CN117878143A - 沟槽栅型igbt - Google Patents

沟槽栅型igbt Download PDF

Info

Publication number
CN117878143A
CN117878143A CN202211428634.8A CN202211428634A CN117878143A CN 117878143 A CN117878143 A CN 117878143A CN 202211428634 A CN202211428634 A CN 202211428634A CN 117878143 A CN117878143 A CN 117878143A
Authority
CN
China
Prior art keywords
emitter
region
trench
gate
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211428634.8A
Other languages
English (en)
Inventor
冈田哲也
新井宽己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Will Semiconductor Ltd
Original Assignee
Will Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Will Semiconductor Ltd filed Critical Will Semiconductor Ltd
Publication of CN117878143A publication Critical patent/CN117878143A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thyristors (AREA)

Abstract

本发明的课题在于缩短关断所需的时间而减小能耗。沟槽型IGBT包含作为多个沟槽(120)的在内部具有栅极区域的多个栅极沟槽(120G)及具有连接于发射电极的发射极区域的多个发射极沟槽(120E)。具有与沟槽(120)相邻的台面区且不作为信道发挥功能的第2台面区域、及连接所述发射电极的接点(132),且第2台面区域夹在栅极沟槽(120G)与发射极沟槽(120E)之间。

Description

沟槽栅型IGBT
技术领域
本发明涉及一种沟槽栅型IGBT,尤其涉及关断特性的改善。
背景技术
以往,作为驱动大功率电动机的电路的开关元件,广泛利用IGBT(Insulated GateBipolar Transistor,绝缘栅双极晶体管)。
例如,专利文献1中示出,在沟槽栅型IGBT中,在IGBT的信道的下侧设置累积空穴的载流子存储(Carrier Store)层。
[背景技术文献]
[专利文献]
[专利文献1]日本专利特开2005-347289号公报
发明内容
[发明要解决的问题]
这里,如果设置载流子存储层,那么能够降低IGBT接通时的集电极-发射极间电压VCE。然而,在IGBT关断时,受残留的空穴的影响,关断所需的时间变长,从而能耗变大。
[解决问题的技术手段]
本发明的沟槽栅型IGBT具有:半导体衬底;发射电极,形成在所述半导体衬底的正面上;集电极,形成在所述半导体衬底的背面上;P型的P集电极层,形成在所述集电极之上的所述半导体衬底的背面侧;N型的N漂移层,位于所述半导体衬底中的所述P集电极层之上;N型的载流子存储层,形成在所述N漂移层之上,且杂质浓度高于所述N漂移层;P型的P主体层,形成在所述半导体衬底的所述载流子存储层的正面侧;多个栅极沟槽,是从所述半导体衬底的正面侧介置台面区而离散地形成并朝向背面侧延伸到所述N漂移层的多个沟槽,且具有隔着绝缘膜形成在内部的栅极区域;多个发射极沟槽,是从所述半导体衬底的正面侧介置台面区而离散地形成并朝向背面侧延伸到所述N漂移层的多个沟槽,且具有隔着绝缘膜形成在内部并且连接于所述发射电极的发射极区域;第1台面区域,是所述台面区的所述P主体层,利用接点连接于所述发射电极,并且通过在正面侧形成所述发射极区域而作为信道发挥功能;及第2台面区域,是所述台面区的所述P主体层,利用接点连接于所述发射电极,并且通过不在正面侧形成所述发射极区域而不作为信道发挥功能;且所述第2台面区域夹在所述栅极沟槽与所述发射极沟槽之间。
所述栅极沟槽与所述发射极沟槽排列配置,在将所述栅极沟槽表述为G,且将所述发射极沟槽表述为E的情况下,可以具有GGEGEGG排列。
另外,本发明的沟槽栅型IGBT具有:半导体衬底;发射电极,形成在所述半导体衬底的正面上;集电极,形成在所述半导体衬底的背面上;P型的P集电极层,形成在所述集电极之上的所述半导体衬底的背面侧;N型的N漂移层,位于所述半导体衬底中的所述P集电极层之上;N型的载流子存储层,形成在所述N漂移层之上,且杂质浓度高于所述N漂移层;P型的P主体层,形成在所述半导体衬底的所述载流子存储层的正面侧;多个栅极沟槽,是从所述半导体衬底的正面侧介置台面区而离散地形成并朝向背面侧延伸到所述N漂移层的多个沟槽,且具有隔着绝缘膜形成在内部的栅极区域;多个发射极沟槽,是从所述半导体衬底的正面侧介置台面区而离散地形成并朝向背面侧延伸到所述N漂移层的多个沟槽,且具有隔着绝缘膜形成在内部并且连接于所述发射电极的发射极区域;第1台面区域,是所述台面区的所述P主体层,利用接点连接于所述发射电极,并且通过在正面侧形成所述发射极区域而作为信道发挥功能;及第2台面区域,是所述台面区的所述P主体层,利用接点连接于所述发射电极,并且通过不在正面侧形成所述发射极区域而不作为信道发挥功能;且所述第1台面区域及所述第2台面区域夹在所述栅极沟槽与所述发射极沟槽之间。
所述栅极沟槽与所述发射极沟槽排列配置,在将所述栅极沟槽表述为G,且将所述发射极沟槽表述为E的情况下,可以具有GEGEGEG排列。
所述接点可以包含:配线部,在从所述发射电极延伸到所述P主体层的中间部分的接触孔中延伸;及接点区域,设置在所述配线部的前端侧的所述P主体层内,且杂质浓度高。
[发明的效果]
根据本发明的沟槽型IGBT,能够缩短关断所需的时间,减小关断时的能耗。
附图说明
图1是示意性地表示实施方式的沟槽栅型IGBT的构成的剖视图。
图2是示意性地表示比较例的沟槽栅型IGBT的构成的剖视图。
图3是表示实施方式及比较例中的关断时的电流电压特性的图。
图4是示意性地表示其它实施方式的沟槽栅型IGBT的构成的剖视图。
图5是表示其它实施方式及比较例中的关断时的电流电压特性的图。
图6是说明连接接点的台面区的截面位置的图。
图7是说明关断时的时刻的图。
图8是表示G-G结构中的空穴提取(空穴电流密度)的图。
图9是表示G-E结构中的空穴提取(空穴电流密度)的图。
图10是表示E-E结构中的空穴提取(空穴电流密度)的图。
图11是表示实施方式的IGBT的制造步骤的图。
具体实施方式
以下,参照附图,在下文中对本发明的实施方式进行说明。此外,以下的实施方式并不限定本发明,另外,将多个例示选择性地组合而成的构成也包含在本发明中。
“IGBT的构成”
图1是示意性地表示实施方式的沟槽栅型IGBT的构成的剖视图。
在半导体衬底100的正面上隔着相关绝缘膜102形成发射电极104。半导体衬底100例如使用FZ(Floating Zone,浮区)晶圆等硅(Si)晶圆,但也可为碳化硅(SiC)的晶圆等。相关绝缘膜102使用氧化硅等绝缘性材料。发射电极104通常使用铝等金属材料。
在半导体衬底100的背面上形成集电极106。集电极106通常使用铝等金属材料。
在集电极106上侧的半导体衬底的背面部形成杂质浓度高的P+的P集电极层110,并在所述P集电极层110之上形成杂质浓度高于下述N漂移层114的N+的场终止层112。它们通过半导体衬底100内的N型、P型的区域掺杂各类型的杂质而形成。P集电极层110作为集电极区域发挥功能,场终止层112防止断开时的耗尽层的扩大。
由N型的半导体衬底100构成的N漂移层114位于场终止层112之上。该N漂移层114是半导体衬底100的主体,具有作为IGBT的PNP双极晶体管的基极的功能。
在所述N漂移层114之上设置有杂质浓度高于N漂移层114的NN+的载流子存储层116。该载流子存储层116具有通过累积空穴来降低导通电阻并降低导通时的VCE(Collector Emitter Voltage,集电极-发射极间电压)的功能。
在载流子存储层116之上设置杂质浓度相对较低的P-的P主体层118。该P主体层118作为PNP双极晶体管的发射极发挥功能。
另外,从半导体衬底100的正面朝向下方形成有多个沟槽120。沟槽120从半导体衬底100的正面(相关绝缘膜102的下侧)朝向下方延伸,贯通P主体层118、载流子存储层116并到达N漂移层114。
沟槽120的周壁利用例如包含氧化硅的绝缘膜而与周围绝缘,且在内部填充有导电性的多晶硅等。在该例中,包括内部与栅极电极(未图示)连接且形成栅极区域的栅极沟槽120G、及连接于发射电极104且形成发射极区域的发射极沟槽120E。图中,示意性地示出了连接栅极沟槽120G与栅极电极的配线,发射极沟槽120E与发射电极104以发射电极104的一部分延长而连接的方式示出。
另外,在P主体层118的正面侧且与栅极沟槽120G相邻的区域形成杂质浓度高的N+的发射极区域122。该发射极区域122与发射电极104电连接。例如,在未图示的部分,相关绝缘膜102被去除而发射电极104与发射极区域122直接连接。
由此,发射极区域122与载流子存储层116之间的区域作为FET(Field EffectTransistor,场效应晶体管)的信道发挥功能,当FET导通时,作为载流子的电子从发射极区域经由载流子存储层116流入到N漂移层114。
另外,接点132从发射电极104延伸并连接到发射极沟槽120E的内部。该接点132由与发射电极104相同的铝等金属形成,形成接触孔之后,在其内部沉积金属。由此,发射电极104与发射极沟槽120E连接。
另外,来自发射电极104的接点132配置成延伸到形成在多个沟槽120之间的各台面区的P主体层118。并且,该接点132连接于(P+)接点区域134,所述(P+)接点区域134形成在台面区的P主体层118的内部(中间部分)且杂质浓度高。因此,发射电极104电连接于接点132、接点区域134,在关断时能够将积累在N漂移层114内的空穴经由P主体层118提取到发射电极。
此处,在本实施方式中,不仅在正面部设置形成有发射极区域122的作为信道发挥功能的P主体层118,在未形成发射极区域122而不作为信道发挥功能的P主体层118也设置接点区域134,并通过接点132而连接于发射电极104。
此外,栅极沟槽120G的内部连接于另外设置的栅极电极,栅极沟槽120G的周壁的绝缘膜作为栅极绝缘膜发挥功能。
在图1的IGBT中,将栅极沟槽表示为G,且将发射极沟槽表示为E时,沟槽120的排列成为“GGEGEGG”,因此,称为GGEGEGG排列。
“IGBT的动作”
在向集电极106与发射电极104之间施加电压(例如,对集电极106施加400V,对发射电极104施加0V)的状态下,对栅极沟槽120G施加正电压(例如,15V)。此外,所述集电极106的施加电压400V只是一例,根据应用对象,也可能是10V等低电压。
由此,在栅极沟槽120G的周边的信道产生反转层而FET导通,从发射极区域122朝向N漂移层114的电子电流流动。也就是说,P主体层118的P区域通过将栅极沟槽120G设为+,在栅极沟槽120G的侧壁处累积-,通过该信道区域从P型反转成N型,电流流动到此处。由此,PNP双极晶体管导通,从集电极侧对N漂移层114供给空穴,从发射极侧供给电子,IGBT导通。也就是说,通过空穴与电子两者移动,从集电极106朝向发射电极104的电流流动。
另外,通过场终止层112,能够抑制耗尽层扩展,因此,能够减小整体的厚度。
在本实施方式的IGBT中,不仅设置栅极沟槽120G,还设置发射极沟槽120E,并且在P主体层118中的正面设置不存在发射极区域122的区域。
也就是说,与栅极沟槽120G相邻的P主体层118区域且正面侧存在发射极区域122的区域作为信道发挥功能。将该区域称为第1台面区域。因此,该栅极区域(图1中的IGBT栅极)作为IGBT的栅极发挥功能。
另一方面,正面不存在发射极区域122的P主体层118即便与栅极沟槽120G相邻,也不作为信道发挥功能,进而,与发射极沟槽120E相邻的区域也不作为信道发挥功能。将该区域称为第2台面区域。因此,该非栅极区域(图1中的IGBT非栅极)不作为IGBT的栅极发挥功能。在该非栅极区域中,栅极沟槽120G与发射极沟槽120E电容耦合。因此,能够置换为IGBT的栅极-发射极电容,从而能够减少镜像电容。
尤其是,在本实施方式中,通过在非栅极区域中交替地配置栅极沟槽120G与发射极沟槽120E,能够有效地减少镜像电容。
进而,在本实施方式的IGBT中具有接点132,由此,也连接于不作为信道发挥功能的P主体层118。将IGBT关断时,能够将残留在漂移层114内的空穴提前提取到发射电极104。此外,接点132也配置在作为信道发挥功能的P主体层118,此处,关断时也能够提取空穴。另外,在非栅极区域配置有栅极沟槽120G,但也同样从该栅极沟槽120G周边的P主体层118提取空穴。
尤其是,在栅极沟槽120G与发射极沟槽120E之间的台面区,有效地经由接点132提取空穴。在G-G及E-E结构的情况下,在横向上观察时,台面区部的电位相同,但在G-E的情况下,在横向上产生电位差。由此,能够有效地提取空穴。
<比较例的构成>
在图2中表示比较例的构成。在该比较例中,连接发射电极104与P主体层118的接点132只设置在形成有发射极区域122的作为信道发挥功能的区域。也就是说,在未设置发射极区域122的台面区未设置接点132。因此,关断时无法充分地提取空穴,导致空穴残留,需要较长时间才能断开。
<关断时的特性>
图3是表示图1的实施方式与图2的比较例中的关断时的电流电压特性的图。实线表示实施方式的VCE、VGE、IC,虚线表示比较例的VCE、VGE、IC。
在比较例中,集电极-发射极间电压VCE从时间t2附近开始上升,过冲并保持固定。栅极-发射极间电压VGE在与VCE超过最大点的时刻相同的时刻开始减少。另外,集电极电流IC在VCE成为电源电压的时间点开始减少。
另一方面,在实施方式中,集电极-发射极间电压VCE从远在时间t2之前的t1附近开始上升,过冲并保持固定。此处,VCE的上升斜率大于比较例,急剧地上升。栅极-发射极间电压VGE也从时间t1附近开始减少,缓慢地持续减少。集电极电流IC在时间t1附近急剧地减少,提前变为大致0。
在实施方式中,通过从P主体层118快速地提取空穴而VCE急剧地上升,从而IC急剧地减少。
关断时的消耗能量Eoff是Eoff=VCE*IC×时间(从VCE开始上升后到IC切断为止的时间),在实施方式中,VCE急剧地上升,因此,消耗能量被抑制得较低。根据图3所示的模拟结果,能够将功耗削减55%。
像这样,根据本实施方式的IGBT,设置不作为IGBT的栅极发挥功能的发射极沟槽或栅极沟槽,并将与这些沟槽相邻的不作为信道发挥功能的P主体层118利用接点132连接到发射电极或栅极电极,由此,能够从该P主体层118提取空穴。因此,根据本实施方式,能够高速地进行IGBT的关断,由此,能够抑制关断时的能耗。
<其它构成例>
图4是表示其它实施方式的IGBT的构成的图。在该例中,关于沟槽120,交替地配置有栅极沟槽120G与发射极沟槽120E。并且,在沟槽120间的台面区的所有P主体层118均设置接点132及接点区域134,而连接到发射电极104。
在图4的IGBT中,将栅极沟槽表示为G,且将发射极沟槽表示为E时,沟槽120的排列成为“GEGEGEG”,因此,称为GEGEGEG排列。
通过这种构成,也与所述实施方式同样地,能够在关断时快速地提取空穴。尤其是,在该实施方式中,信道部也设为栅极沟槽120G与发射极沟槽120E对向的GE结构,由此,能够更快地提取空穴。
图5是与图3相同的图,是表示图4的实施方式与图2的比较例中的关断时的电流电压特性的图。实线表示图4的实施方式的VCE、VGE、IC,虚线表示比较例的VCE、VGE、IC。
像这样,根据图5的构成,IGBT的关断更加提前完成。由此,关断时的功耗能够削减53%。
<GE结构>
在图6~图10中对与栅极沟槽120G和发射极沟槽120E的排列对应的空穴提取的特性进行说明。图6是说明连接接点132的台面区的截面位置的图。将栅极沟槽120G与栅极沟槽120G之间的台面区表示为G-G,将栅极沟槽120G与发射极沟槽120E之间的台面区表示为G-E,将发射极沟槽120E与发射极沟槽120E之间的台面区表示为E-E。图7是说明关断时的时刻的图,示出关断开始时T0、空穴提取开始T1、空穴提取T2、空穴提取结束T3这4个观测点。
图8是表示G-G结构中的空穴提取(空穴电流密度)的图,图9是表示G-E结构中的空穴提取(空穴电流密度)的图,图10是表示E-E结构中的空穴提取(空穴电流密度)的图。
在图8的G-G结构中,在从稳定状态关断时,从信道部的接点132提取很多空穴。
在图9的G-E结构中,积累的空穴在镜像区间的初始阶段被快速提取。然后,关断时再次提取N漂移层的空穴。
在图10的E-E结构中,即使在镜像区间,也不能将积累在正面侧的空穴完全提取。
可知通过像这样将台面区设为G-E结构并将接点132连接到此处,能够有效地在关断时提取空穴。
<制造步骤>
图6是表示实施方式的IGBT的制造步骤的图。首先,准备半导体衬底100,并投入到制造步骤(S11)。作为半导体衬底100,例如为FZ(浮区(Floating Zone))晶圆,且利用N型。
首先,将正面侧氧化而形成相关绝缘膜102(S12)。此外,为了在1片晶圆中制作多个元件(在该情况下为IGBT),宜在该阶段进行元件分离的处理。
接着,通过从正面侧掺杂P型杂质,形成P+的P主体层118(s13)。通过从正面侧的蚀刻而形成沟槽(S14),并在所形成的沟槽的壁面形成氧化膜(S15)。如果是栅极沟槽,那么该氧化膜成为栅极绝缘膜。然后,使多晶硅沉积在沟槽的内部(S16)。该多晶硅为导电性。
接着,通过注入N型杂质而形成载流子存储层(CS层)116(S17)。然后,通过从正面侧注入N型杂质而形成发射极区域(S18)。
通过从正面侧进行蚀刻而形成接触孔,通过注入P型杂质而形成接点区域134。接着,通过使金属沉积,而形成也延伸到接触孔内的发射电极104(S20)。然后,利用钝化膜覆盖正面侧(S21)。
接着,对背面侧进行研磨(S22),从背面侧依序形成场终止层112、P集电极层110(S22、S24)。然后,通过使金属沉积而形成集电极106(S24)。
以这种方式形成IGBT,接着,对它进行各种检查(S25),结束制造步骤。
[符号的说明]
100 半导体衬底
102 相关绝缘膜
104 发射电极
106 集电极
110 集电极层
110 P集电极层
112 场终止层
114 N漂移层
116 载流子存储层
118 P主体层
120 沟槽
120E 发射极沟槽
120G 栅极沟槽
122 发射极区域
132 接点
134 接点区域。

Claims (5)

1.一种沟槽栅型IGBT,具有:
半导体衬底;
发射电极,形成在所述半导体衬底的正面上;
集电极,形成在所述半导体衬底的背面上;
P型的P集电极层,形成在所述集电极之上的所述半导体衬底的背面侧;
N型的N漂移层,位于所述半导体衬底中的所述P集电极层之上;
N型的载流子存储层,形成在所述N漂移层之上,且杂质浓度高于所述N漂移层;
P型的P主体层,形成在所述半导体衬底的所述载流子存储层的正面侧;
多个栅极沟槽,是从所述半导体衬底的正面侧介置台面区而离散地形成并朝向背面侧延伸到所述N漂移层的多个沟槽,且具有隔着绝缘膜形成在内部的栅极区域;
多个发射极沟槽,是从所述半导体衬底的正面侧介置台面区而离散地形成并朝向背面侧延伸到所述N漂移层的多个沟槽,且具有隔着绝缘膜形成在内部且连接于所述发射电极的发射极区域;
发射极区域,是与所述栅极沟槽相邻的所述台面区,形成在所述P主体层的正面侧,且与所述发射电极连接;
第1台面区域,是所述台面区的所述P主体层,利用接点连接于所述发射电极,并且通过在正面侧形成所述发射极区域而作为信道发挥功能;及
第2台面区域,是所述台面区的所述P主体层,利用接点连接于所述发射电极,并且通过不在正面侧形成所述发射极区域而不作为信道发挥功能;且
所述第2台面区域夹在所述栅极沟槽与所述发射极沟槽之间。
2.根据权利要求1所述的沟槽栅型IGBT,其中
所述栅极沟槽与所述发射极沟槽排列配置,在将所述栅极沟槽表述为G,且将所述发射极沟槽表述为E时,具有GGEGEGG排列。
3.一种沟槽栅型IGBT,具有:
半导体衬底;
发射电极,形成在所述半导体衬底的正面上;
集电极,形成在所述半导体衬底的背面上;
P型的P集电极层,形成在所述集电极之上的所述半导体衬底的背面侧;
N型的N漂移层,位于所述半导体衬底中的所述P集电极层之上;
N型的载流子存储层,形成在所述N漂移层之上,且杂质浓度高于所述N漂移层;
P型的P主体层,形成在所述半导体衬底的所述载流子存储层的正面侧;
多个栅极沟槽,是从所述半导体衬底的正面侧介置台面区而离散地形成并朝向背面侧延伸到所述N漂移层的多个沟槽,且具有隔着绝缘膜形成在内部的栅极区域;
多个发射极沟槽,是从所述半导体衬底的正面侧介置台面区而离散地形成并且朝向背面侧延伸到所述N漂移层的多个沟槽,且具有隔着绝缘膜形成在内部且连接于所述发射电极的发射极区域;
发射极区域,是与所述栅极沟槽相邻的所述台面部分,且形成在所述P主体层的正面侧,与所述发射电极连接;
第1台面区域,是所述台面区的所述P主体层,利用接点连接于所述发射电极,并且通过在正面侧形成所述发射极区域而作为信道发挥功能;及
第2台面区域,是所述台面区的所述P主体层,利用接点连接于所述发射电极,并且通过不在正面侧形成所述发射极区域而不作为信道发挥功能;且
所述第1台面区域及第2台面区域夹在所述栅极沟槽与所述发射极沟槽之间。
4.根据权利要求3所述的沟槽栅型IGBT,其中
所述栅极沟槽与所述发射极沟槽排列配置,在将所述栅极沟槽表述为G,且将所述发射极沟槽表述为E时,具有GEGEGEG排列。
5.根据权利要求1至4中任一项所述的沟槽栅型IGBT,其中
所述接点包含:配线部,在从所述发射电极延伸到所述P主体层的中间部分的接触孔中延伸;及接点区域,设置在所述配线部的前端侧的所述P主体层内,且杂质浓度高。
CN202211428634.8A 2022-10-11 2022-11-15 沟槽栅型igbt Pending CN117878143A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-163011 2022-10-11
JP2022163011A JP2024056259A (ja) 2022-10-11 2022-10-11 トレンチゲートタイプigbt

Publications (1)

Publication Number Publication Date
CN117878143A true CN117878143A (zh) 2024-04-12

Family

ID=90573582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211428634.8A Pending CN117878143A (zh) 2022-10-11 2022-11-15 沟槽栅型igbt

Country Status (4)

Country Link
US (1) US20240120390A1 (zh)
JP (1) JP2024056259A (zh)
CN (1) CN117878143A (zh)
TW (1) TW202416537A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118431271A (zh) * 2024-07-02 2024-08-02 深圳平创半导体有限公司 一种沟槽栅场截止型igbt及其版图结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118431271A (zh) * 2024-07-02 2024-08-02 深圳平创半导体有限公司 一种沟槽栅场截止型igbt及其版图结构

Also Published As

Publication number Publication date
TW202416537A (zh) 2024-04-16
JP2024056259A (ja) 2024-04-23
US20240120390A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US5883413A (en) Lateral high-voltage DMOS transistor with drain zone charge draining
JPH10178176A (ja) トレンチ・ゲート構造を有するトレンチ・ゲート形絶縁ゲート・バイポーラ・トランジスタ
CN110914997A (zh) 具有locos沟槽的半导体器件
US9324817B2 (en) Method for forming a transistor device having a field electrode
KR101763167B1 (ko) 반도체 장치
EP3474330B1 (en) Lateral insulated-gate bipolar transistor and manufacturing method therefor
KR20150076814A (ko) 전력 반도체 소자
CN112038401A (zh) 一种绝缘栅双极性晶体管结构及其制备方法
CN114050184A (zh) 低米勒电容功率器件及其制造方法
JP2014112625A (ja) 電力半導体素子およびその製造方法
KR20150051067A (ko) 전력 반도체 소자 및 그의 제조 방법
CN117878143A (zh) 沟槽栅型igbt
KR100278461B1 (ko) 반도체 장치 및 그 제조 방법
JP2002261281A (ja) 絶縁ゲートバイポーラトランジスタの製造方法
US5925900A (en) Emitter-switched thyristor having a floating ohmic contact
KR20150069117A (ko) 전력 반도체 소자
KR20140118541A (ko) 전력 반도체 소자 및 그 제조 방법
JP4761011B2 (ja) サイリスタを有する半導体装置及びその製造方法
CN112713187B (zh) 半导体装置
CN110504315B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
KR20150061972A (ko) 전력 반도체 소자
JP7387562B2 (ja) 半導体素子および半導体装置
CN110931555B (zh) 半导体装置
US11776955B2 (en) Semiconductor device
CN118825054A (zh) 沟槽栅极型igbt及其驱动方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication