键的光反应性基团,可举出偶氮苯基、偶氮萘基、芳香族杂环偶氮基、双偶氮基及甲臜基等以氧化偶氮苯为基本结构的基团。作为具有C=O键的光反应性基团,可举出二苯甲酮基、香豆素基、蒽醌基及马来酰亚胺基等。这些基团可以具有烷基、烷氧基、芳基、烯丙基氧基、氰基、烷氧基羰基、羟基、磺酸基及卤代烷基等取代基。
为了照射偏振光,可以为从用于形成光取向层的组合物的涂布层的膜面直接照射偏振光的方式,也可以为从基底层侧照射偏振光、使偏振光透过从而进行照射的方式。另外,该偏振光特别优选实质上为平行光。照射的偏振光的波长为具有光反应性基团的聚合物或单体的光反应性基团可吸收光能的波长区域的波长即可。具体而言,特别优选为波长250~400nm的范围的UV(紫外光)。作为该偏振光照射中使用的光源,可举出氙灯、高压汞灯、超高压汞灯、金属卤化物灯、KrF、ArF等紫外光激光等,更优选为高压汞灯、超高压汞灯及金属卤化物灯。这些灯的波长313nm的紫外光的发光强度大,因此优选。可以使来自上述光源的光通过适当的偏光片而进行照射,由此照射偏振光。作为所述偏光片,可以使用偏振滤光片、格兰-汤普森、格兰-泰勒等的偏光棱镜、线栅型的偏光片。
(偏光板)
偏光板是在偏光层的一面或两面具有保护膜的直线偏光板。保护膜可以使用热塑性树脂膜。热塑性树脂膜可以为了提高与偏光层的密合性而实施表面处理(例如,电晕处理等),也可以形成有底漆层(也称为底涂层)等薄层。偏光层与保护膜可以直接相接,也可以介由贴合层(粘合剂层或粘接剂层)而层叠。
作为构成热塑性树脂膜的热塑性树脂,优选为透明膜,例如,可举出三乙酸纤维素等纤维素树脂;聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯等聚酯树脂;聚醚砜树脂;聚砜树脂;聚碳酸酯树脂;尼龙、芳香族聚酰胺等聚酰胺树脂;聚酰亚胺树脂;聚乙烯、聚丙烯、乙烯·丙烯共聚物等聚烯烃树脂;具有环系及降冰片烯结构的环状聚烯烃树脂(也称为降冰片烯系树脂);(甲基)丙烯酸树脂;聚芳酯树脂;聚苯乙烯树脂;聚乙烯醇树脂等。其中,热塑性树脂膜优选为环状聚烯烃系树脂膜、纤维素酯系树脂膜、聚酯系树脂膜或(甲基)丙烯酸系树脂膜。
保护膜可以是在热塑性树脂膜上形成硬涂层而得到的。硬涂层可以形成于热塑性树脂膜的一面,也可以形成于两面。通过设置硬涂层,能够制成提高了硬度及耐划伤性的热塑性树脂膜。硬涂层是例如活性能量射线固化型树脂、优选为紫外线固化型树脂的固化层。作为紫外线固化型树脂,例如可举出聚(甲基)丙烯酸系树脂、有机硅系树脂、聚酯系树脂、氨基甲酸酯系树脂、酰胺系树脂、环氧系树脂等。硬涂层可以为了提高强度而包含添加剂。添加剂没有特别限定,可举出无机系微粒、有机系微粒或它们的混合物。
保护膜的厚度优选为5μm以上150μm以下,也可以为10μm以上100μm以下,也可以为10μm以上80μm以下。
(第1相位差层、第2相位差层)
第1相位差层及第2相位差层(以下,有时将它们合并称为“相位差层”。)可以为拉伸膜,也可以为包含液晶固化膜的液晶膜,优选为液晶膜。
相位差层为拉伸膜的情况下,拉伸膜可以使用以往已知的拉伸膜,可以使用通过对树脂膜进行单轴拉伸或双轴拉伸而赋予了相位差的拉伸膜。作为树脂膜,可以使用三乙酸纤维素及二乙酸纤维素等纤维素膜、聚对苯二甲酸乙二醇酯、聚间苯二甲酸乙二醇酯及聚对苯二甲酸丁二醇酯等聚酯膜、聚(甲基)丙烯酸甲酯及聚(甲基)丙烯酸乙酯等丙烯酸树脂膜、聚碳酸酯膜、聚醚砜膜、聚砜膜、聚酰亚胺膜、聚烯烃膜、聚降冰片烯膜等,但并不限定于此。
相位差层为拉伸膜的情况下,相位差层的厚度通常为5μm以上200μm以下,优选为10μm以上80μm以下,进一步优选为40μm以下。
相位差层为液晶膜的情况下,对于液晶膜而言,可以将包含具有液晶性的化合物的第3组合物涂布于第3基材层而形成液晶固化膜。
作为第3基材层,可举出在第1基材层中说明过的基材层。第3基材层可以在制成防反射膜时剥离除去,也可以不剥离除去而用作相位差层的保护膜。作为液晶性化合物,可以使用具有聚合性基团、尤其是光聚合性基团的液晶性化合物即聚合性液晶化合物。作为聚合性液晶化合物,例如可以使用在相位差膜领域中以往已知的聚合性液晶化合物。所谓光聚合性基团,是指能利用由光聚合引发剂产生的反应活性种、例如活性自由基、酸等参与聚合反应的基团。作为光聚合性基团,可举出乙烯基、乙烯基氧基、1-氯乙烯基、异丙烯基、4-乙烯基苯基、丙烯酰基氧基、甲基丙烯酰基氧基、氧杂环丙基、氧杂环丁基等。其中,优选为丙烯酰基氧基、甲基丙烯酰基氧基、乙烯基氧基、氧杂环丙基及氧杂环丁基,更优选为丙烯酰基氧基。关于液晶性,可以为热致性液晶,也可以为溶致性液晶,但从能进行精密的膜厚控制的方面考虑,优选为热致性液晶。另外,作为热致性液晶中的相有序结构,可以为向列型液晶,也可以为近晶型液晶。另外,可以为棒状液晶,也可以为圆盘状液晶。聚合性液晶化合物可以单独使用或者组合使用两种以上。
第1相位差层中包含的λ/4相位差层为包含使聚合性液晶化合物聚合固化而得到的液晶固化膜的液晶膜的情况下,作为聚合性液晶化合物,从呈现逆波长分散性的观点考虑,优选为在与分子长轴方向垂直的方向上进一步具有双折射性的、以T字型或H型具有介晶结构的液晶,从可获得更强的分散的观点考虑,更优选为T字型液晶,作为T字型液晶的结构,具体而言,例如可举出下述式(9)表示的化合物。
[化学式4]
[式(9)中,
Ar表示可具有取代基的二价芳香族基团。优选在该二价芳香族基团中包含氮原子、氧原子、硫原子中的至少1个以上。在二价基团Ar中包含的芳香族基团为2个以上的情况下,2个以上的芳香族基团彼此可以通过单键、-CO-O-、-O-等二价的键合基团进行键合。
G1及G2各自独立地表示二价芳香族基团或二价脂环式烃基。此处,该二价芳香族基团或二价脂环式烃基中包含的氢原子可以被卤素原子、碳原子数1~4的烷基、碳原子数1~4的氟烷基、碳原子数1~4的烷氧基、氰基或硝基取代,构成该二价芳香族基团或二价脂环式烃基的碳原子可以被氧原子、硫原子或氮原子取代。
L1、L2、B1及B2各自独立地为单键或二价连接基团。
k、l各自独立地表示0~3的整数,并且满足1≤k+l的关系。此处,2≤k+l的情况下,B1及B2、G1及G2各自可以彼此相同,也可以不同。
E1及E2各自独立地表示碳原子数1~17的烷烃二基,此处,烷烃二基中包含的氢原子可以被卤素原子取代,该烷烃二基中包含的-CH2-可以被-O-、-S-、-COO-取代,在具有多个-O-、-S-、-COO-的情况下,彼此不相邻。
P1及P2彼此独立地表示聚合性基团或氢原子,至少1个为聚合性基团。]
G1及G2各自独立地优选为可以被选自由卤素原子及碳原子数1~4的烷基组成的组中的至少1个取代基取代的1,4-亚苯基二基、可以被选自由卤素原子及碳原子数1~4的烷基组成的组中的至少1个取代基取代的1,4-环己烷二基,更优选为被甲基取代的1,4-亚苯基二基、未取代的1,4-亚苯基二基、或未取代的1,4-反式-环己烷二基,特别优选为未取代的1,4-亚苯基二基、或未取代的1,4-反式-环己烷二基。
另外,优选存在有多个的G1及G2中的至少1个为二价脂环式烃基,另外,更优选与L1或L2键合的G1及G2中的至少1个为二价脂环式烃基。
L1及L2各自独立地优选为单键、碳原子数1~4的亚烷基、-O-、-S-、-Ra1ORa2-、-Ra3COORa4-、-Ra5OCORa6-、Ra7OC=OORa8-、-N=N-、-CRc=CRd-、或C≡C-。此处,Ra1~Ra8各自独立地表示单键、或碳原子数1~4的亚烷基,Rc及Rd表示碳原子数1~4的烷基或氢原子。L1及L2各自独立地更优选为单键、-ORa2-1-、-CH2-、-CH2CH2-、-COORa4-1-、或OCORa6-1-。此处,Ra2-1、Ra4-1、Ra6-1各自独立地表示单键、-CH2-、-CH2CH2-中的任一者。L1及L2各自独立地进一步优选为单键、-O-、-CH2CH2-、-COO-、-COOCH2CH2-、或OCO-。
B1及B2各自独立地优选为单键、碳原子数1~4的亚烷基、-O-、-S-、-Ra9ORa10-、-Ra11COORa12-、-Ra13OCORa14-、或Ra15OC=OORa16-。此处,Ra9~Ra16各自独立地表示单键、或碳原子数1~4的亚烷基。B1及B2各自独立地更优选为单键、-ORa10-1-、-CH2-、-CH2CH2-、-COORa12 -1-、或OCORa14-1-。此处,Ra10-1、Ra12-1、Ra14-1各自独立地表示单键、-CH2-、-CH2CH2-中的任一者。B1及B2各自独立地进一步优选为单键、-O-、-CH2CH2-、-COO-、-COOCH2CH2-、-OCO-、或OCOCH2CH2-。
就k及l而言,从呈现逆波长分散性的观点考虑,优选2≤k+l≤6的范围,优选k+l=4,更优选k=2并且l=2。k=2并且l=2时呈对称结构,故优选。
E1及E2各自独立地优选为碳原子数1~17的烷烃二基,更优选为碳原子数4~12的烷烃二基。
作为P1或P2表示的聚合性基团,可举出环氧基、乙烯基、乙烯基氧基、1-氯乙烯基、异丙烯基、4-乙烯基苯基、丙烯酰基氧基、甲基丙烯酰基氧基、氧杂环丙基、及氧杂环丁基等。其中,优选为丙烯酰基氧基、甲基丙烯酰基氧基、乙烯基氧基、氧杂环丙基及氧杂环丁基,更优选为丙烯酰基氧基。
Ar优选具有选自可具有取代基的芳香族烃环、可具有取代基的芳香族杂环、及吸电子性基团中的至少一者。作为该芳香族烃环,例如,可举出苯环、萘环、蒽环等,优选为苯环、萘环。作为该芳香族杂环,可举出呋喃环、苯并呋喃环、吡咯环、吲哚环、噻吩环、苯并噻吩环、吡啶环、吡嗪环、嘧啶环、三唑环、三嗪环、吡咯啉环、咪唑环、吡唑环、噻唑环、苯并噻唑环、噻吩并噻唑环、噁唑环、苯并噁唑环、及菲咯啉环等。其中,优选具有噻唑环、苯并噻唑环、或苯并呋喃环,进一步优选具有苯并噻唑基。另外,在Ar中含有氮原子的情况下,该氮原子优选具有π电子。
式(9)中,Ar表示的2价芳香族基团中包含的π电子的总数Nπ优选为8以上,更优选为10以上,进一步优选为14以上,特别优选为16以上。另外,优选为30以下,更优选为26以下,进一步优选为24以下。
作为Ar表示的芳香族基团,例如可优选举出以下的基团。
[化学式5]
[式(Ar-1)~式(Ar-23)中,
符号*表示连接部,
Z0、Z1及Z2各自独立地表示氢原子、卤素原子、碳原子数1~12的烷基、氰基、硝基、碳原子数1~12的烷基亚磺酰基、碳原子数1~12的烷基磺酰基、羧基、碳原子数1~12的氟烷基、碳原子数1~6的烷氧基、碳原子数1~12的烷基硫基、碳原子数1~12的N-烷基氨基、碳原子数2~12的N,N-二烷基氨基、碳原子数1~12的N-烷基氨磺酰基或碳原子数2~12的N,N-二烷基氨磺酰基。
Q1及Q2各自独立地表示-CR2’R3’-、-S-、-NH-、-NR2’-、-CO-或O-,R2’及R3’各自独立地表示氢原子或碳原子数1~4的烷基。
J1、及J2各自独立地表示碳原子、或氮原子。
Y1、Y2及Y3各自独立地表示可经取代的芳香族烃基或芳香族杂环基。
W1及W2各自独立地表示氢原子、氰基、甲基或卤素原子。
m表示0~6的整数。]
作为Y1、Y2及Y3中的芳香族烃基,可举出苯基、萘基、蒽基、菲基、联苯基等碳原子数6~20的芳香族烃基,优选为苯基、萘基,更优选为苯基。作为芳香族杂环基,可举出呋喃基、吡咯基、噻吩基、吡啶基、噻唑基、苯并噻唑基等包含至少1个氮原子、氧原子、硫原子等杂原子的碳原子数4~20的芳香族杂环基,优选为呋喃基、噻吩基、吡啶基、噻唑基、苯并噻唑基。
Y1、Y2及Y3各自独立地可以为可经取代的多环系芳香族烃基或多环系芳香族杂环基。多环系芳香族烃基是指稠合多环系芳香族烃基、或源自芳香环集合的基团。多环系芳香族杂环基是指稠合多环系芳香族杂环基、或源自芳香环集合的基团。
Z0、Z1及Z2各自独立地优选为氢原子、卤素原子、碳原子数1~12的烷基、氰基、硝基、碳原子数1~12的烷氧基,Z0进一步优选为氢原子、碳原子数1~12的烷基、氰基,Z1及Z2进一步优选为氢原子、氟原子、氯原子、甲基、氰基。
Q1及Q2优选为-NH-、-S-、-NR2’-、-O-,R2’优选为氢原子。其中,特别优选为-S-、-O-、-NH-。
式(Ar-1)~(Ar-23)表示的化合物之中,式(Ar-6)及式(Ar-7)表示的化合物从分子的稳定性的观点考虑是优选的。
式(Ar-16)~(Ar-23)表示的化合物中,Y1可以与其所键合的氮原子及Z0一起形成芳香族杂环基。作为芳香族杂环基,可举出作为Ar可以具有的芳香族杂环而在前面叙述的例子,例如,可举出吡咯环、咪唑环、吡咯啉环、吡啶环、吡嗪环、嘧啶环、吲哚环、喹啉环、异喹啉环、嘌呤环、吡咯烷环等。该芳香族杂环基可具有取代基。另外,Y1也可以与其所键合的氮原子及Z0一起形成为前述的可经取代的多环系芳香族烃基或多环系芳香族杂环基。例如,可举出苯并呋喃环、苯并噻唑环、苯并噁唑环等。
聚合性液晶化合物之中,极大吸收波长为300~400nm的化合物是优选的。在包含聚合性液晶化合物的第3组合物中含有光聚合引发剂的情况下,有在长期保管时进行聚合性液晶化合物的聚合反应及凝胶化的担忧。但是,聚合性液晶化合物的极大吸收波长为300~400nm时,即使在保管中暴露于紫外光,也能够有效地抑制源自光聚合引发剂的反应活性种的产生及由该反应活性种引起的聚合性液晶化合物的聚合反应及凝胶化的进行。因此,从第3组合物的长期稳定性的方面来看是有利的,能够提高第1相位差层中包含的液晶固化膜的取向性及膜厚的均匀性。需要说明的是,聚合性液晶化合物的极大吸收波长可以在溶剂中使用紫外可见分光光度计来测定。该溶剂是能将聚合性液晶化合物溶解的溶剂,例如可举出氯仿等。
相对于第3组合物的固态成分100质量份而言,第3组合物中的聚合性液晶化合物的含量例如为70~99.5质量份,优选为80~99质量份,更优选为85~98质量份,进一步优选为90~95质量份。聚合性液晶化合物的含量在上述范围内时,从得到的液晶固化膜的取向性的观点考虑是有利的。所谓第3组合物的固态成分,是指从第3组合物中除去有机溶剂等挥发性成分后的全部成分。
作为液晶膜的相位差层(构成第1相位差层的相位差层或第2相位差层)可以包含第3取向层。第3取向层根据使液晶性化合物取向的方向来选择即可,可以为垂直取向层,也可以为水平取向层。第3取向层是作为取向控制力而使其呈现水平取向的材料时,液晶性化合物能够形成水平取向或混合取向,为使其呈现垂直取向的材料时,液晶性化合物能够形成垂直取向或倾斜取向。水平、垂直等的表述表示以第1相位差层或第2相位差层的平面为基准时的、进行了取向的液晶性化合物的长轴的方向。例如,所谓垂直取向,是指在与第1相位差层或第2相位差层的平面垂直的方向上具有进行了取向的液晶性化合物的长轴。此处所谓垂直,是指相对于第1相位差层或第2相位差层的平面而言为90°±20°。作为第3取向层,可举出在第2取向层中说明过的取向层。
液晶膜的厚度优选为0.5μm以上5μm以下,更优选为1μm以上3μm以下。
(贴合层)
贴合层为粘合剂层或粘接剂层。
贴合层为粘合剂层的情况下,是使用粘合剂组合物形成的粘合剂层。粘合剂组合物或粘合剂组合物的反应产物是通过将其本身贴附于被粘物来呈现粘接性的物质,被称为所谓的压敏型粘接剂。另外,使用后述的活性能量射线固化型粘合剂组合物形成的粘合剂层可以通过照射活性能量射线来调整交联度、粘接力。
作为粘合剂组合物,可以没有特别限制地使用以往已知的光学透明性优异的粘合剂,例如,可以使用含有丙烯酸系聚合物、氨基甲酸酯聚合物、有机硅聚合物、聚乙烯醚等基础聚合物的粘合剂组合物。另外,粘合剂组合物可以为活性能量射线固化型粘合剂组合物、或热固化型粘合剂组合物等。它们之中,将透明性、粘合力、再剥离性(再操作性)、耐气候性、耐热性等优异的丙烯酸树脂作为基础聚合物的粘合剂组合物是优选的。粘合剂层优选由包含(甲基)丙烯酸树脂、交联剂、硅烷化合物的粘合剂组合物的反应产物构成,也可以包含其他成分。
用于形成粘合剂层的粘合剂组合物可以包含例如丙烯酸系聚合物、氨基甲酸酯聚合物、有机硅聚合物、聚乙烯醚等基础聚合物。粘合剂组合物可以为活性能量射线固化型粘合剂、热固化型粘合剂等。它们之中,将透明性、粘合力、再剥离性(再操作性)、耐气候性、耐热性等优异的(甲基)丙烯酸树脂作为基础聚合物的粘合剂是优选的。粘合剂层优选由包含(甲基)丙烯酸树脂、交联剂、硅烷化合物的粘合剂的反应产物构成,也可以包含其他成分。
粘合剂层可以使用活性能量射线固化型粘合剂形成。对于活性能量射线固化型粘合剂而言,通过在上述的粘合剂组合物中配合多官能性丙烯酸酯等紫外线固化性化合物,并在形成粘合剂层后照射紫外线而使其固化,能够形成更硬的粘合剂层。活性能量射线固化型粘合剂具有受到紫外线、电子束等能量射线的照射而固化的性质。活性能量射线固化型粘合剂在能量射线照射前也具有粘合性,因此,具有能够与被粘物密合、通过能量射线的照射而固化并调整密合力的性质。
粘合剂层的厚度没有特别限定,通常为5μm以上300μm以下,也可以为10μm以上250μm以下,也可以为15μm以上100μm以下,也可以为20μm以上50μm以下。
贴合层为粘接剂层的情况下,粘接剂层可以使用粘接剂组合物形成。作为用于形成粘接剂层的粘接剂组合物,为除压敏型粘接剂(粘合剂)以外的粘接剂,例如可举出水系粘接剂、活性能量射线固化型粘接剂。
作为水系粘接剂,例如,可举出使聚乙烯醇树脂在水中溶解或分散而得到的粘接剂。关于使用水系粘接剂时的干燥方法,没有特别限定,例如,可以采用使用热风干燥机、红外线干燥机进行干燥的方法。
作为活性能量射线固化型粘接剂,例如,可举出包含通过紫外线、可见光、电子束、X射线这样的活性能量射线的照射而固化的固化性化合物的无溶剂型的活性能量射线固化型粘接剂。通过使用无溶剂型的活性能量射线固化型粘接剂,能够提高层间的密合性。
贴合层为粘接剂层时的厚度优选为0.1μm以上,也可以为0.5μm以上,另外,优选为10μm以下,也可以为5μm以下。
(显示装置、光学透镜)
上述的光学层叠体可以应用于显示装置、光学透镜。作为显示装置,可举出有机EL显示装置。有机EL显示装置可以具有将上述的光学层叠体介由粘合剂层而层叠于图像显示元件的结构。有机EL显示装置中,以从观看侧起按光吸收各向异性层、椭圆偏光板、及图像显示元件的顺序配置的方式组装有光学层叠体。作为粘合剂层,可举出作为贴合层而说明过的粘合剂层。显示装置也可以为显示部弯曲了的形状的显示装置、显示部能弯曲的柔性显示装置。光学层叠体即使在通过热加工成型而加工成弯曲的形状的情况下,也不易产生褶皱,在观看时不易观察到不均。因此,可以将按弯曲形状等进行了热加工成型的光学层叠体合适地用于显示部为弯曲形状的显示装置、光学透镜等。
实施例
以下,示出实施例及比较例来更具体地说明本发明,但本发明不受这些例子的限定。只要没有特别记载,则实施例及比较例中的“%”及“份”是质量%及质量份。
[基材层(第1基材层)的准备]
<基材层(1):丙烯酸系膜(1)>
利用超级混合器将(甲基)丙烯酸系树脂70%及橡胶粒子30%混合,利用双螺杆挤出机进行熔融混炼,制成粒料。作为(甲基)丙烯酸系树脂,使用甲基丙烯酸甲酯/丙烯酸甲酯=96%/4%(质量比)的共聚物。作为橡胶粒子,使用下述橡胶粒子,该橡胶粒子为三层结构的弹性体粒子,其中,最内层由使用少量的甲基丙烯酸烯丙酯与甲基丙烯酸甲酯进行聚合而得到的硬质的聚合物形成,中间层由以丙烯酸丁酯作为主成分、进一步使用苯乙烯及少量的甲基丙烯酸烯丙酯进行聚合而得到的软质的弹性体形成,最外层由使用少量的丙烯酸乙酯与甲基丙烯酸甲酯进行聚合而得到的硬质的聚合物形成,到作为中间层的弹性体为止的平均粒径为240nm。该橡胶粒子中,最内层与中间层的合计质量为粒子整体的70%。
将上述粒料投入直径为65mm的单螺杆挤出机中,经由设定温度为275℃的T型模挤出,将所挤出的树脂用金属辊和橡胶制弹性辊夹持,得到丙烯酸系膜的基材层(1)。基材层(1)的厚度为80μm。
<基材层(2):丙烯酸系膜(2)>
将在制作粒料时使用的(甲基)丙烯酸系树脂及橡胶粒子的混合比例设定为(甲基)丙烯酸系树脂50%及橡胶粒子50%,除此以外,与制作基材层(1)的步骤同样地操作,得到基材层(2)。基材层(2)的厚度为80μm。
<基材层(3):丙烯酸系膜(3)>
将在制作粒料时使用的(甲基)丙烯酸系树脂及橡胶粒子的混合比例设定为(甲基)丙烯酸系树脂85%及橡胶粒子15%,除此以外,与制作基材层(1)的步骤同样地操作,得到基材层(3)。基材层(3)的厚度为80μm。
(基材层(4):丙烯酸系膜(4))
利用双螺杆挤出机对100%的(甲基)丙烯酸系树脂进行熔融混炼,制成粒料。作为(甲基)丙烯酸系树脂,使用甲基丙烯酸甲酯/丙烯酸甲酯=96%/4%(质量比)的共聚物。
将上述粒料投入直径为65mm的单螺杆挤出机中,经由设定温度为275℃的T型模挤出,将所挤出的树脂用金属辊和橡胶制弹性辊夹持,得到丙烯酸系膜。该丙烯酸系膜的厚度为120μm。
对于上述丙烯酸系膜,利用依次双轴拉伸机实施1.8倍的纵向拉伸(加热温度为140℃),接着实施2.4倍的横向拉伸(加热温度为140℃),得到厚度为40μm的作为双轴拉伸丙烯酸系膜的基材层(4)。
<基材层(5):COP膜>
作为基材层(5),准备厚度为23μm的环烯烃(COP)膜(日本Zeon公司制,ZF-14-50)。
<带有垂直取向层的基材层:PET膜/垂直取向层(1)>
(基材层(6)的准备)
作为基材层(6),准备聚对苯二甲酸乙二醇酯(PET)膜(三菱树脂株式会社制,Diafoil T140E 25)。
(取向层形成用组合物(1)的制备)
向取向性聚合物(SUNEVER(注册商标)SE-610,日产化学工业株式会社制)0.3份(固态成分浓度为1.0%(由交付规格书中记载的浓度换算得到的值))中加入丙二醇单甲基醚27.7份,得到取向层形成用组合物(1)。
(带有垂直取向层(1)的基材层的制作)
将基材层(6)切成方块,使用电晕处理装置(AGF-B10,春日电机株式会社制),在输出功率为0.3kW、处理速度为3m/分钟的条件下实施1次电晕处理。在实施了电晕处理的基材层(6)的表面上,使用棒涂机涂布取向层形成用组合物(1)后,利用已将温度设定为120℃的干燥烘箱进行1分钟干燥,形成垂直取向层(1),得到带有垂直取向层(1)的基材层。带有垂直取向层(1)的基材层具有基材层(6)(PET膜)/垂直取向层(1)的层结构。
<基材层(7):PC膜>
作为基材层(7),准备聚碳酸酯(PC)膜(帝人公司制,PURE-ACE)。
<带有垂直取向层(2)的基材层:COP膜/垂直取向层(2)>
(取向层形成用组合物(2)的制备)
使硅烷偶联剂“KBE-9103”(信越化学工业株式会社制)溶解于将乙醇与水按9:1(重量比)的比例混合而成的混合溶剂中,得到固态成分为1%的垂直取向膜形成用组合物(2)。
(带有垂直取向层(2)的基材层的制作)
准备上文中说明的基材层(5)(COP膜),对其实施电晕处理。在实施了电晕处理的基材层(5)的表面上,使用棒涂机涂布取向层形成用组合物(2),利用已将温度设定为120℃的干燥烘箱进行1分钟干燥,形成垂直取向层(2),得到带有垂直取向层(2)的基材层。利用椭圆偏振计对垂直取向层(2)的厚度进行测定,结果为100nm。带有垂直取向层(2)的基材层具有基材层(5)(COP膜)/垂直取向层(2)的层结构。
〔实施例1〕
(第1组合物(1)的制备)
将下文所示的成分混合,于80℃的温度搅拌1小时,由此得到作为光吸收各向异性层形成用组合物的第1组合物(1)。
聚合性液晶化合物(L1):75份
聚合性液晶化合物(L2):25份
二向色性色素(D1):0.9份
聚合引发剂(Irgacure 369,BASF公司制):6份
流平剂(MEGAFACE F-556,DIC(株)制):0.25份
溶剂(邻二甲苯):670份
聚合性液晶化合物(L1)及(L2)具有下文所示的结构,按照lub等,Recl.Trav.Chim.Pays-Bas,115,321-328(1996)中记载的方法来合成。
·聚合性液晶化合物(L1):
[化学式6]
·聚合性液晶化合物(L2):
[化学式7]
二向色性色素(D1)具有下文所示的结构。使用了日本特开2013-101328号公报的实施例中记载的偶氮系色素。在氯仿溶液中测定的二向色性色素(1)的极大吸收波长为600nm。
·二向色性色素(D1):
[化学式8]
(光学层叠体(1)的制作)
将上文中准备的基材层(1)以四边形切出,使用电晕处理装置(AGF-B10,春日电机株式会社制),在输出功率为0.3kW、处理速度为3m/分钟的条件下实施1次电晕处理。在所切出的基材层(1)的电晕处理面上,使用棒涂机涂布第1组合物(1)后,利用已将温度设定为100℃的干燥烘箱进行1分钟干燥。接着,使用高压汞灯(Unicure VB-15201BY-A,USHIOINC.制),照射紫外线(氮气氛下,波长:365nm,波长365nm处的累积光量:500mJ/cm2),由此形成聚合性液晶化合物及二向色性色素相对于涂膜平面而言进行了垂直取向的光吸收各向异性层(1)。由此,得到由基材层(1)/光吸收各向异性层(1)形成的光学层叠体(1)。利用椭圆偏振计对所得到的光吸收各向异性层(1)的厚度进行测定,结果为1.0μm。
〔实施例2〕
(第1组合物(2)的制备)
将下文所示的成分混合,于80℃的温度搅拌1小时,由此得到作为光吸收各向异性层形成用组合物的第1组合物(2)。
聚合性液晶化合物(L1):75份
聚合性液晶化合物(L2):25份
二向色性色素(D1):3.0份
聚合引发剂(Irgacure 369,BASF公司制):6份
流平剂(MEGAFACE F-556,DIC(株)制):0.25份
溶剂(邻二甲苯):670份
(光学层叠体(2)的制作)
将上文中准备的基材层(1)以四边形切出,使用电晕处理装置(AGF-B10,春日电机株式会社制),在输出功率为0.3kW、处理速度为3m/分钟的条件下实施1次电晕处理。在所切出的基材层(1)的电晕处理面上,使用棒涂机涂布第1组合物(2)后,利用已将温度设定为100℃的干燥烘箱进行1分钟干燥。接着,使用高压汞灯(Unicure VB-15201BY-A,USHIOINC.制),照射紫外线(氮气氛下,波长:365nm,波长365nm处的累积光量:500mJ/cm2),由此形成聚合性液晶化合物及二向色性色素相对于涂膜平面而言进行了垂直取向的光吸收各向异性层(2)。由此,得到由基材层(1)/光吸收各向异性层(2)形成的光学层叠体(2)。利用椭圆偏振计对所得到的光吸收各向异性层(2)的厚度进行测定,结果为0.9μm。
〔实施例3〕
(光学层叠体(3)的制作)
使用基材层(2)来代替基材层(1),除此以外,与实施例1同样地操作,得到光学层叠体(3)。光学层叠体(3)具有基材层(2)/光吸收各向异性层(3)的层结构。
〔实施例4〕
(光学层叠体(4)的制作)
使用基材层(2)来代替基材层(1),除此以外,与实施例2同样地操作,得到光学层叠体(4)。光学层叠体(4)具有基材层(2)/光吸收各向异性层(4)的层结构。
〔实施例5〕
使用基材层(3)来代替基材层(1),除此以外,与实施例1同样地操作,得到光学层叠体(5)。光学层叠体(5)具有基材层(3)/光吸收各向异性层(5)的层结构。
〔实施例6〕
使用基材层(3)来代替基材层(1),除此以外,与实施例2同样地操作,得到光学层叠体(6)。光学层叠体(6)具有基材层(3)/光吸收各向异性层(6)的层结构。
〔实施例7〕
(光学层叠体(7)的制作)
使用基材层(4)来代替基材层(1),除此以外,与实施例1同样地操作,得到光学层叠体(7)。光学层叠体(7)具有基材层(4)/光吸收各向异性层(7)的层结构。
〔实施例8〕
(第1组合物(3)的制备)
使用环戊酮670份作为溶剂,除此以外,与第1组合物(1)的制备同样地操作,得到作为光吸收各向异性层形成用组合物的第1组合物(3)。
(光学层叠体(8)的制作)
使用基材层(5)来代替基材层(1),使用第1组合物(3)来代替第1组合物(1),除此以外,与实施例1同样地操作,得到具有基材层(5)/光吸收各向异性层(8)的层结构的光学层叠体(8)。利用椭圆偏振计对所得到的光吸收各向异性层(8)的厚度进行测定,结果为1.0μm。
〔比较例1〕
(光学层叠体(c1)的制作)
使用带有垂直取向层(1)的基材层来代替基材层(1),在带有垂直取向层(1)的基材层的垂直取向层(1)侧涂布第1组合物(1),除此以外,与实施例1同样地操作,得到光学层叠体(c1)。光学层叠体(c1)具有基材层(6)/垂直取向层(1)/光吸收各向异性层(c1)的层结构。
〔比较例2〕
(光学层叠体(c2)的制作)
使用基材层(7)来代替基材层(1),除此以外,与实施例1同样地操作,得到光学层叠体(c2)。光学层叠体(c2)具有基材层(7)/光吸收各向异性层(c2)的层结构。
〔比较例3〕
(光学层叠体(c3)的制作)
使用带有垂直取向层(2)的基材层来代替基材层(1),在带有垂直取向层(2)的基材层的垂直取向层(2)侧涂布第1组合物(1),除此以外,与实施例1同样地操作,得到光学层叠体(c3)。光学层叠体(c3)具有基材层(5)/垂直取向层(2)/光吸收各向异性层(c3)的层结构。
[光吸收各向异性层的吸光度的测定]
将光学层叠体以光吸收各向异性层侧成为贴合面的方式介由粘合剂(LINTEC公司制,压敏式粘合剂,厚度为25μm)贴合于玻璃(尺寸:4cm×4cm,厚度:0.7mm)。光学层叠体在不将基材层剥离除去的情况下作为测定样品。将结果示于表1及表2。
将测定样品设置于紫外可见分光光度计(株式会社岛津制作所制“UV-2450”),以波长800nm的吸光度成为零的方式校正后,对吸光度Ax及Ay进行测定。另外,将测定样品以倾斜的方式设置于紫外可见分光光度计后,以波长800nm的吸光度成为零的方式校正之后,对吸光度Ax(z=60°)及Ay(z=60°)进行测定。吸光度Ax及Ay是光吸收各向异性层的波长380nm以上780nm以下的范围内的吸收极大波长的吸光度、并且分别是沿x轴方向及y轴方向振动的直线偏振光的吸光度,吸光度Ax(z=60°及Ay(z=60°))是上述吸收极大波长的吸光度、并且分别是使光吸收各向异性层以y轴及x轴为旋转轴旋转了60°时的沿x轴方向及y轴方向振动的直线偏振光的吸光度。x轴为光吸收各向异性层的面内的任意方向,y轴为在光吸收各向异性层的面内与x轴正交的方向。需要说明的是,任意基材层在上述吸收极大波长处均不具有显著的吸收。将结果示于表1及表2。
光吸收各向异性层的上述式(1)的关系(Az>(Ax+Ay)/2)的满足性通过以下的步骤来判断。
在以包含y轴的方式使测定样品旋转了30°及60°的状态下,使与测定Ax时相同的直线偏振光入射,由此测定Ax(z=30°)及Ax(z=60°),同样地,在以包含x轴的方式使测定样品旋转了30°及60°的状态下,使与测定Ay时相同的直线偏振光入射,由此测定Ay(z=30°)及Ay(z=60°)。
在x-y平面没有吸收各向异性的情况下,即Ax及Ay相等的情况下,Ax(z=30°)=Ay(z=30°)并且Ax(z=60°)=Ay(z=60°),因此,将Ax(z=30°)及Ay(z=30°)记为A(z=30°),将Ax(z=60°)及Ay(z=60°)记为A(z=60°),将Ax(z=90°)及Ay(z=90°)记为A(z=90°)。
在处于A(z=30°)<A(z=60°)的关系的情况下,满足A(z=30°)<A(z=60°)<A(z=90°)=Az的关系,因此,若A(z=30°)>(Ax+Ay)/2或A(z=60°)>(Ax+Ay)/2,则判断满足上述式(1)的关系。将结果示于表1及表2。
[基材层的光弹性系数的测定]
将基材层切出作为试验片。在测定光的路径上配置拉伸夹具,一边对试验片施加拉伸应力,一边使用KOBRA-WPR对试验片的双折射进行测定。使试验片的宽度为10mm,将试验片的0~0.5%的应变范围内的双折射的绝对值(|Δn|)作为y轴,将拉伸应力(σR)作为x轴进行标绘,通过最小二乘拟合求出线形区域的直线的斜率,计算光弹性系数。将结果示于表1及表2。
[基材层的玻璃化转变温度的测定]
通过差示扫描量热测定(TA Instruments公司制Q2000),求出基材层的玻璃化转变温度。首先,在氮流通下进行测定。接着,以20℃/min从25℃升温至180℃,接下来,以5℃/min从180℃降温至-50℃。最后,以20℃/min从-50℃升温至180℃。将第2次的升温中的、中点玻璃化转变温度作为基材层的玻璃化转变温度。将结果示于表1及表2。比较例1的基材层(PET膜)于玻璃化转变温度+5℃的温度时无法成型,因此在括号中示出成型温度。
[液晶性化合物的相转变温度的测定]
在玻璃基板上,利用旋涂法涂布聚乙烯醇(聚乙烯醇1000完全皂化型,和光纯药工业株式会社制)的2质量%水溶液,干燥后,形成厚度为100nm的膜。接着,对所得到的膜的表面实施摩擦处理,由此形成评价用取向层。摩擦处理中,使用半自动摩擦装置(商品名:LQ-008型,常阳工学株式会社制),利用布(商品名:YA-20-RW,吉川化工株式会社制)在压入量为0.15mm、转速为500rpm、16.7mm/s的条件下进行。在如上所述地制作的评价用取向层上,利用旋涂法涂布第1组合物,在温度为120℃的加热板上进行1分钟加热干燥后,迅速冷却至室温,在评价用取向层上形成第1组合物的干燥被膜。将该干燥被膜在加热板上再次升温至温度120℃后,在降温时,利用偏光显微镜进行观察,由此对相转变温度进行测定。将结果示于表1及表2。
[面内平均折射率的测定]
基材层及光吸收各向异性层的波长589nm处的面内平均折射率使用折射率计(株式会社Atago制“多波长阿贝折射计DR-M4”)来测定。
[热成型加工性的评价]
准备外形40mmφ、曲率半径36.3mm的球面平凸透镜和球面平凹透镜,预先将它们在加热至规定温度的加热板上进行加热。在经加热的球面平凸透镜上放置光学层叠体,在其上覆盖经加热的球面凹透镜而进行夹持后,以在其上放置有重物的状态在加热板上加热5分钟,进行热成型加工。将加热温度设定为基材层的玻璃化转变温度Tg+5℃、及100℃,于各温度进行热成型加工。对于无法于玻璃化转变温度附近成型的基材层,作为能变形的温度而升高至150℃,进行热成型加工。
热成型加工后,将被球面平凸透镜及球面平凹透镜夹持的光学层叠体取出,按以下所示的评价基准进行评价。所取出的光学层叠体的褶皱(外观)、以及被透镜形状的球面部分夹持的部分的外观是在荧光灯下确认的,光学层叠体的不均是在放置有直线偏光板的背光灯上从斜向观看光学层叠体而确认的。将结果示于表1及表2。
(热成型加工性的评价基准)
A:确认不到褶皱,能够如透镜的形状那样成型,也观看不到不均。
B:部分地确认到褶皱,但在被透镜夹持时容易追随透镜形状而变形,大致能够如透镜形状那样成型,也观看不到不均。
C:在端部确认到褶皱,但在被透镜夹持时容易追随透镜形状而变形,也观看不到不均。
D:在被透镜夹持时不追随透镜形状而变形,在被透镜形状的球面部分夹持的部分确认到很多褶皱,也观看到不均。
[操作性的评价]
在刚刚热成型加工之后,按以下所示的基准评价了将被球面平凸透镜及球面平凹透镜夹持的光学层叠体取出时的操作性。将结果示于表1及表2。
(操作性的评价基准)
A:能无问题地取出。
B:略微软化,有向透镜的粘贴。
C:已软化,在从透镜取出时破裂。
[色调的变化的评价]
将加热温度设定为基材层的玻璃化转变温度Tg+5℃,通过在热成型加工性的评价中说明过的步骤进行热成型加工。热成型加工后,将被球面平凸透镜及球面平凹透镜夹持的光学层叠体取出,将在放置有直线偏光板的背光灯上针对光学层叠体从斜向观察到的色调与热成型加工前的光学层叠体的色调进行比较,按以下所示的评价基准进行评价。将结果示于表1及表2。
(色调的变化的评价基准)
A:在热成型加工的前后感觉不到色调的变化。
B:在热成型加工的前后略微感到色调的变化。
C:在热成型加工的前后感到色调的变化,觉得热成型加工后的光学层叠体的表面发白。
[表1
[表2]
/>

Claims (6)

1.光学层叠体,其为具有基材层和光吸收各向异性层的光学层叠体,
所述基材层与所述光吸收各向异性层直接相接,
所述基材层的光弹性系数的绝对值为30×10-12Pa-1以下,
所述光吸收各向异性层包含1种以上的二向色性色素、和液晶性化合物及/或其聚合物,并且满足下述式(1)~(3)的关系,
Az>(Ax+Ay)/2 (1)
Ax(z=60°)/Ax≥5 (2)
Ay(z=60°)/Ay≥5 (3)
式(1)~(3)中,
Ax、Ay、及Az是所述光吸收各向异性层的波长380nm以上780nm以下的范围内的吸收极大波长的吸光度,并且分别表示沿x轴方向、y轴方向、及z轴方向振动的直线偏振光的吸光度,
Ax(z=60°)是所述吸收极大波长处的吸光度,并且表示使所述光吸收各向异性层以所述y轴为旋转轴旋转了60°时的沿所述x轴方向振动的直线偏振光的吸光度,
Ay(z=60°)是所述吸收极大波长处的吸光度,并且表示使所述光吸收各向异性层以所述x轴为旋转轴旋转了60°时的沿所述y轴方向振动的直线偏振光的吸光度,
其中,所述x轴为所述光吸收各向异性层的面内的任意一个方向,
所述y轴为在所述光吸收各向异性层的面内与所述x轴正交的方向,
所述z轴为与所述x轴及所述y轴正交的方向。
2.如权利要求1所述的光学层叠体,其中,所述液晶性化合物为形成近晶相的液晶性化合物。
3.如权利要求1或2所述的光学层叠体,其中,所述基材层的玻璃化转变温度为140℃以下。
4.如权利要求1或2所述的光学层叠体,其中,所述基材层的光弹性系数的绝对值为20×10-12Pa-1以下。
5.如权利要求1或2所述的光学层叠体,其中,所述基材层为膜基材,
构成所述膜基材的树脂为选自由聚酰亚胺系树脂、环状烯烃系树脂、及聚(甲基)丙烯酸系树脂组成的组中的1种以上。
6.如权利要求1或2所述的光学层叠体,其还具有椭圆偏光板。
CN202311478560.3A 2022-11-16 2023-11-08 光学层叠体 Pending CN118050844A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022-183138 2022-11-16
JP2023-113873 2023-07-11
JP2023113873A JP2024072764A (ja) 2022-11-16 2023-07-11 光学積層体

Publications (1)

Publication Number Publication Date
CN118050844A true CN118050844A (zh) 2024-05-17

Family

ID=91052713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311478560.3A Pending CN118050844A (zh) 2022-11-16 2023-11-08 光学层叠体

Country Status (1)

Country Link
CN (1) CN118050844A (zh)

Similar Documents

Publication Publication Date Title
JP5312482B2 (ja) 液晶配向膜組成物、これを用いた液晶配向膜の製造方法、および液晶配向膜を含む光学フィルム
JP2021157182A (ja) 積層体
US8323538B2 (en) Method for producing polarizer
CN106371163B (zh) 液晶固化膜、包含液晶固化膜的光学膜及显示装置
KR100666895B1 (ko) 액정성 디〔메트〕아크릴레이트 화합물, 위상차 필름, 광학필름, 편광판, 액정 패널 및 액정 표시 장치
TWI744387B (zh) 液晶組成物、光學膜、偏光板及圖像顯示裝置
KR101676894B1 (ko) 액정 필름
CN106371164B (zh) 层叠体、包含层叠体的圆偏振板及具备层叠体的显示装置
JP2011150314A (ja) 複合位相差板及びその製造方法
CN110869827A (zh) 椭圆偏光板
WO2021111861A1 (ja) 積層体、光学装置および表示装置
WO2021187379A1 (ja) 液晶表示装置
CN112368143B (zh) 层叠体
WO2008105218A1 (ja) 垂直配向型液晶表示装置用楕円偏光板およびそれを用いた垂直配向型液晶表示装置
CN110431457A (zh) 光学薄膜、光学薄膜层叠体、偏振片及图像显示装置
JP2009276761A (ja) 複合位相差板およびその製造方法
CN113272690A (zh) 偏振片、液晶显示装置、有机电致发光装置
CN112469557A (zh) 层叠体
JP2010072439A (ja) 液晶層用光硬化型接着剤組成物および液晶フィルム
CN112513699B (zh) 光学膜
JP2024031796A (ja) 積層体及び有機el表示装置
JP2006039164A (ja) 光学フィルムの製造方法、光学フィルム、偏光板、液晶パネル及び液晶表示装置
CN118050844A (zh) 光学层叠体
JP2006078617A (ja) 光学フィルムの製造方法、光学フィルム、偏光板、液晶パネル及び液晶表示装置
WO2020022009A1 (ja) 積層体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication