CN1179143A - 四氟乙烯的制备 - Google Patents

四氟乙烯的制备 Download PDF

Info

Publication number
CN1179143A
CN1179143A CN96192774A CN96192774A CN1179143A CN 1179143 A CN1179143 A CN 1179143A CN 96192774 A CN96192774 A CN 96192774A CN 96192774 A CN96192774 A CN 96192774A CN 1179143 A CN1179143 A CN 1179143A
Authority
CN
China
Prior art keywords
carbon
plasma
reaction
gas
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96192774A
Other languages
English (en)
Other versions
CN1090164C (zh
Inventor
J·L·韦布斯特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/621,551 external-priority patent/US5684218A/en
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN1179143A publication Critical patent/CN1179143A/zh
Application granted granted Critical
Publication of CN1090164C publication Critical patent/CN1090164C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/007Preparation of halogenated hydrocarbons from carbon or from carbides and halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Silicon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

使金属氟化物,例如氟化钠,氟化钙或氟化硅,经受一种等离子体的作用,形成一种金属和反应性氟的气体混合物,从而得到四氟乙烯。然后使这种气体混合物和一个碳颗粒床在一个当不含碳时金属不发生冷凝的温度下反应。接着将产生的反应混合物急冷,得到四氟乙烯。一般等离子体在至少4500℃的温度下,而碳粒床的温度则在2000℃—3500℃范围中。

Description

四氟乙烯的制备
对相关申请的交叉引证
本申请是同一发明人于1995年3月31日提交的申请序号08/414,967的部分继续申请。
发明领域
本发明涉及一种不用CHClF2作为原料的四氟乙烯的制备方法。
发明背景
美国专利2,835,711(Wolfe等)公开了一种使周期表IIA族元素的氟化物与碳反应以生成碳氟化合物的间歇方法,所形成的碳氟化合物有着广泛的用途,包括作为向四氟乙烯转化的中间体。该专利仅报道了高熔点IIA族金属氟化物的细节,包括使用碳弧在一个坩埚中使金属氟化物熔化。也可以使碳粉和金属氟化物在坩埚中混合,并将碳电极浸没在反应混合物中。气体碳氟化物,主要是CF4从反应物熔体中逸出,留下金属氟化物的金属和碳之间的反应产物,在实例1中确定该反应产物为CaC2
美国专利2,709,191(Farlow等)公开了氟化硅和碳生成四氟乙烯的反应,氟化硅的单程转化率极低(实例II),而在多程条件下所获得的增加部分是CF4而不是四氟乙烯(实例I)。在此方法中的所谓“程”是氟化硅气体以低速率通过在两个石墨电极之间放电的燃烧电弧,然后气体(反应产物和未反应的氟化硅)流经电极中一个空腔。此方法的碳反应物来源于自耗碳电极,当然也可以使碳粉和氟化硅一起流过电弧。报道了各种操作压力,但在报道中认为低压(1-150mmHg)更为可取,以便减少电弧操作中的困难。可以用氩来建立操作压力,然后靠氟化硅进料来维持这一压力。在0.001-0.1sec内将气体反应混合物急冷到不超过400℃。
美国专利3,081,245(Farlow)公开了一种合成四氟乙烯的改进电弧方法,其中饱和碳氟化物是电弧的进料原料。经过电弧后得到的气体反应产物通过一个温度为20000-2700℃的碳粒床,然后被急冷。饱和碳氟化物的转化率非常低,在表1中报告为低于15%。
Farlow法至今还从未在四氟乙烯(TFE)的制造中得到商业利用,这是因为低转化率和/或低产率造成这种产品通常较低的生产率。然而自五十年代以来在世界范围内TFE的商业生产是靠一种完全不同的方法通过一系列工艺步骤实现的,包括(i)使CaF2与H2SO4反应生产HF,(ii)氯仿的合成,(iii)使HF与氯仿反应生产二氟氯甲烷(HCFC-22),和(iv)使HCFC-22热解生成TFE,以及精制TFE。这一系列过程始于一种在Wolfe方法中使用的反应物,但接着就沿着一条包括建造四套装置(以上(i)到(iv))的路程进行,以高生产率得到Farlow方法的反应产物,然而这使得TFE的制造变得非常昂贵,并产生大量需要进一步加工或处置的HCl副产物。
人们久已期待能较经济地生产四氟乙烯。
发明概述
本发明制造四氟乙烯的方法满足了这种需要,该方法包括使不含碳的金属氟化物经受一种等离子体的作用,以使金属氟化物解离成一种金属和反应性氟的气体混合物,使这种气体混合物流动,在一个高于该金属在不含碳时在气体混合物中会发生冷凝的温度下与散粒碳紧密接触,由此所说反应性氟和所说碳相互反应,形成一种四氟乙烯的气体前体,以及使所说气体前体急冷,得到气体四氟乙烯。
本发明的另一种实施方案是用于实现本发明方法的设备,包括限定一个反应室的装置,在所说反应室的一端形成一个等离子体的装置,在所说反应室的相对端容纳散粒反应物的装置,使气体流进和通过所说等离子体,从而使等离子体不受限制地扩展到所说反应室,并指向所说反应室的所说相对端的装置,所说反应室的容纳装置包括用于支承所说散粒反应物,同时允许所说流动气体通过的孔板,以及在通过所说孔板后接受所说流动气体,用于急冷所说气体的装置。
在本实施方案的一个方面,流动气体是所说散粒反应物的一种共反应物。在另一方面提供了额外装置使共反应物进料到所说等离子体中。
附图简述
附图以断面示意侧视图形式说明了本发明设备的一种实施方案。
发明详述
下面将首先介绍附图中的设备,以帮助理解本发明的方法。
在附图的实施方案中化学反应器2由一对叠放并通过裙板8相互连接的圆筒构件4和直径增加的圆筒构件6构成,它们的内部彼此相通,形成了一个反应室10。反应室10的两端由一块密封圆筒构件4的顶部,但有中央开孔14的封闭板12和一个联结圆筒构件6的底部,并在反应室中限定一个底部开孔18的向下缩口的(锥形)壁面构成。孔板20架设在此开孔上。开孔14形成了反应室的一个入口,而开孔18在其相对端形成反应室的出口。
围绕开孔14的是有相反极性并被间隙26分隔开的圆筒电极22和24。由一个电源,例如变压器28供给有足够电压和电流的电能,以便产生并维持在电极之间放电的电弧30。用例如一台鼓风机(未示出)在压力下将一种气体经过间隙26送入此电弧,并被导入反应室10。通过电弧的这一气流形成一个气体等离子体,从电弧30延伸到电极24的空腔中,同时由于电弧的温度为摄氏几千度,因此可以将该等离子体看做一种热等离子体。圆筒电极22也可以有一个用于沿反应室10的方向通入气体的空腔(未示出),以便将整个气流导入反应室。从围绕电极外周的多个位置经间隙26送入气体也可以实现这种气流的方向性。进入反应室10的气流将这一等离子体扩展到反应室。
在附图中将延伸到反应室中的等离子体部分表示成一个羽状物或火焰34,它是发光的,因而可用眼睛看到。火焰并不被限制在电极24的空腔中。延伸到圆筒形构件4中的火焰最好是一种自由火焰,它既不被构件4也不被构件6所限定。通常圆筒构件4是由耐热材料,例如石墨制成的,并且被冷却。由于火焰延伸超过了电极24,因此该火焰基本上不含在电极22和24之间直接流动的电流。但是该火焰可能带有由离解气体产生的少量电荷。最好通过围绕电极24的磁性线圈使火焰旋转;这种旋转有助于在等离子体中造成涡流,并有助于保护电极不被磨蚀。这种涡流延伸到火焰中,促进了加到火焰中的原料的混合。
在裙盖8上设有一个开孔36,使加料设备38能将散粒反应物40(反应物颗粒)加到支撑在渐缩壁面16和孔板20上的反应室底部,减缩壁面和孔板也都是耐热材料,例如石墨制成的。如图所示反应物颗粒40被加料到反应室中,并在其底部形成床层41。可以环绕着裙板8(同时围绕着电极24)使用多个加料设备38,以便将颗粒40供给整个床层41。
形成等离子火焰34的流动气体朝着反应室出口方向,以大体上全程直线的方式进入和通过反应颗粒床层41,然后通过孔板20,即气体在火焰中可能旋转,在通过床层41时并将改变方向,但尽管如此却基本上总是向着孔板20流动的。
反应物颗粒40的共反应物也被供给反应室10。流动气体或者是共反应物,或者是一种共反应物以外的气体,例如一种惰性气体。在任何一种情况下气体都在电弧30中离解,而且正是这种离解物形成了等离子体和它的火焰34。
当流动气体不是共混合物时,在封闭板12上设置一根入口管线42,将共反应物加料到等离子火焰34中进行离解。在这种实施方案中共反应物不与电极接触,可以保护电极不被共反应物腐蚀。围绕着封闭板12可以间隔地使用多根进料管线42。金属氟化物可以以高速,例如声速(最高流速)进料到等离子火焰中,以保证金属氟化物能进料到等离子火焰内部,即它最热的部分。
急冷室44位于反应室的出口端,接受通过孔板20的气流。在所示实施方案的急冷室中是冷的急冷颗粒45,它是在喷射器指向和来自反应室10的气流相反方向的情况下经过入口管线43被加入的,颗粒45然后在急冷室中沉降形成床层47,它即刻将来自等离子体的热气体冷却。急冷颗粒在急冷室44的底部被螺旋输送器46连续排出,被冷却器55冷却,并经过管线43循环回急冷室。被冷却的气体经过管线48离开急冷室44,在那里它经过进一步冷却,并用例如蒸馏方法49将所需产物与不需要的产物分离,使不需要的产物经管线50循环回反应室10,同时经管线51得到所需产物TFE。可以环绕圆筒构件4使用多根沿直径方向间隔布置,并指向火焰34的管线50。
从这种设备布置可以看到反应室包括两个相互邻接的反应区,同时入口14和出口18也相互相对地设置。在第一区中一种反应物在等离子体中被热解离,而在第二区中在从等离子体中得到的反应物和反应物颗粒床层之间发生反应。反应器2的定位最好使气体垂直向下流动,尽管也可以使反应器2按不同方式设置,以产生不同的气流方向,同时反应室10也可以有许多不同的构型。在垂直布局中在反应室中反应物颗粒床层41上方的任何固体,例如未离解的共反应物或固体反应产物都会靠重力直接落入床层41中。尽管反应邻近地进行,但在等离子火焰34和反应物颗粒40的床层41之间有足够空间,因此火焰的高温不会使床层熔化,而使气流不能通过。如果相对于反应物颗粒的熔点,火焰34足够冷的话就不需要这一空间。
按照本发明的方法,反应物颗粒是碳,共反应物是金属氟化物,而所需产物是四氟乙烯(TFE)。
在本发明的方法中发生的反应可被描述如下:
在等离子体中:
        (1)
和碳发生的反应可被描述如下:
    (2)
由于接着在碳反应混合物被急冷时会形成TFE,所以推断有CF2:的形成。过量C的存在会推动反应向生成CF2:进行,而不使氟与金属反应而重新形成金属氟化物或形成CF4
急冷反应可被描述为
    (3)
在使用这些原料的操作中,金属氟化物或是经过电极之间的空隙26,或是经过管线42进料到反应室10中,在后一种情况下另一种气体经过间隙26被加入。在任何一种情况下金属氟化物都要经受单独由它本身或者是和另一种气体一起形成的等离子体的作用。等离子火焰相当于一个大范围的等离子体。其结果是金属氟化物离解为成一种气体混合物存在的金属和反应性氟。这种气体混合物就是前面所说的在这个反应点的气流。
这种因反应室10中的气体流动而指向碳粒床41的气体混合物在流动中与碳粒紧密接触,从而与碳粒发生反应。这样来自等离子体的热量和能量可被用来推动来自等离子体的气体混合物中的反应性氟和碳粒40之间的反应,但是温度又不会高到造成这些颗粒的整体熔化,整体熔化在超过3550℃的温度下才会发生。氟和碳之间的反应可能有反应热,它会使床温升高,应该控制工艺条件使整体床温低于3550℃。接近等离子火焰的碳粒可能偶然会发生一些熔化,甚至汽化,但是它们将因和反应性氟的反应而被消耗。尽管等离子体,例如等离子火焰34的温度可能高于床41的温度,例如至少4500℃,但壁面冷却和其它冷却,碳粒床以及碳粒进料可使气体温度迅速降到不超过大约3500℃。如果等离子火焰的热量不足以提供使反应性氟和碳反应所需的温度,则可利用外部加热和/或碳粒进料的加热。
固体碳与氟之间反应的结果形成了TFE的气体前体(反应(2)),同时通过在急冷室44内的急冷(反应(3))以及如图所示经过出口管线48从中进行的回收形成了TFE。急冷使气态金属冷凝,通常成为一种固体,以便于和仍然是气体的TFE分离。最好使碳粒床41中反应室10的壁温高于金属和未离解的金属氟化物的沸点,这样可以使固化推迟到在室44中被急冷时才发生。
本发明的方法具有以下优点:特别与通常作为含氟烯烃原料的HCFC-22的价格相比,金属氟化物原料可能是廉价的。可以使用单独一个工厂,因而有相对低的投资。在本发明的方法中不产生HCl,简化了TFE的精制过程,并且不需要处理HCl或其进一步的加工回收。可以以高产率生产所需的TFE和其它有价值的全氟化碳。可以回收金属氟化物的金属,由此它的价值会进一步有利于本发明方法的经济性。
下面将进一步介绍本方法和设备的细节。
首先金属氟化物和碳之间的反应包括从金属氟化物中释放出氟原子,即它的离解。从热力学考虑作为一个平衡反应可以预期到金属氟化物的重新生成。为使解离反应得以发生,需使反应物暴露于能有效地激发进料,即能使至少一部分金属氟化物反应物发生离解的充分的能量。这种离解可以成为自由基,原子和/或离子,在本质上它是进料原料的激发态。在某种意义上反应是被存在于反应室中的离解能所引发的。等离子体就是这种离解能的体现。金属氟化物被激发到能使金属氟化物进料中的氟被游离出来而在等离子火焰以外在随后的反应中与碳结合的程度。
不论等离子体是由金属氟化物或是由一种金属氟化物以外的气体形成的,它都是进料原料的一种激发形式,在后一种情况下金属氟化物在被加料到等离子火焰中时也被激发。
正如用CO作为电弧或由一种相对惰性的气体,例如氩气产生的等离子体的一种气体进料的情况,进料原料也可以含有另一种反应物。在等离子体的高温下反应产物的身份基本上是未知的,尽管在等离子体被急冷时在气体反应混合物中得到的产物是羰基氟化物,因而相信反应产物是羰基氟化物(COF2)的前体。COF2的气体前体也可被看作是一种F/CO结合物,它和碳的反应形成了四氟乙烯的气体前体,后者在急冷时得到TFE。在这种实施方案中相信在等离子体中发生了如下反应:
    (4)
当其后气体混合物如图中所示与碳粒床层接触时所发生的反应可被描述如下:
    (4)
其中CF2:前体在急冷时变为全氟烯烃,主要是TFE。在此反应中形成的CO可被循环,构成等离子体的CO进料或形成等离子体。
迅速地将活性氟消耗掉,不管是它本身还是和另一种共反应物,例如CO一起,都可以使等离子体中解离的氟和金属重新结合的倾向降至最小,或被避免,在上述方法和设备中这是通过在与等离子体邻接处随后进行的与碳的反应实现的。这样在金属氟化物离解后几乎立刻就发生和碳的反应。等离子体温度通常高于和碳反应的温度。因此离开等离子体的气体混合物的冷却,以及与碳粒的接触有助于抑制反应性氟与金属的重新结合。最好有除汽化的或气体金属氟化物以外的气体(例如经过电极间的空隙26加到电弧30中形成等离子体的一种非反应性的或惰性气体),因为这能阻止反应性氟与金属的重新结合,从而提高了反应性氟在碳粒床41中与碳反应形成所需的TFE前体的利用率。这种气体起金属氟化物的载气的作用,它离解成为等离子体的一部分,一起形成气体反应混合物,接着和碳粒床41接触。
本发明的设备提供了一种实现这些工艺优点的经济的化学反应器。
就本发明方法的原料而言,碳可以从广泛的来源大批地获得。很明显碳越纯,过程中的副产物也越少。还应该尽可能地从碳和金属氟化物原料中除去水。外来的水会促使HF和金属氧化物的形成。最好是使碳经过脱氧,以免将氧带入反应体系。从反应体系中排除氧避免了金属氧化物副产物和含氧氟化碳的形成。
金属氟化物可以是一种化合物或化合物的混合物,它们中的每一种含有一个或多个氟原子。氟原子是金属氟化物的活性反应物部分,因此它的金属部分可以有范围广泛的个性。金属(作为氟化物)或它们的混合物的例子包括锂,钠,钾,镁,钙,铬,锰,铁,镍,铜,锌,铝,硼和硅。优选的金属来自周期表除氢以外的IA,IB,IIA,IIB,IIIA,IIIB,IVA,IVB,VB,VIB,VIIB和VIII族(R.H.Perry和C.H.Chilton,化学工程师手册,第5版,McGraw-Hill,封二,1973)。金属氟化物可以从采矿过程中很经济地获得,并且是不含碳的。和碳氟化物,例如CF4和C2F6相比,本发明中使用的金属氟化物的离解,以及因此与碳的反应要困难得多。通常金属氟化物,例如CaF2和氟化硅需要多至少100%的能量才能发生离解,这在金属氟化物和等离子火焰的毫秒接触(暴露)时间中要实现是困难的。为离解金属氟化物需要大得多能量的原因之一是有大得多数目的化学键必须被打断,才能从金属氟化物中得到可被用来与碳反应的氟。氟化硅,氟化钙和氟化钠这类金属氟化物的金属/氟键也比碳/氟键要强得多。对于碳氟化合物,一些碳/氟键已经形成,因而只有较少的碳/氟键需要被打断。在反应条件下金属氟化物的金属部分对于碳或(反应产物的)碳/氟部分最好是惰性的或低反应活性的。
优选的金属氟化物包括NaF,CaF2和氟化硅,例如SiF4,Si2F6,以及金属硅氟化物,例如氟硅酸钙。金属氟化物最好不含任何其它卤原子。金属氟化物中氧化物的存在是不太希望的,因为氧能形成不太需要的金属氧化物,包括碳/氧化合物。
在已经介绍了本发明将要使用的原料和反应机理后,本领域的技术人员会意识到可以采用许多种方法将金属氟化物置于等离子体作用下以产生所需的离解能。这样用一个电弧,A.C.,或D.C.,使用一个等离子反应器,或者用例如由一个感应线圈或微波产生的电磁能量,或者单独靠加热来产生离解能量都可以使反应进行。在电弧的情况下离解能量发生器如附图中的情况是在反应区内部,而在电磁能的情况下能量发生器,例如一个感应线圈可能在反应室外面,但是在反应室里面产生离解能。
等离子反应器是使金属氟化物发生离解以便与碳反应的设备的一种类型。可以通过一个线圈感应的磁场使电极间的放电,例如电弧30旋转,但电弧也可以是静止的。电极材料可以是铜,并可进行水冷以提供较长使用寿命。电极的结构材料最好是使电极不会因为和所加入的金属氟化物反应而被消耗。如果金属氟化物被加到等离子火焰中,即电弧的下游,就可以使用碳电极。然而如果经过电弧加入金属氟化物,那么最好是用不含碳的材料作为电极的结构材料。正是电弧区提供了本发明中有效的激发能量,它表现为能产生一个所加原料的等离子体的强烈放热。等离子体形成一个从电弧向下,沿着在反应器内流体流动方向延伸的可见辉光区,此辉光区被称为等离子火焰,例如附图中的火焰34。
可以采取一些措施,例如旋转电弧在等离子火焰中,以及如果需要的话在电弧中产生一种湍动混合作用,以获得高操作效率。
气体进料可以直接或间接地被激发,即经受由旋转电弧或其它手段产生的离解能的作用。将一种反应物进料,例如SiF4加料到电弧中(或一种不同设备的电磁场中)是直接暴露的一个例子。将一种气体非反应物加料到电弧中(直接暴露),然后使得到的被激发或离解的气体(等离子体)在电弧下游的等离子火焰中与金属氟化物反应物接触(间接暴露)则是间接暴露的一个例子。使一种反应性气体,例如CO直接暴露于电弧或电磁场,从而使一部分CO解离,然后使激发的CO和金属氟化物反应物接触,这是间接暴露的另一个例子。在又一种实施方案中,首先由一种惰性气体或非反应性气体,例如氩或氦形成等离子体,然后再将金属氟化物,可能还有CO加到等离子火焰中。等离子火焰也可以由直接暴露于等离子反应器中电弧的特定的进料原料,起载气作用的惰性或非反应性气体和/或一种或两种反应物形成。这样本发明就包括了所有这些使进料原料经受热等离子体的离解能量作用(进料原料的激发)的可能性。在进料原料的一种或多种对电极有腐蚀作用的情况下,这些可能性对于延长电极寿命可能是有效的。在将惰性气体加到电弧中形成等离子火焰,并将金属氟化物加料到电弧下游的火焰中时所用的惰性气体的数量对于金属氟化物的数量最好是过量的,以便能提供为离解金属氟化物所需的能量(热量)。金属氟化物的预热能使惰性气体的数量得以降低。然而通常使用至少5摩尔惰性气体/摩尔金属氟化物,而且可以使用过量,例如至少10或20摩尔惰性气体/摩尔金属氟化物。在可用于本发明的设备的另一种实施方案中,等离子体可以在一个电极和一个在碳粒床中或接近碳粒床的相反荷电的电极之间产生,即通常所说的传输电弧法。在这种实施方案中,金属氟化物首先离解成气体金属和反应性氟,从而形成包围传输电弧的等离子体,同时这些气体物质流入并通过碳粒床而形成TFE的前体,即主要在碳粒床中发生反应性氟和碳之间的反应。
从用于产生等离子体的功率输入要求加上如果任何到反应区的进料原料已被预热而可被利用的热能通常可以定量地确定用于激发或激活进料原料以形成热等离子体的能量。
可以通过变化电弧的功率输入和/或经过电弧的原料的加料速度来控制电弧所产生的温度。对于可从反应器得到的特定的功率,调节进料原料的加料速度可以通过暴露于离解能量而使进料原料变成被激发(激活),并变成等离子体的一部分。控制功率输入和加料速度也能确定由其它电气设备产生的等离子体的温度。这样就可以控制气体混合物和碳之间的接触温度。在大气压力下碳粒床41的优选温度为2800-3500℃。氟与像硅,镁,钙和铝这些金属结合得最紧密,而与像铁,铜和锌这些金属结合得较弱。通常当金属/氟键较弱时为解离金属氟化物需要较少的能量(较低的温度)。对任何特定的金属氟化物来说,反应区中较低的压力使解离能在较低温度下发生。压力可以是低于大气压力,例如至少20mmHg,最好至少300mmHg,大气压力或超过大气压力。作为压力影响的例子,如果将四氟化碳加到等离子体中,在大气压力和2700℃的离解程度将类似于在10mmHg和2200℃下得到的离解程度。超过大约2800℃并且在大气压力和平衡条件下,CF4完全解离成CF2:自由基,氟,以及其它与碳和碳/氟有关的物质。正是由于这一离解和负有责任的CF2:自由基的形成使得迅速急冷避免了CF4和其它有关的饱和全氟化碳的重新形成,导致了主要是全氟烯烃,首先是TFE的形成。
对于可使用的氟化物原料范围以及可使用的压力范围来说,相信在解离能(等离子体)的产生中存在的热量将使在大气压力下的温度至少为1500℃。在大气压力下温度更经常是至少3500℃,尤其是至少4500℃。在极端情况下可以使用更高的温度,例如甚至超过10,000℃。金属氟化物如果在室温下不是气体,在这种温度下在等离子体中也将完全或部分挥发。四氟化硅在常温条件下是气体,因此是反应区的一种方便的进料。CaF2在2500℃沸腾,因此依反应区中温度和压力不同在反应区中可以成为一种气体,或气体和液体的混合物。同样取决于特定的氟化物和反应条件的不同,金属氟化物可以成一种气体和液体混合物存在。大约2000℃或更低的温度可以方便地用热电偶来测量。较高的温度,特别是电弧或等离子火焰的温度可通过已知的方法确定,通常是通过对功率输入,进料组成和加料速度的数学分析来估计。
来自等离子体的气体反应混合物所流向的散粒碳的比例最好是足够和金属氟化物的氟原子结合,以便没有氟原子被留下来与金属重新结合再形成金属氟化物。这并不是说到反应区的所有金属氟化物进料在经过此区的一个单程中就全部与碳反应掉。可能希望在经过该区的一个单程中仅反应掉一部分金属氟化物,并将未反应的金属氟化物循环回反应区做进一步转化。但反应的进行最好是使一个单程就足够了,其中至少50%的金属氟化物被除去了它的氟,更好是至少85%,而最好是至少90%。
使用过量的碳导致自由(反应性)氟优先和碳碰撞,形成据信为CF2:自由基的TFE前体,后者在进一步急冷时形成TFE。碳的散粒形状和碳粒的多孔性使得它能为自由氟提供高表面积,从而提高了碳在这方面的效率。虽然有过量很多的碳,但是通常金属氟化物中的金属与碳的反应能力小得多,特别当分布板20以上,即碳反应区的温度被保持在高于金属发生冷凝的温度,或高于金属能够和碳反应形成金属碳化物的温度,例如依特定的气体金属发生冷凝的温度不同至少为1500℃,或至少为2000℃(大气压力)时尤其是这样。氟/碳气体反应混合物随后的急冷引起金属的冷凝,即液化或固化,从而使其处于一种活性较低的状态。在床41中可能存在的大量过量的碳可以是至少20原子碳/2原子氟,而最好是至少100原子碳/2原子氟。
使得到的气体反应混合物迅速冷却到低于500℃的温度,以获得TFE,和相对少量的高级全氟烯烃,特别是六氟丙烯(HFP),以及合乎需要的饱和全氟化碳,例如六氟乙烷。TFE是优选的反应产物,最好能占到从转化的金属氟化物得到的全氟化碳的至少60wt%,更好至少是它的80wt%,尤其是至少90wt%。最好以超过10000℃/sec的速度进行急速冷却(急冷)。
当金属氟化物是氟化硅时,从例如附图所示的急冷室44回收的硅可以有良好的纯度,成为本发明的一种有价值的副产品,尽管对某些特殊应用来说可能还需要进一步纯化。在急冷室中用冷却的硅粒作为急冷颗粒45可以提高硅的回收。从反应得到的硅冷凝到这些颗粒上,增加了颗粒的大小,而由于硅经过任何液态而迅速急冷,因此并不会使硅粒粘结在一起。可以由螺旋输送器46将得到的较大的硅粒从急冷室44中排出,进行冷却,并循环回急冷室以便进一步的硅生长。当硅粒长得太大时可通过循环过程中的过筛将它们排出,并收集在受槽52中,而小的硅粒则作为补充料被加回到急冷室中。在使用其它金属氟化物时,急冷颗粒可以有相同的金属,因此不需要使从金属氟化物中得到的冷凝金属和急冷颗粒分离。
在另一种实施方案中,在急冷室中可使用其它固体材料的颗粒45,例如碳,其后可以用传统方法从这些其它固体材料的颗粒中分离出被冷凝的金属产物。通过短暴露时间可以使碳粒床41中碳化硅的形成降至最少或被避免,同时通过短暴露时间和迅速急冷可以避免在碳粒床47中碳化硅的形成。气体和/或液体也可被用作为部分或全部的急冷介质。
等离子体中存在的任何非气态物质将直接落入并可能通过碳粒床,而且如果它们能通过该床,则可能被收集在螺旋输送器46中。通过孔板20的小孔的任何碳粒也是如此。作为参考,碳的沸点为4827℃,硅为大约2350℃,钙为1480℃,氟化钙为2500℃,四氟化硅为-86℃,而二氧化硅为2330℃。这些物质的熔点如下:碳大约3550℃,硅1410℃,钙840℃,氟化钙1420℃,四氟化硅-90℃,而二氧化硅1720℃。
可以用本领域技术人员所知的任何方法从反应产物中分离出有用的全氟烯烃和饱和碳氟化物,包括蒸馏,吸附,或吸收。可以将不需要的碳氟化物,未转化的金属氟化物和不需要的全氟烯烃循环回等离子体,或直接到反应区中,例如在与碳反应之前经入口管道50循环。例如当作为过程的一种副产物产生了CF4时,可以经管道50将这种碳氟化物循环回等离子火焰。按碳氟化物的总重量计算,急冷后氟/碳反应混合物中CF4的数量通常少于40wt%,更多地是少于20wt%,尤其是少于10wt%。
实例1
本实例举例说明用小型等离子设备从四氟化硅合成四氟乙烯的过程。等离子发生设备是一套Metco(MBN型)单元,等离子枪被安装在由一个水冷铜制圆筒构成的等离子反应器的顶部开孔上,反应器的内径为5.72cm,长度为15.24cm。用一台在下游的真空泵将反应器内的压力保持在25乇。反应器的出口端和一台水冷热交换器相通。等离子体的载气包括到等离子体枪的流量为7.5L/min(标准温度压力)的氩气进料。等离子体电源在500A电流和22V电压下运行,产生11.0KW的功率输入。氩等离子火焰经过反应器的入口端延伸到铜反应器内,能量平衡计算表明在反应器的入口处氩等离子火焰温度(气体整体温度)超过10,000℃。
用两个安装在反应器侧壁上比等离子枪出口低1/4英寸(6.35mm)处的入射喷嘴,以0.2L/min(标准温度压力)流量垂直于氩等离子火焰注入四氟化硅。注入喷嘴的尺寸为2密尔(0.05mm)直径,以便产生超音速和SiF4在等离子火焰中的良好混合,从而引起SiF4的离解和游离氟的形成。一个粒状碳的固定床位于等离子反应器中比等离子枪出口低1/2英寸的位置上,提供与SiF4反应生成四氟乙烯和其它碳氟化物的元素碳。所用的碳是从Aesar得到的成3×6mm挤出颗粒形状的活性碳。装入反应器的粒状碳的总重为27g,得以形成一个厚2.5cm的碳粒固定床。碳粒床由一块石墨支撑板支承,板上钻有小孔,使反应器气体通过时不会产生显著的压降,例如低于10乇,但孔又足够小以便能保持碳颗粒。
SiF4在注入等离子火焰时是处在室温的,通过和氩等离子火焰有效的接触和混合而被迅速地加热。得到的热气体混合物通过碳粒床层,并仍然保持在非常高的温度下。反应产品气流随后在与下游被冷却的反应器壁接触时被冷却,并且在通过水冷热交换器时被进一步冷却到室温。产品气体试样被收集在TEDLAR_聚氟乙烯薄膜袋中,以便进行红外分析。SiF4到碳氟化物的转化率被测定为19%。碳氟化物产物的光谱分析摩尔百分数结果为68mole%的四氟乙烯(C2F4),17mole%的四氟化碳(CF4),10mole%的六氟乙烷(C2F6),以及微量羰基氟化物(2mole%的COF2)和三氟甲烷(3mole%的CHF3)。存在于这些反应产物中的氧和氢相信是来源于粒状碳反应物的。将未反应的SiF4和反应产物CF4及C2F6循环回等离子火焰可以提高SiF4的转化率和TFE的产率。试验结束后保存下来的碳的重量是14.4g,表明已有46.5%的碳汽化和/或转化为碳氟化物。
实例2
在本实例中所需的反应如下:
在本实例中使用的设备和附图中的设备相似,并且比实例1中所述的设备大。在下面的表中给出了本实例的加料速度。对于加入所得到的等离子火焰中的每1摩尔四氟化硅,有5摩尔氩被加到等离子枪中(在相反荷电的电极之间),而且电弧因磁场作用而旋转。这样在大气压力下经过等离子枪的电极加入200g/min氩气,并在火焰中加入104g/min经过预热的四氟化硅,得到的混合温度在6500℃范围中。以24g/min的速度将碳粒(长度和直径为6.4mm)加到碳粒床中。在实验开始时碳粒床中装有480g碳粒,因而为与热的气体等离子体的反应提供了过量很多的碳。通过反应器壁面和所加入碳粒的热损失使碳粒床表面的温度维持在3400℃范围中。随着气体通过碳粒床,额外的热损失使温度进一步降低,在离开支撑板进入急冷室时温度降至大约2700℃。通过和30℃的-100+200目硅粒的接触,将气体急冷。经过一个喷料管以大约2600g/min的速度将这些固体颗粒向上喷入离开碳粒床的热气体中,致使气体和固体的出口温度为大约325℃。出口气体被进一步冷却以便进行分析,并将部分气体连续循环,以帮助急冷硅粒的喷射。固体颗粒被连续地从急冷室底部排出,进一步冷却,然后循环用于出口气体的急冷。急冷颗粒重量增加的分析结果表明有大约27.9g/min的物质被加到这些急冷颗粒上。冷凝并固化的产物组成表示如下。总的物料衡算表明在试验过程中过量的碳以1.9g/min速度被加入到床层中。为保证床不被加满,必须将碳粒的加料速度降为22.1g/min。对于超过94%的被转化的SiF4来说,氟的物料平衡表明有98%终止为碳氟化物,其中85%是四氟乙烯(TFE)。如果仅仅需要TFE,则可将其它碳氟化物分离出来,并循环回等离子过程,以转化为TFE。也可以将未转化的SiF4分离并返回等离子过程。
下面表中的所有数值均以g/min单位表示。被表示成SiF的物料是和金属硅组成的配合物。由于硅粒被用于急冷,从整个急冷床固体中取出一个试样进行固体物分析。下面通过物料平衡得到的分析结果不表示急冷颗粒中硅的数量。
为进行固体物分析,将少量的水缓慢加入到在氮气保护下采集并称重的剩余固体试样中,以便除去SiF配合物,使其进入溶液。在经过水洗除去所有SiF配合物以后,将试样真空干燥并重新称重,以确定其重量损失,当作SiF配合物被报告。将剩余的干燥试样装在炉内的反应管中,并在真空下进行加热,通入低流量的氧气,以查找并烧去任何残余的碳,但在本实例中未发现有碳。将温度保持在600℃以下,使和金属硅的反应降至最少,接着在重新称量已被冷却的试样的重量后,根据差值确定金属硅的数量。
通过一台流量计来监测出口气体的总体积。两次用水洗涤一个已知体积的出口气体,通过以下反应除去SiF4,从而确定出口气体中SiF4的体积量:
SiO2沉淀并留在水溶液中。体积的减少代表了试样中SiF4的数量。在硫酸钙上干燥试样的剩余出口气体以后,在一台气相色谱仪上分析剩余气体。用一台Hewlett-Packard 5880A系列气相色谱仪进行分析。使用一根20英尺长,1/8英寸直径用被1%SP-1000高沸点液体涂渍的60/80目Cabopack @ B装填的不锈钢柱子(自Supelco公司)按本实例的分析中所示进行各个组分的分离。在将试样注入气相色谱仪中以后将柱温在40℃下保持恒定5min,然后以20℃/min的速度将柱温升到180℃。将由气相色谱仪的热导检测器得到的面积百分数转化为出口气体的重量和重量百分数。
组分     进料g/min     产品物流g/min
    氩     200     200.0
    SiF4     104     6.0
    C     24     0.0
    SiF     -     2.0
    Si     -     25.9
    TFE     -     81.3
    CF4     -     5.7
    C2F6     -     2.5
    C3F6     -     1.8
    其它     -     0.9
    总合     328     326.1
实例3
本实例的设备与实例2中所用的设备相似。本实例中所需的反应序列如下:
在下面的表中给出了加料速度和反应结果。对于注入火焰中的每1摩尔经过预热的氟化钙,向等离子枪中加入10摩尔的氦,均在大气压力下。得到的混合温度在7500℃范围中。以12g/min速度将-4+5目碳粒加到480g由类似碳粒组成的床中,从而提供了一个比实例2更大的碳/氟比。和在实例2中的情况一样,到碳粒和通过反应器壁面的热损失将碳粒表面的温度降低到大约3200℃。额外的热损失使进入急冷室的气体温度降至2800℃。在此实例中,也是靠一个从一根喷料管加入急冷室的被冷却的-35+150目碳粒物流将气体急冷。钙和氟化钙在碳粒上冷凝和固化,但是在20min长的试验过程中未看出对急冷过程运行的影响。金属的回收要求与碳分离。使床中的碳粒和任何粘附的钙或氟化钙以大约1100g/min的速度循环,同样使用经冷却的循环产品气体来帮助急冷和输送颗粒。离开急冷室的物料的整体温度低于300℃。未冷凝的出口气体和固体颗粒在离开急冷室以后都被进一步冷却。分析结果表明在试验过程中喷射颗粒增加43.4g/min。在本实例中也必须将碳的加料速度从12g/min降到10.5g/min,以免碳反应区的碳粒床装填过量。从下表中可见几乎90%的氟化钙发生了转化,而在已转化的物料中有90%变成了TFE。由于在此实例中将一个固定数量的碳粒用作为急冷介质,因此在下表中所报告的分析结果是按无碳基表示的。在氮气保护下从被急冷的固体中采集一个称重的试样,缓慢地加水到试样中与钙反应生成氢氧化钙和氢气,由此确定固体产物的量。将氢气收集起来,根据其体积确定试样中游离钙的数量。排出固体试样中的水,并将潮湿固体装在一个称重的真空炉炉管中。将炉温缓慢升到600℃,驱赶出反应和残留水分,因此仅留下CaO,CaF2和碳。再次称重炉管,并放回炉内,使用氧来缓慢地烧去碳,仅留下CaF2和氧化钙。由于游离钙的数量是由氢气发生确定的,因此再次称重时就可以确定试样中氟化钙的数量。
表中所有数值均以g/min为单位。其它一栏包括所有未另外报告的其它碳氟化物。
组分     进料g/min   产品物流g/min
    氦     40     40.0
    CaF2     78     7.0
    C     12     -
    Ca     -     36.4
    TFE     -     40.5
    CF4     -     2.0
    C2F6     -     1.2
    C3F6     -     0.9
    其它     -     0.5
    总合     130     128.5

Claims (10)

1.一种四氟乙烯的制造方法,包括
(a)使不含碳的金属氟化物经受一种等离子体的作用,以使金属氟化物离解成一种金属和反应性氟的气体混合物,
(b)使气体混合物流动,和散粒碳在高于气体混合物中的金属在不含碳时会发生冷凝的温度下紧密接触,从而使所说反应性氟和所说碳相互反应,形成所说四氟乙烯的气态前体,以及
(c)急冷所说气态前体,得到气体四氟乙烯。
2.权利要求1的方法,其中所说等离子体的温度为至少3500℃。
3.权利要求1的方法,其中金属氟化物是一种氟化硅,氟化钙,或氟化钠。
4.权利要求1的方法,其中所说气态金属成一种液体或一种固体从气体四氟乙烯或其前体中被除去。
5.权利要求1的方法,其中等离子体是由一种惰性气体形成的,并有一个火焰部分,通过将金属氟化物加料到所说火焰中,使金属氟化物经受等离子体的作用。
6.权利要求1的方法,并且另外又使CO经受所说等离子体的作用,形成一种所说反应性氟和CO的结合物,其中步骤(b)的所说碳随后与所说结合物反应,形成四氟乙烯的所说前体和CO。
7.权利要求6的方法,并且另外又使从所说碳和在所说等离子体中的所说结合物反应得到的CO循环。
8.权利要求1的方法,其中所说碳和所说反应性氟之间的反应温度低于所说等离子体的温度。
9.权利要求1的方法,其中所说散粒碳成一种床层的形式,而气体混合物的所说流动是通过所说床层的,另外随着散粒碳因为和所说反应性氟反应而被消耗,向所说床层补充散粒碳。
10.化学反应器,包括
(a)限定一个反应室的装置,
(b)在所说反应室的一端形成一个等离子体的装置,
(c)在所说反应室的相对端容纳一种散粒反应物的装
置,
(d)使气体流过所说等离子体,从而使其成一个火焰延伸到所说反应室中,并指向所说反应室的所说相对端,在所说流动气体和所说散粒反应物之间提供接触的装置,所说容纳装置包括用于支承所说散粒反应物,同时又允许流动气体流过而离开所说反应室的多孔装置,以及
(e)在通过所说多孔装置后接受所说流动气体,以便急冷所说气体的装置。
CN96192774A 1995-03-31 1996-03-29 四氟乙烯的制备 Expired - Fee Related CN1090164C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US41496795A 1995-03-31 1995-03-31
US08/414,967 1995-03-31
US08/621,551 US5684218A (en) 1995-03-31 1996-03-25 Preparation of tetrafluoroethylene
US08/621,551 1996-03-25

Publications (2)

Publication Number Publication Date
CN1179143A true CN1179143A (zh) 1998-04-15
CN1090164C CN1090164C (zh) 2002-09-04

Family

ID=27022804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96192774A Expired - Fee Related CN1090164C (zh) 1995-03-31 1996-03-29 四氟乙烯的制备

Country Status (7)

Country Link
EP (1) EP0819109B1 (zh)
JP (1) JP4094055B2 (zh)
CN (1) CN1090164C (zh)
AU (1) AU5436096A (zh)
DE (1) DE69615011T2 (zh)
IN (1) IN187706B (zh)
WO (1) WO1996030322A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112441604A (zh) * 2019-08-28 2021-03-05 多氟多化工股份有限公司 一种制备高纯氟化物的方法
CN114288961A (zh) * 2021-12-08 2022-04-08 核工业西南物理研究院 一种热等离子体还原氟化物的装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919015B2 (en) 2002-12-16 2005-07-19 3M Innovative Properties Company Process for manufacturing fluoroolefins
CA3236636A1 (en) * 2021-11-02 2023-05-11 Universiteit Antwerpen Device and method for gas conversion
BE1030542B1 (nl) * 2022-05-18 2023-12-18 D Crbn Bv Verbeterde co2 naar co conversie methode en systeem

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2709191A (en) * 1954-05-14 1955-05-24 Du Pont Preparation of tetrafluoroethylene by reacting carbon with a binary silicon fluoride
US2835711A (en) * 1955-07-18 1958-05-20 Gen Electric Preparation of fluorocarbons and chlorofluorocarbons
US3081245A (en) * 1960-03-17 1963-03-12 Du Pont Method for the preparation of tetrafluoroethylene
US5611896A (en) * 1993-10-14 1997-03-18 Atomic Energy Corporation Of S. Africa Limited Production of fluorocarbon compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112441604A (zh) * 2019-08-28 2021-03-05 多氟多化工股份有限公司 一种制备高纯氟化物的方法
CN112441604B (zh) * 2019-08-28 2022-08-12 多氟多新材料股份有限公司 一种制备高纯氟化物的方法
CN114288961A (zh) * 2021-12-08 2022-04-08 核工业西南物理研究院 一种热等离子体还原氟化物的装置及方法

Also Published As

Publication number Publication date
JP4094055B2 (ja) 2008-06-04
DE69615011D1 (de) 2001-10-11
JPH11504621A (ja) 1999-04-27
DE69615011T2 (de) 2002-06-06
EP0819109B1 (en) 2001-09-05
CN1090164C (zh) 2002-09-04
EP0819109A1 (en) 1998-01-21
IN187706B (zh) 2002-06-08
AU5436096A (en) 1996-10-16
WO1996030322A1 (en) 1996-10-03

Similar Documents

Publication Publication Date Title
EP0799171B1 (en) Process for the preparation of perfluorocarbons
JP4988741B2 (ja) 流動床反応器中で粒状の多結晶ケイ素を製造する方法および装置
CN1182456A (zh) 快速骤冷反应器和方法
US6395248B1 (en) Process for preparing polysilicon using exothermic reaction
US20070248521A1 (en) Production of silicon through a closed-loop process
JPH06171941A (ja) 四塩化チタンの酸化法
JPH0264006A (ja) 太陽のシリコンの製造方法
CN110540208A (zh) 一种生产硅的方法
RU2127719C1 (ru) Способ получения фторированных мономеров
CN1179143A (zh) 四氟乙烯的制备
JP3967376B2 (ja) フッ化カルボニルの製造
US7252744B2 (en) Treatment of fluorocarbon feedstocks
AU2001233994A1 (en) Treatment of fluorocarbon feedstocks
US5684218A (en) Preparation of tetrafluoroethylene
CN1491740A (zh) 热合成的装置和方法
CA2179773A1 (en) Method for reforming organics into shorter-chain unsaturated organic compounds
CN1180346A (zh) 四氟乙烯的制备
US5633414A (en) Preparation of tetrafluoroethylene
CN1292037A (zh) 铝的生产方法
RU2247596C1 (ru) Реактор для получения летучих галогенидов металлов
WO2000017135A1 (en) Halocarbon compound production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020904

Termination date: 20100329