CN117990043B - 一种船舶轴系支撑结构的监测方法及系统 - Google Patents

一种船舶轴系支撑结构的监测方法及系统 Download PDF

Info

Publication number
CN117990043B
CN117990043B CN202410404862.4A CN202410404862A CN117990043B CN 117990043 B CN117990043 B CN 117990043B CN 202410404862 A CN202410404862 A CN 202410404862A CN 117990043 B CN117990043 B CN 117990043B
Authority
CN
China
Prior art keywords
point
deformation
value
feedback
feedback point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410404862.4A
Other languages
English (en)
Other versions
CN117990043A (zh
Inventor
安连彤
陈娟
孙成琪
许媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Ocean University
Original Assignee
Guangdong Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Ocean University filed Critical Guangdong Ocean University
Priority to CN202410404862.4A priority Critical patent/CN117990043B/zh
Publication of CN117990043A publication Critical patent/CN117990043A/zh
Application granted granted Critical
Publication of CN117990043B publication Critical patent/CN117990043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明属于数据采集、船舶轴系技术领域,提出了一种船舶轴系支撑结构的监测方法及系统,具体为:在船舶轴系中识别各个气囊隔振器,以气囊隔振器作为隔振单元,分别在隔振单元上布置压力传感器,再利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离,并根据均衡距离进行筏架形变分析获得形变阶值,最后根据形变阶值向客户端进行轴系形变预警。量化了基于柔性筏架的船舶轴系支撑结构在外界刺激中发生的形变风险,为识别和防范柔性支撑形变引起的轴承变位等轴系故障提供数理支撑,提高支撑的轴系实际应用中的稳定性,尤其有利于船舶推进系统长期运行下的船舶轴系状态稳定。

Description

一种船舶轴系支撑结构的监测方法及系统
技术领域
本发明属于数据采集、船舶轴系技术领域,具体涉及一种船舶轴系支撑结构的监测方法及系统。
背景技术
船舶轴系由推力轴、中间轴、尾轴、螺旋桨轴、联轴器、推力轴承、中间轴承以及尾管轴承组成,作用于将电机产生的动力转变为船舶航行的推力。当轴系发生故障时则导致摩擦和振动增加,进而降低轴系效率并影响整个船舶推进系统的效率和安全性。
传统船舶设计通常将轴系和电机安装在刚性支撑结构上,然而随着船舶减振技术的发展传统的刚性支撑已经无法满足要求,轴系产生的振动能量会通过刚性支撑结构传递到船体,引发多通道振动并产生声辐射,从而影响船舶的减振和隐蔽性能。因此当代船舶倾向采用柔性结构作为支撑,将主机及轴系安装在柔性筏架上并在筏架上配置多个气囊隔振器。
传统的轴系故障监测方法通过在不同轴承上安装各种传感器,监测压力、温度、转速等参数以判断轴系是否发生故障。然而这种传统监测方法只考虑到轴系本身受到的外界应激影响,忽略了内部结构中柔性支撑对轴系的直接影响,进而在进行动力学分析时会引起分析误差,传统监测方法通常为在实验室模拟试验中获得气囊隔振器的固定气压参数,而并不会根据海上环境和工况变化做出实时的调整,也不会监测柔性支撑发生的形变,即对柔性结构的适应性分析程度并不完整。柔性支撑在受到水流冲击、海水腐蚀、温度变化、工况变化等外界影响时会发生的形变,会直接影响到其支撑的轴系的稳定性,引发轴承发生变位,为船舶推进系统的效率和安全性带来风险。因此在轴系健康监测中须全面考虑柔性支撑结构对轴系的影响,以实现更全面和准确的故障诊断。
发明内容
本发明的目的在于提出一种船舶轴系支撑结构的监测方法及系统,以解决现有技术中所存在的一个或多个技术问题,至少提供一种有益的选择或创造条件。
为了实现上述目的,根据本发明的一方面,提供一种船舶轴系支撑结构的监测方法,所述方法包括以下步骤:
S100,在船舶轴系中识别各个气囊隔振器,以气囊隔振器作为隔振单元,分别在隔振单元上布置压力传感器;
S200,利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离;
S300,根据均衡距离进行筏架形变分析获得形变阶值;
S400,根据形变阶值向客户端进行轴系形变预警。
进一步地,在步骤S100中,在船舶轴系中识别各个气囊隔振器,以气囊隔振器作为隔振单元,分别在隔振单元上布置压力传感器的方法是:船舶的轴系安装在柔性筏架上,柔性筏架的肋板或者下板安装有若干个气囊隔振器,以安装在下板的气囊隔振器作为隔振单元,分别在各个隔振单元上布置压力传感器;其中气囊隔振器包括鼓型橡胶气囊隔振器和长圆形囊式气囊隔振器中的任意一种;在每个气囊隔振器的位置均安装一个压力传感器;压力传感器为荷重传感器、应力传感器或压电式传感器中的任意一种。
进一步地,在步骤S200中,利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离的方法是:各个隔振单元通过压力传感器实时测量获得测量值;若一个时刻较其前一个时刻和其后一个时刻的测量值都大,则定义该时刻发生压力攀升;设定一个时间段作为反馈间隔RT,RT∈[1,3]分钟,每隔一个反馈间隔定义一个时刻为反馈点,定义一个反馈点与其逆时间方向的首个反馈点之间的时间区间为该反馈点的反馈区间;获取反馈区间内各个发生压力攀升的时刻对应的测量值,并计算所得各个测量值的平均值作为攀升期望,获取反馈区间内各个测量值的平均值为均衡期望;将攀升期望与均衡期望的比值记为攀升比例Ovt,将同一反馈点下各个隔振单元的攀升比例的平均值记为攀升均衡度e.Ovt,则该反馈点下任一隔振单元的均衡距离Bds为:Bds=ln(1+Ovt/e.Ovt)。
进一步地,在步骤S300中,根据均衡距离进行筏架形变分析获得形变阶值的方法是:设定一个时间段TgCB,TgCB∈[40,80]分钟;对于一个隔振单元,定义其在最近TgCB时段中均衡距离的上四分位值为第一距离,当一个反馈点下的均衡距离大于等于第一距离则定义该反馈点发生越界事件;
将同一反馈点下各个隔振单元的均衡距离的最大值记为第二距离;同一反馈点下发生越界事件的隔振单元的数量为该反馈点的越界阶值;若一个反馈点较其前一个和后一个反馈点的越界阶值都大,则定义该反馈点为一阶越界点;以任意一阶越界点作为当前越界点,从当前越界点逆时间方向遍历各个反馈点,直到各个隔振单元均发生越界事件,则定义最后遍历的反馈点为当前越界点的一阶回归点;当前越界点到其对应一阶回归点的各个反馈点构成集合并记为回归集;
以任意隔振单元作为当前隔振单元;根据均衡距离和第二距离计算一阶越界点的骤变比例Ptr:;分别以sc.Olst和sc.Elst代表当前隔振单元在当前越界点的均衡距离和第二距离,分别以e.Olst和e.Elst代表当前隔振单元对应回归集中各个均衡距离和各个第二距离的平均值;计算当前隔振单元的形变阶值SV_Rsk:
其中i1为累加变量,NFR代表回归集的数量,LOPi1为第i1个回归集中反馈点的数量,Ptri1代表第i1个回归集的骤变比例;Xta代表当前隔振单元所有均衡距离的标准差,e为自然常数,Tmp为当前反馈点的均衡距离;e.Olsti1代表第i1个回归集中各个均衡距离的平均值。
由于形变阶值是通过对各个均衡距离进行分类筛选后计算获得,有效地将隔振单元下的均衡距离量化形成数据,然而在连续的均衡距离变化较小的情况下,利用上述方法所算出的形变阶值可能会出现量化程度不足的现象,这是因为这个方法对差异较小的数据具有较弱的敏感性,无法较为准确地分类筛选这类数据,导致处理所得的形变阶值出现欠拟合问题,而目前尚未存在可行的技术来弥补这个方法带来的量化不足现象,为消除均衡距离变化较小导致分类筛选不合理对形变阶值计算出现欠拟合的影响,本发明提出了一个更优选的方案:
进一步地,其特征在于,在步骤S300中,根据均衡距离进行筏架形变分析获得形变阶值的方法是:设定一个时间段TgCA,TgCA∈[10,30]分钟,以任意隔振单元作为当前隔振单元;获取当前隔振单元TgCA时间段内不同反馈点下均衡距离的值形成一个序列记作形变分析序列;将形变分析序列内极大值和极小值所对应的反馈点分别记作险变反馈点和稳变反馈点;将险变反馈点和稳变反馈点定义为第一条件时刻;计算获得形变分析序列内小于上四分位的各个均衡距离的平均值记作稳形距离;获取任一反馈点下均衡距离与稳形距离的差值并取绝对值,然后将其与稳形距离相除得到比值,将该比值记作反馈点的形变阈比;
若以当前反馈点逆时间搜索获得的首个第一条件时刻为稳变反馈点,则将其作为压变起点,否则将当前反馈点作为压变起点;以压变起点逆时间顺序遍历各个反馈点划分压变区间:将压变起点与遍历反馈点的均衡距离作差并取绝对值,再与遍历反馈点下的均衡距离相除,所得值为遍历反馈点的子形变阈比,当子形变阈比不小于压变起点的形变阈比,或者遍历反馈点为险变反馈点,则停止遍历并将遍历反馈点作为压变终点,将压变起点与压变终点之间的各个反馈点划分为一个压变区间;若压变终点不为险变反馈点,则定义其逆时间方向的首个反馈点为新的压变起点,否则定义其逆时间方向的首个稳变反馈点为新的压变起点,继续在形变分析序列内划分压变区间;
获取任一压变区间内各个均衡距离,将其中的中位值与稳形距离的差值作为该压变区间的压衡差距;若压变区间的压衡差距小于零,则将该压变区间内各个均衡距离的最大值与稳形距离的均方根值记为第一形变参,否则将该压变区间内各个均衡距离的最小值与稳形距离的均方根值记为第一形变参,将第一形变参与压变区间极差的比值记作变距调整系数;
对当前隔振单元的任一压变区间,分别获取各个隔振单元在该压变区间的极差记为压变负载,将各个隔振单元的压变负载的平均值和最大值记为负载阈值和负载基值,若当前隔振单元在该压变区间的压变负载大于负载阈值,则定义该压变区间为增压区间,当前隔振单元在增压区间的增压负载为的负载基值与压变负载的差值;
通过增压负载和变距调整系数计算隔振单元的形变阶值SV_Rsk:
其中j1为增压区间的序号,j2为压变区间的序号,SrqTLj1和SrqTLj2分别为第j1个增压区间和第j2个压变区间的变距调整系数,TvdnQ为形变分析序列内不属于压变区间的各个反馈点下的均衡距离的平均值,LBDj1为除第j1个增压区间的增压负载,exp()为以自然数e为底数的指数函数;sqrt()为平方根函数,通过平方根函数返回调用值的平方根值;mean{}为平均值函数,通过平均值函数返回调用数据集的平均值;exp()为自然常数e为底数的指数函数;
有益效果:由于形变阶值是通过在柔性筏架配置的气囊隔振器上安装的压力传感数据进行实时分析,高效量化了基于柔性筏架的船舶轴系支撑结构在外界刺激中发生的形变风险,为识别和防范柔性支撑形变引起的轴承变位等轴系故障提供可靠数理支撑,为降低单独考虑轴系本身受外界影响引起故障的诊断误差风险提供分析依据。
进一步地,在步骤S400中根据形变阶值向客户端进行轴系形变预警的方法是:把所有隔振单元在同一个反馈点下获得的形变阶值构成元组并记为该反馈点的形变风险组;任一形变风险组内各个元素的平均值和极差分别记为风险组水平和风险组振幅;预设第一时间区间TSZ,TSZ∈[1,2]小时;预设第二时间区间TSZ_S为TSZ_S=1/4×TSZ;
定义任一反馈点前TSZ时段中各风险组水平的平均值为风险组基值;若一个反馈点的风险组水平大于风险组基值,并且该反馈点较其前一个反馈点的风险组水平大,则定义该反馈点满足第一异常条件;若一个反馈点较其前一个反馈点的风险组振幅大,则定义该反馈点发生振幅增溢;定义任一反馈点前TSZ_S时段内各反馈点中,发生振幅增溢的反馈点的比例为增益比例;
如果当前反馈点的增益比例较其前TSZ_S时段内所有增益比例都大,则向管理员的客户端发送轴系形变预警;将当前反馈点的形变风险组作为实时组,将当前TSZ时段内各个满足第一异常条件的反馈点对应形变风险组作为观测组,将实时组和观测组发送到管理员客户端。
进一步地,服务器通过搜集的实时组和观测组进行机器学习模型建立,其中机器学习模型为梯度提升树模型或者支持向量机模型;通过构建模型可进一步提升预警精确性。
优选地,其中,本发明中所有未定义的变量,若未有明确定义,均可为人工设置的阈值。
本发明还提供了一种船舶轴系支撑结构的监测系统,所述一种船舶轴系支撑结构的监测系统包括:处理器、存储器及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述一种船舶轴系支撑结构的监测方法中的步骤,所述一种船舶轴系支撑结构的监测系统可以运行于桌上型计算机、笔记本电脑、掌上电脑及云端数据中心等计算设备中,可运行的系统可包括,但不仅限于,处理器、存储器、服务器集群,所述处理器执行所述计算机程序运行在以下系统的单元中:
传感器预设单元,用于在船舶轴系中识别各个气囊隔振器,以气囊隔振器作为隔振单元,分别在隔振单元上布置压力传感器;
数据测量单元,用于利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离;
形变分析单元,用于根据均衡距离进行筏架形变分析获得形变阶值;
预警触发单元,用于根据形变阶值向客户端进行轴系形变预警。
本发明的有益效果为:本发明提供一种船舶轴系支撑结构的监测方法及系统,通过在柔性筏架配置的气囊隔振器上安装的压力传感数据进行实时分析,高效量化了基于柔性筏架的船舶轴系支撑结构在外界刺激中发生的形变风险,为识别和防范柔性支撑形变引起的轴承变位等轴系故障提供可靠数理支撑,为降低单独考虑轴系本身受外界影响引起故障的诊断误差风险提供分析依据。通过对柔性结构的适应性分析程度完善,对船舶轴系内部结构中柔性支撑对轴系的直接影响进行实时监测,进而提高了支撑的轴系的稳定性,保证船舶推进系统的安全性可长期运行下的船舶轴系状态稳定。
附图说明
通过对结合附图所示出的实施方式进行详细说明,本发明的上述以及其他特征将更加明显,本发明附图中相同的参考标号表示相同或相似的元素,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,在附图中:
图1所示为一种船舶轴系支撑结构的监测方法的流程图;
图2所示为一种船舶轴系支撑结构的监测系统结构图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
如图1所示为一种船舶轴系支撑结构的监测方法的流程图,下面结合图1来阐述根据本发明的实施方式的一种船舶轴系支撑结构的监测方法,所述方法包括以下步骤:
S100,在船舶轴系中识别各个气囊隔振器,以气囊隔振器作为隔振单元,分别在隔振单元上布置压力传感器;
S200,利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离;
S300,根据均衡距离进行筏架形变分析获得形变阶值;
S400,根据形变阶值向客户端进行轴系形变预警。
进一步地,在步骤S100中,在船舶轴系中识别各个气囊隔振器,以气囊隔振器作为隔振单元,分别在隔振单元上布置压力传感器的方法是:船舶的轴系安装在柔性筏架上,柔性筏架的肋板或者下板安装有若干个气囊隔振器,以安装在下板的气囊隔振器作为隔振单元,分别在各个隔振单元上布置压力传感器;其中气囊隔振器包括鼓型橡胶气囊隔振器和长圆形囊式气囊隔振器中的任意一种;在每个气囊隔振器的位置均安装一个压力传感器;压力传感器为荷重传感器、应力传感器或压电式传感器中的任意一种。
其中柔性筏架为支撑轴系的柔性结构,包括主体和气囊隔振器,主体为钢质材料,包括上板、下板和肋板,其中上板、下板和肋板上设有孔槽用以安装轴系和气囊隔振器,轴系安装于主体的上板;主体四周的肋板和下板安装有若干个气囊隔振器,其中安装在下板的气囊隔振器一端连接筏架主体,另一端连接于船舶船体的钢板上,通过压力传感器测量气囊隔振器两端压力,即通过压力传感器获得气囊隔振器所受的压力值。
进一步地,在步骤S200中,利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离的方法是:各个隔振单元通过压力传感器实时测量获得测量值;若一个时刻较其前一个时刻和其后一个时刻的测量值都大,则定义该时刻发生压力攀升;设定一个时间段作为反馈间隔RT,RT∈[1,3]分钟,每隔一个反馈间隔定义一个时刻为反馈点,定义一个反馈点与其逆时间方向的首个反馈点之间的时间区间为该反馈点的反馈区间;获取反馈区间内各个发生压力攀升的时刻对应的测量值,并计算所得各个测量值的平均值作为攀升期望,获取反馈区间内各个测量值的平均值为均衡期望;将攀升期望与均衡期望的比值记为攀升比例Ovt,将同一反馈点下各个隔振单元的攀升比例的平均值记为攀升均衡度e.Ovt,则该反馈点下任一隔振单元的均衡距离Bds为:Bds=ln(1+Ovt/e.Ovt)。
其中Ovt指的是该隔振单元的攀升比例。
进一步地,在步骤S300中,根据均衡距离进行筏架形变分析获得形变阶值的方法是:设定一个时间段TgCB,TgCB∈[40,80]分钟;对于一个隔振单元,定义其在最近TgCB时段中均衡距离的上四分位值为第一距离,当一个反馈点下的均衡距离大于等于第一距离则定义该反馈点发生越界事件;
其中最近TgCB时段指的是当前时刻逆时间反向时间长度为TgCB的时间段;
将同一反馈点下各个隔振单元的均衡距离的最大值记为第二距离;同一反馈点下发生越界事件的隔振单元的数量为该反馈点的越界阶值;若一个反馈点较其前一个和后一个反馈点的越界阶值都大,则定义该反馈点为一阶越界点;以任意一阶越界点作为当前越界点,从当前越界点逆时间方向遍历各个反馈点,直到各个隔振单元均发生越界事件,则定义最后遍历的反馈点为当前越界点的一阶回归点;当前越界点到其对应一阶回归点的各个反馈点构成集合并记为回归集;回归集中反馈点的数量记为LOP;
其中从当前越界点逆时间方向遍历各个反馈点,直到各个隔振单元均发生越界事件指的是,从当前越界点逆时间方向遍历各个反馈点,以正在遍历的反馈点作为进行反馈点,将当前反馈点到进行反馈点之间的所有反馈点作为经遍历反馈点,若所有隔振单元在经遍历反馈点中至少发生一次越界事件,则满足停止遍历条件;
一阶越界点和一阶回归点、回归集均有一一对应关系;
以任意隔振单元作为当前隔振单元;根据均衡距离和第二距离计算一阶越界点的骤变比例Ptr:;分别以sc.Olst和sc.Elst代表当前隔振单元在当前越界点的均衡距离和第二距离,分别以e.Olst和e.Elst代表当前隔振单元对应回归集中各个均衡距离和各个第二距离的平均值;计算当前隔振单元的形变阶值SV_Rsk:
其中i1为累加变量,NFR代表回归集的数量,LOPi1为第i1个回归集中反馈点的数量,Ptri1代表第i1个回归集的骤变比例;Xta代表当前隔振单元所有均衡距离的标准差,e为自然常数,Tmp为当前反馈点的均衡距离;e.Olsti1代表第i1个回归集中各个均衡距离的平均值;其中当前反馈点指的是距离当前时刻最近的反馈点;
优选地,其特征在于,在步骤S300中,根据均衡距离进行筏架形变分析获得形变阶值的方法是:设定一个时间段TgCA,TgCA∈[10,30]分钟,以任意隔振单元作为当前隔振单元;
其余不为当前隔振单元的隔振单元作为其余隔振单元;
获取当前隔振单元TgCA时间段内不同反馈点下均衡距离的值形成一个序列记作形变分析序列;将形变分析序列内极大值和极小值所对应的反馈点分别记作险变反馈点和稳变反馈点;将险变反馈点和稳变反馈点定义为第一条件时刻;计算获得形变分析序列内小于上四分位的各个均衡距离的平均值记作稳形距离;获取任一反馈点下均衡距离与稳形距离的差值并取绝对值,然后将其与稳形距离相除得到比值,将该比值记作反馈点的形变阈比;
若以当前反馈点逆时间搜索获得的首个第一条件时刻为稳变反馈点,则将其作为压变起点,否则将当前反馈点作为压变起点;
其中当前反馈点指的是距离当前时刻最近的反馈点;
以压变起点逆时间顺序遍历各个反馈点划分压变区间:将压变起点与遍历反馈点的均衡距离作差并取绝对值,再与遍历反馈点下的均衡距离相除,所得值为遍历反馈点的子形变阈比,当子形变阈比不小于压变起点的形变阈比,或者遍历反馈点为险变反馈点,则停止遍历并将遍历反馈点作为压变终点,将压变起点与压变终点之间的各个反馈点划分为一个压变区间;若压变终点不为险变反馈点,则定义其逆时间方向的首个反馈点为新的压变起点,否则定义其逆时间方向的首个稳变反馈点为新的压变起点,继续在形变分析序列内划分压变区间;
其中遍历反馈点为正在遍历的反馈点,遍历的反馈点为压变起点逆时间方向搜索的任一反馈点,当压变终点无法获取,则不再划分压变区间;
获取任一压变区间内各个均衡距离,将其中的中位值与稳形距离的差值作为该压变区间的压衡差距;若压变区间的压衡差距小于零,则将该压变区间内各个均衡距离的最大值与稳形距离的均方根值记为第一形变参,否则将该压变区间内各个均衡距离的最小值与稳形距离的均方根值记为第一形变参,将第一形变参与压变区间极差的比值记作变距调整系数;
对当前隔振单元的任一压变区间,分别获取各个隔振单元在该压变区间的极差记为压变负载,将各个隔振单元的压变负载的平均值和最大值记为负载阈值和负载基值,若当前隔振单元在该压变区间的压变负载大于负载阈值,则定义该压变区间为增压区间,当前隔振单元在增压区间的增压负载为的负载基值与压变负载的差值;
此处压变负载指的是当前隔振单元在该增压区间的压变负载;
通过增压负载和变距调整系数计算隔振单元的形变阶值SV_Rsk:
其中j1为增压区间的序号,j2为压变区间的序号,SrqTLj1和SrqTLj2分别为第j1个增压区间和第j2个压变区间的变距调整系数,TvdnQ为形变分析序列内不属于压变区间的各个反馈点下的均衡距离的平均值,LBDj1为除第j1个增压区间的增压负载,exp()为以自然数e为底数的指数函数;sqrt()为平方根函数,通过平方根函数返回调用值的平方根值;mean{}为平均值函数,通过平均值函数返回调用数据集的平均值;exp()为自然常数e为底数的指数函数;
进一步地,在步骤S400中根据形变阶值向客户端进行轴系形变预警的方法是:把所有隔振单元在同一个反馈点下获得的形变阶值构成元组并记为该反馈点的形变风险组;任一形变风险组内各个元素的平均值和极差分别记为风险组水平和风险组振幅;预设第一时间区间TSZ,TSZ∈[1,2]小时;预设第二时间区间TSZ_S为TSZ_S=1/4×TSZ;
定义任一反馈点前TSZ时段中各风险组水平的平均值为风险组基值;若一个反馈点的风险组水平大于风险组基值,并且该反馈点较其前一个反馈点的风险组水平大,则定义该反馈点满足第一异常条件;若一个反馈点较其前一个反馈点的风险组振幅大,则定义该反馈点发生振幅增溢;定义任一反馈点前TSZ_S时段内各反馈点中,发生振幅增溢的反馈点的比例为增益比例;
如果当前反馈点的增益比例较其前TSZ_S时段内所有增益比例都大,则向管理员的客户端发送轴系形变预警;将当前反馈点的形变风险组作为实时组,将当前TSZ时段内各个满足第一异常条件的反馈点对应形变风险组作为观测组,将实时组和观测组发送到管理员客户端。
本发明的实施例提供的一种船舶轴系支撑结构的监测系统,如图2所示为本发明的一种船舶轴系支撑结构的监测系统结构图,该实施例的一种船舶轴系支撑结构的监测系统包括:处理器、存储器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述一种船舶轴系支撑结构的监测方法实施例中的步骤。
所述系统包括:存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序运行在以下系统的单元中:
传感器预设单元,用于在船舶轴系中识别各个气囊隔振器,以气囊隔振器作为隔振单元,分别在隔振单元上布置压力传感器;
数据测量单元,用于利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离;
形变分析单元,用于根据均衡距离进行筏架形变分析获得形变阶值;
预警触发单元,用于根据形变阶值向客户端进行轴系形变预警。
所述一种船舶轴系支撑结构的监测系统可以运行于桌上型计算机、笔记本电脑、掌上电脑及云端服务器等计算设备中。所述一种船舶轴系支撑结构的监测系统,可运行的系统可包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,所述例子仅仅是一种船舶轴系支撑结构的监测系统的示例,并不构成对一种船舶轴系支撑结构的监测系统的限定,可以包括比例子更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述一种船舶轴系支撑结构的监测系统还可以包括输入输出设备、网络接入设备、总线等。
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述一种船舶轴系支撑结构的监测系统运行系统的控制中心,利用各种接口和线路连接整个一种船舶轴系支撑结构的监测系统可运行系统的各个部分。
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述一种船舶轴系支撑结构的监测系统的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(SecureDigital, SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
尽管本发明的描述已经相当详尽且特别对几个所述实施例进行了描述,但其并非旨在局限于任何这些细节或实施例或任何特殊实施例,从而有效地涵盖本发明的预定范围。此外,上文以发明人可预见的实施例对本发明进行描述,其目的是为了提供有用的描述,而那些目前尚未预见的对本发明的非实质性改动仍可代表本发明的等效改动。

Claims (7)

1.一种船舶轴系支撑结构的监测方法,其特征在于,所述方法包括以下步骤:
S100,在船舶轴系中识别各个气囊隔振器,以气囊隔振器作为隔振单元,分别在隔振单元上布置压力传感器;
S200,利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离;
S300,根据均衡距离进行筏架形变分析获得形变阶值;
S400,根据形变阶值向客户端进行轴系形变预警;
其中S200中,利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离的方法是,每隔一段预设时间段形成一个反馈区间,根据反馈区间内压力传感器测得的数值计算攀升期望和均衡期望,通过攀升期望和均衡期望计算攀升比例,同一时刻下根据各个隔振单元的攀升比例分别获得对应均衡距离;
其中S300中,根据均衡距离进行筏架形变分析获得形变阶值的方法是,根据预设时段内的均衡距离计算第一距离,根据第一距离筛选发生越界事件的时刻;通过同一时刻下不同隔振单元的均衡距离获得第二距离;根据同一时刻发生越界事件的隔振单元数量筛选出一阶越界点,根据均衡距离和第二距离计算一阶越界点的骤变比例,根据骤变比例计算当前隔振单元的形变阶值。
2.根据权利要求1所述的一种船舶轴系支撑结构的监测方法,其特征在于,在步骤S100中,在船舶轴系中识别各个气囊隔振器,以气囊隔振器作为隔振单元,分别在隔振单元上布置压力传感器的方法是:船舶的轴系安装在柔性筏架上,柔性筏架的肋板或者下板安装有若干个气囊隔振器,以安装在下板的气囊隔振器作为隔振单元,分别在各个隔振单元上布置压力传感器;其中气囊隔振器包括鼓型橡胶气囊隔振器和长圆形囊式气囊隔振器中的任意一种;在每个气囊隔振器的位置均安装一个压力传感器;压力传感器为荷重传感器、应力传感器或压电式传感器中的任意一种。
3.根据权利要求1所述的一种船舶轴系支撑结构的监测方法,其特征在于,在步骤S200中,利用压力传感器测量获得测量值,并根据测量值计算各个隔振单元的均衡距离的方法具体是:各个隔振单元通过压力传感器实时测量获得测量值;若一个时刻较其前一个时刻和其后一个时刻的测量值都大,则定义该时刻发生压力攀升;设定一个时间段作为反馈间隔RT,RT∈[1,3]分钟,每隔一个反馈间隔定义一个时刻为反馈点,定义一个反馈点与其逆时间方向的首个反馈点之间的时间区间为该反馈点的反馈区间;获取反馈区间内各个发生压力攀升的时刻对应的测量值,并计算所得各个测量值的平均值作为攀升期望,获取反馈区间内各个测量值的平均值为均衡期望;将攀升期望与均衡期望的比值记为攀升比例Ovt,将同一反馈点下各个隔振单元的攀升比例的平均值记为攀升均衡度e.Ovt,则该反馈点下任一隔振单元的均衡距离Bds为:Bds=ln(1+Ovt/e.Ovt)。
4.根据权利要求1所述的一种船舶轴系支撑结构的监测方法,其特征在于,在步骤S300中,根据均衡距离进行筏架形变分析获得形变阶值的方法具体是:设定一个时间段TgCB,TgCB∈[40,80]分钟;对于一个隔振单元,定义其在最近TgCB时段中均衡距离的上四分位值为第一距离,当一个反馈点下的均衡距离大于等于第一距离则定义该反馈点发生越界事件;
将同一反馈点下各个隔振单元的均衡距离的最大值记为第二距离;同一反馈点下发生越界事件的隔振单元的数量为该反馈点的越界阶值;若一个反馈点较其前一个和后一个反馈点的越界阶值都大,则定义该反馈点为一阶越界点;以任意一阶越界点作为当前越界点,从当前越界点逆时间方向遍历各个反馈点,直到各个隔振单元均发生越界事件,则定义最后遍历的反馈点为当前越界点的一阶回归点;当前越界点到其对应一阶回归点的各个反馈点构成集合并记为回归集;
以任意隔振单元作为当前隔振单元;根据均衡距离和第二距离计算一阶越界点的骤变比例Ptr:;分别以sc.Olst和sc.Elst代表当前隔振单元在当前越界点的均衡距离和第二距离,分别以e.Olst和e.Elst代表当前隔振单元对应回归集中各个均衡距离和各个第二距离的平均值;根据骤变比例计算当前隔振单元的形变阶值。
5.根据权利要求1所述的一种船舶轴系支撑结构的监测方法,其特征在于,在步骤S300中,根据均衡距离进行筏架形变分析获得形变阶值的方法可替换为:以任意隔振单元作为当前隔振单元,通过当前隔振单元在预设时段内的均衡距离构建形变分析序列;
将形变分析序列内极大值和极小值所对应的反馈点分别记作险变反馈点和稳变反馈点;将险变反馈点和稳变反馈点定义为第一条件时刻;计算获得形变分析序列内小于上四分位的各个均衡距离的平均值记作稳形距离;获取任一反馈点下均衡距离与稳形距离的差值并取绝对值,然后将其与稳形距离相除得到比值,将该比值记作反馈点的形变阈比;
若以当前反馈点逆时间搜索获得的首个第一条件时刻为稳变反馈点,则将其作为压变起点,否则将当前反馈点作为压变起点;以压变起点逆时间顺序遍历各个反馈点划分压变区间:将压变起点与遍历反馈点的均衡距离作差并取绝对值,再与遍历反馈点下的均衡距离相除,所得值为遍历反馈点的子形变阈比,当子形变阈比不小于压变起点的形变阈比,或者遍历反馈点为险变反馈点,则停止遍历并将遍历反馈点作为压变终点,将压变起点与压变终点之间的各个反馈点划分为一个压变区间;若压变终点不为险变反馈点,则定义其逆时间方向的首个反馈点为新的压变起点,否则定义其逆时间方向的首个稳变反馈点为新的压变起点,继续在形变分析序列内划分压变区间;
获取任一压变区间内各个均衡距离,将其中的中位值与稳形距离的差值作为该压变区间的压衡差距;若压变区间的压衡差距小于零,则将该压变区间内各个均衡距离的最大值与稳形距离的均方根值记为第一形变参,否则将该压变区间内各个均衡距离的最小值与稳形距离的均方根值记为第一形变参,将第一形变参与压变区间极差的比值记作变距调整系数;
对当前隔振单元的任一压变区间,分别获取各个隔振单元在该压变区间的极差记为压变负载,将各个隔振单元的压变负载的平均值和最大值记为负载阈值和负载基值,若当前隔振单元在该压变区间的压变负载大于负载阈值,则定义该压变区间为增压区间,当前隔振单元在增压区间的增压负载为的负载基值与压变负载的差值;通过增压负载和变距调整系数计算隔振单元的形变阶值。
6.根据权利要求1所述的一种船舶轴系支撑结构的监测方法,其特征在于,在步骤S400中根据形变阶值向客户端进行轴系形变预警的方法是:把所有隔振单元在同一个反馈点下获得的形变阶值构成元组并记为该反馈点的形变风险组;任一形变风险组内各个元素的平均值和极差分别记为风险组水平和风险组振幅;预设第一时间区间TSZ,TSZ∈[1,2]小时;预设第二时间区间TSZ_S为TSZ_S=1/4×TSZ;
定义任一反馈点前TSZ时段中各风险组水平的平均值为风险组基值;若一个反馈点的风险组水平大于风险组基值,并且该反馈点较其前一个反馈点的风险组水平大,则定义该反馈点满足第一异常条件;若一个反馈点较其前一个反馈点的风险组振幅大,则定义该反馈点发生振幅增溢;定义任一反馈点前TSZ_S时段内各反馈点中,发生振幅增溢的反馈点的比例为增益比例;
如果当前反馈点的增益比例较其前TSZ_S时段内所有增益比例都大,则向管理员的客户端发送轴系形变预警;将当前反馈点的形变风险组作为实时组,将当前TSZ时段内各个满足第一异常条件的反馈点对应形变风险组作为观测组,将实时组和观测组发送到管理员客户端。
7.一种船舶轴系支撑结构的监测系统,其特征在于,所述一种船舶轴系支撑结构的监测系统包括:处理器、存储器及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现权利要求1-6中任一项所述的一种船舶轴系支撑结构的监测方法中的步骤,所述一种船舶轴系支撑结构的监测系统运行于桌上型计算机、笔记本电脑、掌上电脑及云端数据中心的计算设备中。
CN202410404862.4A 2024-04-07 2024-04-07 一种船舶轴系支撑结构的监测方法及系统 Active CN117990043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410404862.4A CN117990043B (zh) 2024-04-07 2024-04-07 一种船舶轴系支撑结构的监测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410404862.4A CN117990043B (zh) 2024-04-07 2024-04-07 一种船舶轴系支撑结构的监测方法及系统

Publications (2)

Publication Number Publication Date
CN117990043A CN117990043A (zh) 2024-05-07
CN117990043B true CN117990043B (zh) 2024-05-28

Family

ID=90890869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410404862.4A Active CN117990043B (zh) 2024-04-07 2024-04-07 一种船舶轴系支撑结构的监测方法及系统

Country Status (1)

Country Link
CN (1) CN117990043B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118393267B (zh) * 2024-06-27 2024-08-27 沁水寺河瓦斯发电有限公司 一种应用于电力设备的运行检测控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180131014A (ko) * 2017-05-31 2018-12-10 목포해양대학교 산학협력단 선박 추진축계의 굽힘모멘트 원격측정을 통한 중간축/선미관 베어링 하중 측정 및 축계 손상방지 모니터링 시스템
CN110712731A (zh) * 2019-10-22 2020-01-21 中国人民解放军海军工程大学 一种舰船轴系校中及回旋振动多学科优化方法
CN210321625U (zh) * 2019-07-25 2020-04-14 中国人民解放军海军工程大学 一种船用浮筏隔振器间距监检测基座及其标定件
CN115826454A (zh) * 2022-11-04 2023-03-21 湖北工业大学 一种船舶大型隔振系统、边缘计算系统及方法
CN115901219A (zh) * 2022-12-07 2023-04-04 渤海造船厂集团有限公司 管路及减振器安装参数与声学质量关系检测系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180131014A (ko) * 2017-05-31 2018-12-10 목포해양대학교 산학협력단 선박 추진축계의 굽힘모멘트 원격측정을 통한 중간축/선미관 베어링 하중 측정 및 축계 손상방지 모니터링 시스템
CN210321625U (zh) * 2019-07-25 2020-04-14 中国人民解放军海军工程大学 一种船用浮筏隔振器间距监检测基座及其标定件
CN110712731A (zh) * 2019-10-22 2020-01-21 中国人民解放军海军工程大学 一种舰船轴系校中及回旋振动多学科优化方法
CN115826454A (zh) * 2022-11-04 2023-03-21 湖北工业大学 一种船舶大型隔振系统、边缘计算系统及方法
CN115901219A (zh) * 2022-12-07 2023-04-04 渤海造船厂集团有限公司 管路及减振器安装参数与声学质量关系检测系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
船舶柔性推进轴系校中特性研究;尹红升等;推进技术;20210129;第43卷(第4期);全文 *

Also Published As

Publication number Publication date
CN117990043A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN117990043B (zh) 一种船舶轴系支撑结构的监测方法及系统
DK2103915T3 (en) Device and method for determining a resonant frequency of a wind turbine tower
CN110296053B (zh) 风力发电机叶片的疲劳损伤监测方法和装置
WO2016195092A1 (ja) 異常検知装置
EP3380903A1 (en) Marine vessel performance monitoring
CN111046491A (zh) 预估大型船舶柴油主机油耗的方法和装置
JP6783163B2 (ja) 翼振動監視装置および翼振動監視方法
CN109323853B (zh) 一种风机叶扇振动检测装置及故障检测预测方法
CN112611584A (zh) 风力发电机组的疲劳失效检测方法、装置、设备及介质
WO2019202917A1 (ja) 観測装置、観測方法及びプログラム
JP2018034585A (ja) 船舶の推進性能の解析
CN113739909A (zh) 一种基于全尺度时域平均的船舶旋转机械故障诊断方法
CN117113200A (zh) 转子故障诊断方法、装置、电子设备及介质
JP2021047100A (ja) 診断装置および診断方法
CN116226719A (zh) 基于多维稳态振动特征的轴承故障诊断方法及相关组件
CN113027699B (zh) 风力发电机组的监测方法、装置和系统
CN110874088B (zh) 基于多维向量模型的船舶关键设备系统的监测方法
KR102212022B1 (ko) 양수 수차의 건전성 자동 판정 방법 및 이를 위한 시스템
CN117824922B (zh) 一种超精密减速器的动平衡性能测试方法及系统
CN117473669A (zh) 船舶机舱设备布局敏感性确定方法、装置和电子设备
CN115077901B (zh) 一种考虑基础激励的轴承动载荷间接测量方法
Allen et al. Experimental Validation of a Spectral-Based Structural Analysis Model Implemented in the Design of the VolturnUS 6MW Floating Offshore Wind Turbine
US20220390933A1 (en) Pattern recognition device
Wang et al. Research on Online Monitoring of Wind Turbine Blade Damage Based on Working Mode Analysis
CN118243215A (zh) 基于堆叠模型的船舶辐射噪声预报方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant