CN117855145A - Source-drain interconnection method of self-aligned transistor, self-aligned transistor and device - Google Patents

Source-drain interconnection method of self-aligned transistor, self-aligned transistor and device Download PDF

Info

Publication number
CN117855145A
CN117855145A CN202311694549.0A CN202311694549A CN117855145A CN 117855145 A CN117855145 A CN 117855145A CN 202311694549 A CN202311694549 A CN 202311694549A CN 117855145 A CN117855145 A CN 117855145A
Authority
CN
China
Prior art keywords
source
transistor
drain
dielectric layer
interlayer dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311694549.0A
Other languages
Chinese (zh)
Inventor
吴恒
王润声
黎明
卢浩然
孙嘉诚
黄如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202311694549.0A priority Critical patent/CN117855145A/en
Publication of CN117855145A publication Critical patent/CN117855145A/en
Priority to PCT/CN2024/110462 priority patent/WO2025031417A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0149Manufacturing their interconnections or electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The application provides a source-drain interconnection method of a self-aligned transistor, the self-aligned transistor and a device, wherein the method comprises the following steps: forming an active structure on a semiconductor substrate, wherein the active structure comprises a first active structure and a second active structure; forming a first source-drain structure, a first interlayer dielectric layer and first source-drain metal in sequence based on the first active structure, wherein the first interlayer dielectric layer wraps the first active structure, the first source-drain structure and the first source-drain metal; rewinding and removing the semiconductor substrate; forming a second source-drain structure, a second interlayer dielectric layer and second source-drain metal in sequence based on the second active structure, wherein the second active structure, the second source-drain structure and the second source-drain metal are wrapped by the second interlayer dielectric layer; the first source drain metal and the second source drain metal are communicated through an interconnection through hole structure, and the interconnection through hole structure penetrates through the first interlayer dielectric layer and the second interlayer dielectric layer. By the method and the device, the difficulty in controlling etching time in a source-drain interconnection scheme can be reduced.

Description

自对准晶体管的源漏互连方法、自对准晶体管及器件Source-drain interconnection method of self-aligned transistor, self-aligned transistor and device

技术领域Technical Field

本申请涉及半导体领域,尤其涉及一种自对准晶体管的源漏互连方法、自对准晶体管及器件。The present application relates to the semiconductor field, and in particular to a source-drain interconnection method of a self-aligned transistor, a self-aligned transistor and a device.

背景技术Background technique

在摩尔定律不断深化的当下,继续推进晶体管尺寸微缩是当前业界研发的热点问题。堆叠晶体管通过将两层或多层晶体管在垂直空间内集成,实现进一步提升晶体管集成密度,成为延续集成电路尺寸微缩的重要技术之一。As Moore's Law continues to deepen, continuing to promote the miniaturization of transistor size is a hot issue in the current industry research and development. Stacked transistors integrate two or more layers of transistors in a vertical space to further increase the integration density of transistors, becoming one of the important technologies to continue the miniaturization of integrated circuit size.

在采用传统的顺序(sequential)方案制备堆叠晶体管(stacked transistor)时,存在以下技术难点:在解决上下层晶体管源漏互连的问题时,需要精准控制刻蚀时间以保证下层晶体管的源漏接触金属的深度。When using the traditional sequential method to prepare stacked transistors, there are the following technical difficulties: when solving the problem of source-drain interconnection between upper and lower transistors, it is necessary to accurately control the etching time to ensure the depth of the source-drain contact metal of the lower transistor.

发明内容Summary of the invention

本申请提供一种自对准晶体管的源漏互连方法、自对准晶体管及器件,以降低在源漏互连方案中对刻蚀时间的控制难度。The present application provides a source-drain interconnection method of a self-aligned transistor, a self-aligned transistor and a device, so as to reduce the difficulty of controlling the etching time in a source-drain interconnection scheme.

第一方面,本申请实施例提供一种自对准晶体管的源漏互连方法,上述方法包括:在半导体衬底上形成有源结构,有源结构包括第一有源结构和第二有源结构;基于第一有源结构,依次形成第一源漏结构、第一层间介质层和第一源漏金属,第一层间介质层包裹第一有源结构、第一源漏结构和第一源漏金属;倒片并去除半导体衬底;基于第二有源结构,依次形成第二源漏结构、第二层间介质层和第二源漏金属,第二层间介质层包裹第二有源结构、第二源漏结构和第二源漏金属;其中,第一源漏金属和第二源漏金属通过互连通孔结构连通,互连通孔结构贯穿第一层间介质层和第二层间介质层。In a first aspect, an embodiment of the present application provides a method for source-drain interconnection of a self-aligned transistor, the method comprising: forming an active structure on a semiconductor substrate, the active structure comprising a first active structure and a second active structure; based on the first active structure, forming a first source-drain structure, a first interlayer dielectric layer and a first source-drain metal in sequence, the first interlayer dielectric layer wrapping the first active structure, the first source-drain structure and the first source-drain metal; flipping the semiconductor substrate and removing it; based on the second active structure, forming a second source-drain structure, a second interlayer dielectric layer and a second source-drain metal in sequence, the second interlayer dielectric layer wrapping the second active structure, the second source-drain structure and the second source-drain metal; wherein the first source-drain metal and the second source-drain metal are connected through an interconnection through-hole structure, and the interconnection through-hole structure runs through the first interlayer dielectric layer and the second interlayer dielectric layer.

在一些可能的实施方式中,基于第一有源结构,依次形成第一源漏结构、第一层间介质层和第一源漏金属,包括:刻蚀第一有源结构的一部分,以形成第一源漏结构;在第一有源结构和第一源漏结构上沉积半导体材料,以形成第一层间介质层;刻蚀第一层间介质层的第一部分,以形成第一源漏金属;刻蚀第一层间介质层的第二部分,以形成第一互连通孔结构,第一互连通孔结构与第一源漏金属连接。In some possible embodiments, based on the first active structure, a first source-drain structure, a first interlayer dielectric layer and a first source-drain metal are formed in sequence, including: etching a portion of the first active structure to form the first source-drain structure; depositing semiconductor material on the first active structure and the first source-drain structure to form a first interlayer dielectric layer; etching a first portion of the first interlayer dielectric layer to form a first source-drain metal; etching a second portion of the first interlayer dielectric layer to form a first interconnection through-hole structure, and the first interconnection through-hole structure is connected to the first source-drain metal.

在一些可能的实施方式中,基于第二有源结构,依次形成第二源漏结构、第二层间介质层和第二源漏金属,包括:刻蚀第二有源结构的一部分,以形成第二源漏结构;在第二有源结构和第二源漏结构上沉积半导体材料,以形成第二层间介质层;刻蚀第二层间介质层的第一部分,以形成第二源漏金属;刻蚀第二层间介质层的第二部分,直至与第一互连通孔结构连通,以形成第二互连通孔结构,第二互连通孔结构与第一互连通孔结构组成互连通孔结构。In some possible embodiments, based on the second active structure, a second source-drain structure, a second interlayer dielectric layer, and a second source-drain metal are formed in sequence, including: etching a portion of the second active structure to form a second source-drain structure; depositing semiconductor material on the second active structure and the second source-drain structure to form a second interlayer dielectric layer; etching a first portion of the second interlayer dielectric layer to form a second source-drain metal; etching a second portion of the second interlayer dielectric layer until it is connected to the first interconnection through-hole structure to form a second interconnection through-hole structure, and the second interconnection through-hole structure and the first interconnection through-hole structure constitute an interconnection through-hole structure.

在一些可能的实施方式中,基于第一有源结构,依次形成第一源漏结构、第一层间介质层和第一源漏金属,包括:刻蚀第一有源结构的一部分,以形成第一源漏结构;在第一有源结构和第一源漏结构上沉积半导体材料,以形成第一层间介质层;刻蚀第一层间介质层的第三部分,以形成第一源漏金属。In some possible embodiments, based on the first active structure, a first source-drain structure, a first interlayer dielectric layer and a first source-drain metal are formed in sequence, including: etching a portion of the first active structure to form the first source-drain structure; depositing semiconductor material on the first active structure and the first source-drain structure to form a first interlayer dielectric layer; etching a third portion of the first interlayer dielectric layer to form a first source-drain metal.

在一些可能的实施方式中,基于第二有源结构,依次形成第二源漏结构、第二层间介质层和第二源漏金属,包括:刻蚀第二有源结构的一部分,以形成第二源漏结构;在第二有源结构和第二源漏结构上沉积半导体材料,以形成第二层间介质层;刻蚀第二层间介质层的第三部分,以形成第二源漏金属;刻蚀第二层间介质层的第四部分直至贯穿第一层间介质层,以形成互连通孔结构。In some possible embodiments, based on the second active structure, a second source-drain structure, a second interlayer dielectric layer and a second source-drain metal are formed in sequence, including: etching a portion of the second active structure to form a second source-drain structure; depositing semiconductor material on the second active structure and the second source-drain structure to form a second interlayer dielectric layer; etching a third portion of the second interlayer dielectric layer to form a second source-drain metal; etching a fourth portion of the second interlayer dielectric layer until it penetrates the first interlayer dielectric layer to form an interconnected through-hole structure.

在一些可能的实施方式中,互连通孔结构位于有源结构的一侧;或,互连通孔结构位于有源结构的两侧;或,互连通孔结构位于有源结构的中间。In some possible implementations, the interconnection via structure is located at one side of the active structure; or, the interconnection via structure is located at both sides of the active structure; or, the interconnection via structure is located in the middle of the active structure.

在一些可能的实施方式中,在倒片并去除半导体衬底之前,上述方法还包括:基于第一层间介质层,形成第一晶体管;将第一晶体管与载片晶圆键合。In some possible implementations, before flipping the wafer and removing the semiconductor substrate, the method further includes: forming a first transistor based on the first interlayer dielectric layer; and bonding the first transistor to the carrier wafer.

在一些可能的实施方式中,在基于第二有源结构,依次形成第二源漏结构、第二层间介质层和第二源漏接触结构之后,上述方法还包括:基于第二层间介质层,形成第二晶体管,第二晶体管与第一晶体管在半导体衬底的垂直方向上自对准。In some possible embodiments, after forming a second source-drain structure, a second interlayer dielectric layer, and a second source-drain contact structure in sequence based on the second active structure, the method further includes: forming a second transistor based on the second interlayer dielectric layer, and the second transistor is self-aligned with the first transistor in a vertical direction of the semiconductor substrate.

第二方面,本申请实施例提供一种自对准晶体管,包括:第一晶体管;第二晶体管,第二晶体管与第一晶体管相背设置;其中,第一晶体管的第一源漏金属与第二晶体管的第二源漏金属通过互连通孔结构连通,互连通孔结构贯穿第一晶体管的第一层间介质层和第二晶体管的第二层间介质层。In the second aspect, an embodiment of the present application provides a self-aligned transistor, including: a first transistor; a second transistor, the second transistor being arranged back to back with the first transistor; wherein the first source and drain metal of the first transistor is connected to the second source and drain metal of the second transistor through an interconnection through-hole structure, and the interconnection through-hole structure passes through the first interlayer dielectric layer of the first transistor and the second interlayer dielectric layer of the second transistor.

第三方面,本申请实施例提供一种半导体器件,该半导体器件包括:如上述实施例的自对准晶体管。In a third aspect, an embodiment of the present application provides a semiconductor device, which includes: a self-aligned transistor as described in the above embodiment.

第四方面,本申请实施例提供一种电子设备,该电子设备包括:电路板以及如上述实施例的半导体器件,半导体器件设置于电路板。In a fourth aspect, an embodiment of the present application provides an electronic device, which includes: a circuit board and a semiconductor device as described in the above embodiment, wherein the semiconductor device is arranged on the circuit board.

在本申请中,自对准晶体管中的互连通孔结构分别与第一源漏金属和第二源漏金属连接,可以实现第一源漏结构和第二源漏结构之间的互连;In the present application, the interconnection via structure in the self-aligned transistor is connected to the first source-drain metal and the second source-drain metal respectively, so that the interconnection between the first source-drain structure and the second source-drain structure can be realized;

进一步地,由于互连通孔结构贯穿第一层间介质层和第二层间介质层,所以可以通过选择性刻蚀的手段,使刻蚀自停止于源漏金属,从而降低源漏互连方案中对刻蚀时间的控制难度。Furthermore, since the interconnection via structure penetrates the first interlayer dielectric layer and the second interlayer dielectric layer, the etching can be stopped at the source-drain metal by selective etching, thereby reducing the difficulty of controlling the etching time in the source-drain interconnection scheme.

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It should be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present application.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the present application and, together with the description, serve to explain the principles of the present application.

图1为本申请实施例中自对准晶体管的源漏互连方法的第一种实施流程示意图;FIG1 is a schematic diagram of a first implementation flow of a method for interconnecting source and drain of a self-aligned transistor in an embodiment of the present application;

图2为本申请实施例中自对准晶体管的第一种结构示意图;FIG2 is a schematic diagram of a first structure of a self-aligned transistor in an embodiment of the present application;

图3为本申请实施例中互连通孔结构的第一种结构示意图;FIG3 is a schematic diagram of a first structure of an interconnected through-hole structure in an embodiment of the present application;

图4A至图4E为本申请实施例中自对准晶体管的第一种制备过程的示意图;4A to 4E are schematic diagrams of a first preparation process of a self-aligned transistor in an embodiment of the present application;

图5为本申请实施例中自对准晶体管的第二种结构示意图;FIG5 is a schematic diagram of a second structure of a self-aligned transistor in an embodiment of the present application;

图6为本申请实施例中互连通孔结构的第二种结构示意图;FIG6 is a schematic diagram of a second structure of an interconnected through-hole structure in an embodiment of the present application;

图7为本申请实施例中自对准晶体管的第三种结构示意图;FIG7 is a schematic diagram of a third structure of a self-aligned transistor in an embodiment of the present application;

图8为本申请实施例中自对准晶体管的第四种结构示意图;FIG8 is a schematic diagram of a fourth structure of a self-aligned transistor according to an embodiment of the present application;

图9为本申请实施例中自对准晶体管的第五种结构示意图;FIG9 is a schematic diagram of a fifth structure of a self-aligned transistor in an embodiment of the present application;

图10为本申请实施例中自对准晶体管的第六种结构示意图;FIG10 is a sixth structural schematic diagram of a self-aligned transistor in an embodiment of the present application;

以上各图:The above pictures:

10、自对准晶体管;11、第一晶体管;111、第一有源结构;112、第一源漏结构;113、第一源漏金属;114、第一层间介质层;115、第一栅极结构;116、第一间隙壁;117、第一金属互连层;12、第二晶体管;121、第二有源结构;122、第二源漏结构;123、第二源漏金属;124、第二层间介质层;125、第二栅极结构;126、第二间隙壁;127、第二金属互连层;13、互连通孔结构;131、第一互连通孔结构;132、第二互连通孔结构;14、浅槽隔离层;15、第一绝缘层;16、载片晶圆;21、半导体衬底;22、鳍状结构;23、浅槽隔离结构;241、第一伪栅结构;242、第二伪栅结构。10. self-aligned transistor; 11. first transistor; 111. first active structure; 112. first source-drain structure; 113. first source-drain metal; 114. first interlayer dielectric layer; 115. first gate structure; 116. first spacer; 117. first metal interconnection layer; 12. second transistor; 121. second active structure; 122. second source-drain structure; 123. second source-drain metal; 124. second interlayer dielectric layer; 125. second gate structure; 126. second spacer; 127. second metal interconnection layer; 13. interconnection via structure; 131. first interconnection via structure; 132. second interconnection via structure; 14. shallow trench isolation layer; 15. first insulating layer; 16. carrier wafer; 21. semiconductor substrate; 22. fin structure; 23. shallow trench isolation structure; 241. first dummy gate structure; 242. second dummy gate structure.

具体实施方式Detailed ways

这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。Here, exemplary embodiments are described in detail, and examples thereof are shown in the accompanying drawings. When the following description refers to the drawings, unless otherwise indicated, the same numbers in different drawings represent the same or similar elements. The implementations described in the following exemplary embodiments do not represent all implementations consistent with the present application.

在摩尔定律不断深化的当下,在全环绕栅极晶体管(gate-all-around FET,GAA)的技术节点之后,继续推进晶体管尺寸微缩是当前业界研发的热点问题。堆叠晶体管通过三维晶体管堆叠,可以实现两层或多层晶体管在垂直空间内的集成,有助于进一步提升晶体管集成密度,提高电路性能,被认为是延续集成电路尺寸微缩的重要技术之一。As Moore's Law continues to deepen, after the technology node of gate-all-around FET (GAA), continuing to promote transistor size miniaturization is a hot issue in the current industry research and development. Stacked transistors can achieve the integration of two or more layers of transistors in a vertical space through three-dimensional transistor stacking, which helps to further improve transistor integration density and circuit performance. It is considered to be one of the important technologies for continuing the miniaturization of integrated circuit size.

在一实施例中,堆叠晶体管(stacked transistors)的制备工艺存在两种方案,第一种是单片方案,第二种是顺序方案。In one embodiment, there are two schemes for manufacturing processes of stacked transistors, the first is a monolithic scheme, and the second is a sequential scheme.

第一种方案,在同一个衬底上制作N沟道场效应晶体管(N field effecttransistors,NFET)和P沟道场效应晶体管(P field effect transistors,PFET),并没有采用晶圆键合技术。这决定了同层晶体管必须是同一类型的,即NFET或PFET。并且,上下层晶体管要严格在同一平面空间,不存在对准偏差。该方案的优点是具有更好的集成密度。该方案的缺点包括以下两点:(1)工艺复杂,需做大量工艺技术的开发和优化;(2)每一层晶体管极性固定,必须依赖两层晶体管才能组成基本的互补型金属氧化物半导体电路(complementary metal-oxide-semiconductor,CMOS)电路,设计灵活性差。The first solution is to make N-channel field effect transistors (NFET) and P-channel field effect transistors (PFET) on the same substrate without using wafer bonding technology. This determines that the transistors on the same layer must be of the same type, namely NFET or PFET. In addition, the upper and lower layer transistors must be strictly in the same plane space without alignment deviation. The advantage of this solution is that it has a better integration density. The disadvantages of this solution include the following two points: (1) The process is complex and requires a lot of process technology development and optimization; (2) The polarity of each layer of transistors is fixed, and two layers of transistors must be relied on to form a basic complementary metal-oxide-semiconductor (CMOS) circuit, which has poor design flexibility.

第二种方案,基于晶圆键合且逐层加工。具体通过在已制作好的下层晶体管的顶部键合晶圆来制备上层晶体管的方式,将两个晶体管垂直堆积。然而,该方案加工上层晶体管的热过程中需要严格控制温度,避免影响下层晶体管以及互连线。该方案的优点是得益于晶圆键合,上下层晶体管所采用的器件结构、沟道晶向甚至是沟道材料均可以做相应优化以获得更好和更匹配的器件性能。该方案目前存在以下技术上的挑战:(1)高质量上层晶体管有源层的制备;(2)上层键合晶圆的减薄和缺陷控制;(3)上下层晶体管存在着对准误差,对于光刻精度要求极高;(4)在解决上下层晶体管源漏互连的问题时,需要精准控制刻蚀时间以保证下层晶体管的源漏接触金属的深度;(5)在版图设计中,晶体管中的有源结构(如鳍状结构)的位置是固定的,这会限制源漏金属的宽度,导致源漏金属的电阻较大,这对电路的性能是不利的。The second solution is based on wafer bonding and layer-by-layer processing. Specifically, the upper transistor is prepared by bonding a wafer on top of the already fabricated lower transistor, and the two transistors are stacked vertically. However, in the thermal process of processing the upper transistor, the temperature needs to be strictly controlled to avoid affecting the lower transistor and the interconnection line. The advantage of this solution is that thanks to wafer bonding, the device structure, channel crystal orientation and even channel material used by the upper and lower transistors can be optimized accordingly to obtain better and more matched device performance. This solution currently has the following technical challenges: (1) Preparation of high-quality upper transistor active layer; (2) Thinning and defect control of the upper bonded wafer; (3) There is an alignment error between the upper and lower transistors, and the photolithography accuracy is extremely high; (4) When solving the problem of source-drain interconnection between the upper and lower transistors, the etching time needs to be accurately controlled to ensure the depth of the source-drain contact metal of the lower transistor; (5) In the layout design, the position of the active structure (such as the fin structure) in the transistor is fixed, which will limit the width of the source-drain metal, resulting in a large resistance of the source-drain metal, which is not conducive to the performance of the circuit.

为了解决上述技术问题,本申请实施例提供一种自对准晶体管的源漏互连方法,以降低制作互连通孔结构的刻蚀时间的控制难度。In order to solve the above technical problems, an embodiment of the present application provides a source-drain interconnection method of a self-aligned transistor to reduce the difficulty of controlling the etching time for manufacturing an interconnection through-hole structure.

在本申请实施例中,上述自对准晶体管可以应用于如存储器、处理器等半导体器件。In the embodiments of the present application, the self-aligned transistor can be applied to semiconductor devices such as memory and processor.

在一实施例中,自对准晶体管可以包括至少两个晶体管,例如以第一晶体管和第二晶体管为例。第一晶体管和第二晶体管相背设置。其中,第一晶体管中的第一有源结构和第二晶体管中的第二有源结构是通过同一工序形成的,此时,可以理解为第一晶体管与第二晶体管共用同一个有源结构,第一有源结构和第二有源结构是自对准的。In one embodiment, the self-aligned transistor may include at least two transistors, for example, a first transistor and a second transistor. The first transistor and the second transistor are arranged opposite to each other. The first active structure in the first transistor and the second active structure in the second transistor are formed by the same process. In this case, it can be understood that the first transistor and the second transistor share the same active structure, and the first active structure and the second active structure are self-aligned.

在本申请实施例中,自对准晶体管中的第一晶体管和第二晶体管可以为同类型的晶体管,如以下任一种:鳍式场效应晶体管、全环绕栅极晶体管和平面晶体管。In the embodiment of the present application, the first transistor and the second transistor in the self-aligned transistor may be transistors of the same type, such as any one of the following: a fin field effect transistor, a full-surround gate transistor, and a planar transistor.

图2为鳍式场效应晶体管组成的自对准晶体管,下面结合图2所示的自对准晶体管的结构,对本申请实施例提供的制备方法进行说明。FIG. 2 is a self-aligned transistor composed of fin field effect transistors. The preparation method provided in the embodiment of the present application will be described below in conjunction with the structure of the self-aligned transistor shown in FIG. 2 .

图1为本申请实施例中自对准晶体管的源漏互连方法的第一种实施流程示意图,参见图1所示,上述自对准晶体管的源漏互连方法可以包括:FIG. 1 is a schematic diagram of a first implementation flow of a method for interconnecting the source and drain of a self-aligned transistor in an embodiment of the present application. Referring to FIG. 1 , the method for interconnecting the source and drain of a self-aligned transistor may include:

S101,在半导体衬底上形成有源结构,有源结构包括第一有源结构和第二有源结构。S101, forming an active structure on a semiconductor substrate, wherein the active structure includes a first active structure and a second active structure.

其中,本申请实施例中的半导体衬底可以为硅(Si)衬底,也可以为绝缘体上硅(silicon-on-insulator,SOI)衬底,当然,还可以为其他半导体材料制成的衬底,本申请实施例对此不做具体限定。Among them, the semiconductor substrate in the embodiment of the present application can be a silicon (Si) substrate, or a silicon-on-insulator (SOI) substrate. Of course, it can also be a substrate made of other semiconductor materials, and the embodiment of the present application does not make specific limitations on this.

可以理解的,当自对准晶体管的类型不同时,衬底的设置也相应的有所不同。例如,当自对准晶体管为鳍式场效应晶体管或平面晶体管时,半导体衬底可以为单层结构,即,使用一种半导体材料制成的衬底;当自对准晶体管为全环绕栅极晶体管时,半导体衬底可以为叠层结构,即,将Si材料和硅锗(SiGe)材料层叠设置得到的叠层。It is understandable that when the type of the self-aligned transistor is different, the arrangement of the substrate is also different accordingly. For example, when the self-aligned transistor is a fin field effect transistor or a planar transistor, the semiconductor substrate can be a single-layer structure, that is, a substrate made of one semiconductor material; when the self-aligned transistor is a full-surround gate transistor, the semiconductor substrate can be a stacked structure, that is, a stacked layer obtained by stacking Si material and silicon germanium (SiGe) material.

在一些实施例中,当自对准集体管为鳍式场效应晶体管时,上述S101可以包括:刻蚀半导体衬底,形成多个鳍状结构;鳍状结构的上半部分为第一有源结构,鳍状结构的下半部分为第二有源结构。In some embodiments, when the self-aligned transistor is a fin field effect transistor, the above S101 may include: etching the semiconductor substrate to form a plurality of fin structures; the upper half of the fin structure is a first active structure, and the lower half of the fin structure is a second active structure.

在另一些实施例中,当自对准集体管为全环绕栅极晶体管时,上述S101可以包括:刻蚀半导体衬底,形成柱状结构,其中,半导体衬底由交替沉积的硅层和硅锗层形成;柱状结构的上半部分为第一有源结构,柱状结构的下半部分为第二有源结构。In other embodiments, when the self-aligned transistor is a full-surround gate transistor, the above S101 may include: etching the semiconductor substrate to form a columnar structure, wherein the semiconductor substrate is formed by alternately deposited silicon layers and silicon germanium layers; the upper half of the columnar structure is the first active structure, and the lower half of the columnar structure is the second active structure.

在又一些实施例中,当自对准集体管为平面晶体管时,上述S101可以包括:刻蚀半导体衬底,形成块状结构;块状结构的上半部分为第一有源结构,块状结构的下半部分为第二有源结构。In some other embodiments, when the self-aligned transistor is a planar transistor, the above S101 may include: etching the semiconductor substrate to form a block structure; the upper half of the block structure is the first active structure, and the lower half of the block structure is the second active structure.

在本申请实施例中,由于自对准晶体管中包括两个晶体管(即第一晶体管和第二晶体管),且第一晶体管的第一有源结构和第二晶体管的第二有源结构是通过同一道刻蚀工艺形成的,所以,在刻蚀半导体衬底时,可以采用较大的刻蚀深度。例如,刻蚀得到的鳍状结构(也可以是柱状结构或块状结构)的高度可以大于100nm。需要说明的是,鳍状结构的高度可以根据实际情况进行设置,本申请实施例对此不作具体限定。In the embodiment of the present application, since the self-aligned transistor includes two transistors (i.e., the first transistor and the second transistor), and the first active structure of the first transistor and the second active structure of the second transistor are formed by the same etching process, a larger etching depth can be used when etching the semiconductor substrate. For example, the height of the fin-shaped structure (which may also be a columnar structure or a block structure) obtained by etching can be greater than 100nm. It should be noted that the height of the fin-shaped structure can be set according to actual conditions, and the embodiment of the present application does not specifically limit this.

在一些实施例中,在有源结构之后,上述方法还可以包括:在有源结构的上方填充氧化物,以形成浅槽隔离结构(shallow trench isolation,STI)。浅槽隔离结构的高度大于有源结构的高度。In some embodiments, after the active structure, the method may further include: filling oxide above the active structure to form a shallow trench isolation (STI) structure. The height of the shallow trench isolation structure is greater than the height of the active structure.

在本申请实施例中,形成浅槽隔离结构的氧化物可以为以下任一种:氮化硅(SiN、Si3N4)、二氧化硅(SiO2)或碳氧化硅(SiCO)等。In the embodiment of the present application, the oxide forming the shallow trench isolation structure may be any one of the following: silicon nitride (SiN, Si 3 N 4 ), silicon dioxide (SiO 2 ) or silicon oxycarbide (SiCO), etc.

在一些实施例中,在形成浅槽隔离结构之后,上述方法还可以包括:对浅槽隔离结构进行化学机械平坦化(chemical-mechanical planarization,CMP)处理。In some embodiments, after forming the shallow trench isolation structure, the method may further include: performing a chemical-mechanical planarization (CMP) process on the shallow trench isolation structure.

在本申请实施例中,对浅槽隔离结构进行化学机械平坦化处理,可以使得后续对浅槽隔离结构进行刻蚀时,不同区域的浅槽隔离结构对应的腐蚀深度相同,从而使得暴露出的有源结构的顶部高度相同。In an embodiment of the present application, chemical mechanical planarization is performed on the shallow trench isolation structure, so that when the shallow trench isolation structure is subsequently etched, the corresponding corrosion depths of the shallow trench isolation structure in different areas are the same, thereby making the top heights of the exposed active structures the same.

在一些实施例中,在形成浅槽隔离结构之后,上述方法还可以包括:通过刻蚀,去除浅槽隔离结构的一部分,以暴露第一有源结构。In some embodiments, after forming the shallow trench isolation structure, the method may further include: removing a portion of the shallow trench isolation structure by etching to expose the first active structure.

可以理解的,为了在第一有源结构上进行第一晶体管后续的制备,如制备第一源漏结构等,可以先刻蚀浅槽隔离结构的上半部分,使得第一有源结构被暴露出来,用于后续的制备流程。It is understandable that in order to perform subsequent preparation of the first transistor on the first active structure, such as preparing the first source-drain structure, the upper half of the shallow trench isolation structure can be etched first to expose the first active structure for subsequent preparation processes.

需要说明的是,本申请实施例中提及的刻蚀工艺可以包括以下任一种:干蚀刻、湿蚀刻、反应离子蚀刻和化学氧化物去除工艺,本申请实施例对此不作限定。It should be noted that the etching process mentioned in the embodiments of the present application may include any one of the following: dry etching, wet etching, reactive ion etching and chemical oxide removal process, which is not limited in the embodiments of the present application.

在本申请实施例中,刻蚀浅槽隔离结构所用到的溶剂可以为:DHF溶液或BOE溶液。本申请实施例在刻蚀处理中采用的溶剂可以根据实际情况进行选择,并不限于上述DHF溶液或BOE溶液。In the embodiment of the present application, the solvent used for etching the shallow trench isolation structure may be: DHF solution or BOE solution. The solvent used in the etching process in the embodiment of the present application may be selected according to actual conditions and is not limited to the above DHF solution or BOE solution.

在一些实施例中,在暴露第一有源结构之后,可以在第一有源结构与第二有源结构的连接处进行离子注入,以形成电学隔离层,电学隔离层用于对第一有源结构与第二有源结构进行电学隔离。In some embodiments, after the first active structure is exposed, ion implantation may be performed at the connection between the first active structure and the second active structure to form an electrical isolation layer, wherein the electrical isolation layer is used to electrically isolate the first active structure from the second active structure.

其中,离子注入的离子包括P型离子、N型离子或氧离子。P型离子可以为以下之一:硼(B)、镓(Ga)、铝(Al)。N型离子可以为以下之一:磷(P)、砷(As)、锑(Sb)。The ions implanted include P-type ions, N-type ions or oxygen ions. The P-type ions may be one of the following: boron (B), gallium (Ga), aluminum (Al). The N-type ions may be one of the following: phosphorus (P), arsenic (As), antimony (Sb).

S102,基于第一有源结构,依次形成第一源漏结构、第一层间介质层和第一源漏金属,第一层间介质层包裹第一有源结构、第一源漏结构和第一源漏金属。S102 , based on the first active structure, sequentially forming a first source-drain structure, a first interlayer dielectric layer and a first source-drain metal, wherein the first interlayer dielectric layer wraps the first active structure, the first source-drain structure and the first source-drain metal.

可以理解的,浅槽隔离结构的去除以及第一有源结构的暴露,可以提供第一晶体管的栅极区域和源漏凹槽。在第一晶体管的栅极区域沉积半导体材料,可以得到第一晶体管的第一伪栅结构。在第一晶体管的源漏凹槽进行源漏外延生长,可以得到第一源漏结构。在第一有源结构的上方沉积半导体材料,可以得到第一层间介质层。在第一源漏结构的上方沉积金属材料,可以得到第一源漏金属。It can be understood that the removal of the shallow trench isolation structure and the exposure of the first active structure can provide a gate region and a source-drain groove of the first transistor. A semiconductor material is deposited in the gate region of the first transistor to obtain a first pseudo-gate structure of the first transistor. A source-drain epitaxial growth is performed in the source-drain groove of the first transistor to obtain a first source-drain structure. A semiconductor material is deposited above the first active structure to obtain a first interlayer dielectric layer. A metal material is deposited above the first source-drain structure to obtain a first source-drain metal.

在一些实施例中,形成第一伪栅结构的方法可以包括:光刻打开第一晶体管的栅极区域,并在栅极区域沉积半导体材料(如多晶硅),形成第一晶体管的第一伪栅结构。In some embodiments, the method of forming the first dummy gate structure may include: photolithographically opening a gate region of the first transistor, and depositing a semiconductor material (such as polysilicon) in the gate region to form the first dummy gate structure of the first transistor.

在一些实施例中,在形成第一伪栅结构之后,可以在第一伪栅结构的两侧形成间隙壁(spacer)。In some embodiments, after forming the first dummy gate structure, spacers may be formed on both sides of the first dummy gate structure.

在一些可能的实施方式中,上述S102可以包括:刻蚀第一有源结构的一部分,以形成第一源漏结构;在第一有源结构和第一源漏结构上沉积半导体材料,以形成第一层间介质层;刻蚀第一层间介质层的第一部分,以形成第一源漏金属;刻蚀第一层间介质层的第二部分,以形成第一互连通孔结构,第一互连通孔结构与第一源漏金属连接。In some possible embodiments, the above S102 may include: etching a portion of the first active structure to form a first source-drain structure; depositing a semiconductor material on the first active structure and the first source-drain structure to form a first interlayer dielectric layer; etching a first portion of the first interlayer dielectric layer to form a first source-drain metal; etching a second portion of the first interlayer dielectric layer to form a first interconnection through-hole structure, and the first interconnection through-hole structure is connected to the first source-drain metal.

在一些实施例中,刻蚀第一有源结构的一部分,以形成第一源漏结构,可以包括:通过刻蚀去除第一有源结构的一部分,可以提供第一晶体管的源漏凹槽。以间隙壁为掩模,在源漏凹槽中通过选择性外延生长形成硅锗或碳化硅等应变材料以填充第一晶体管的源漏凹槽,然后通过重掺杂工艺,在上述应变材料上形成第一源漏结构。In some embodiments, etching a portion of the first active structure to form a first source-drain structure may include: removing a portion of the first active structure by etching to provide a source-drain groove of the first transistor. Using the spacer as a mask, forming a strained material such as silicon germanium or silicon carbide in the source-drain groove by selective epitaxial growth to fill the source-drain groove of the first transistor, and then forming the first source-drain structure on the strained material by a heavy doping process.

需要说明的是,为便于说明,本申请实施例中提及的第一源漏结构为简称,具体是指第一源极结构和/或第一漏极结构。此外,第二源漏结构、第一源漏金属、第二源漏金属、源漏凹槽等都与第一源漏结构类似,其中的“源漏”为“源极和/或漏极”的简称。It should be noted that, for ease of explanation, the first source-drain structure mentioned in the embodiments of the present application is an abbreviation, specifically referring to the first source electrode structure and/or the first drain electrode structure. In addition, the second source-drain structure, the first source-drain metal, the second source-drain metal, the source-drain groove, etc. are similar to the first source-drain structure, where "source-drain" is an abbreviation for "source electrode and/or drain electrode".

在一些实施例中,在第一有源结构和第一源漏结构上沉积半导体材料,以形成第一层间介质层,可以包括:在第一有源结构和第一源漏结构的上方沉积绝缘材料(如二氧化硅(SiO2)),形成第一层间介质层;第一层间介质层可以覆盖第一有源结构和第一源漏结构。In some embodiments, depositing a semiconductor material on the first active structure and the first source-drain structure to form a first interlayer dielectric layer may include: depositing an insulating material (such as silicon dioxide (SiO 2 )) above the first active structure and the first source-drain structure to form a first interlayer dielectric layer; the first interlayer dielectric layer may cover the first active structure and the first source-drain structure.

在一些实施例中,刻蚀第一层间介质层的第一部分,以形成第一源漏金属;刻蚀第一层间介质层的第二部分,以形成第一互连通孔结构,第一互连通孔结构与第一源漏金属连接,可以包括:刻蚀第一层间介质层位于第一源漏结构上方的部分(即第一层间介质层的第一部分),直至暴露出第一源漏结构的上表面,以形成第一源漏金属凹槽。在第一源漏金属凹槽中沉积金属材料,可以得到第一源漏金属。接着,刻蚀第一层间介质层位于第一源漏凹槽侧面的部分(即第一层间介质层的第二部分),刻蚀深度可以低于第一源漏结构的外延,形成一槽形孔,在该槽形孔中沉积与第一源漏金属相同的金属材料,得到第一互连通孔结构。In some embodiments, etching a first portion of the first interlayer dielectric layer to form a first source-drain metal; etching a second portion of the first interlayer dielectric layer to form a first interconnection through-hole structure, wherein the first interconnection through-hole structure is connected to the first source-drain metal, may include: etching a portion of the first interlayer dielectric layer located above the first source-drain structure (i.e., the first portion of the first interlayer dielectric layer) until the upper surface of the first source-drain structure is exposed to form a first source-drain metal groove. A metal material is deposited in the first source-drain metal groove to obtain the first source-drain metal. Next, etching a portion of the first interlayer dielectric layer located on the side of the first source-drain groove (i.e., the second portion of the first interlayer dielectric layer), the etching depth may be lower than the epitaxy of the first source-drain structure, to form a slot-shaped hole, and depositing a metal material identical to the first source-drain metal in the slot-shaped hole to obtain the first interconnection through-hole structure.

需要说明的是,上述实施例中先制备第一源漏金属再制备第一互连通孔结构的制备顺序仅为示例,还可以先制备第一互连通孔结构再制备第一源漏金属,也可以同时制备第一源漏金属和第一互连通孔结构,本申请实施例对此不作具体限定。制备好的第一源漏金属和第一互连通孔结构是互相连接的,可以理解为第一源漏金属和第一互连通孔结构为一个整体结构。It should be noted that the preparation order of first preparing the first source-drain metal and then preparing the first interconnection through-hole structure in the above embodiment is only an example, and the first interconnection through-hole structure can also be prepared first and then the first source-drain metal, or the first source-drain metal and the first interconnection through-hole structure can be prepared at the same time, and the embodiment of the present application does not specifically limit this. The prepared first source-drain metal and the first interconnection through-hole structure are connected to each other, and it can be understood that the first source-drain metal and the first interconnection through-hole structure are an integral structure.

在另一些可能的实施方式中,在制备第一晶体管的过程中,可以不制备第一晶体管中的第一互连通孔结构,在不制备第一互连通孔结构的情况下,上述S102可以包括:刻蚀第一有源结构的一部分,以形成第一源漏结构;在第一有源结构和第一源漏结构上沉积半导体材料,以形成第一层间介质层;刻蚀第一层间介质层的第三部分,以形成第一源漏金属。In some other possible embodiments, during the process of preparing the first transistor, the first interconnection through-hole structure in the first transistor may not be prepared. Without preparing the first interconnection through-hole structure, the above S102 may include: etching a portion of the first active structure to form a first source-drain structure; depositing a semiconductor material on the first active structure and the first source-drain structure to form a first interlayer dielectric layer; and etching a third portion of the first interlayer dielectric layer to form a first source-drain metal.

需要说明的是,形成第一源漏结构、第一层间介质层和第一源漏金属的过程与上述实施例相同,本申请实施例对此不作赘述。It should be noted that the process of forming the first source-drain structure, the first interlayer dielectric layer and the first source-drain metal is the same as that in the above embodiment, and will not be elaborated in the embodiment of the present application.

S103,倒片并去除半导体衬底。S103, flipping the wafer and removing the semiconductor substrate.

可以理解的,形成第一源漏结构、第一层间介质层和第一源漏金属之后,可以按照标准步骤制备第一晶体管中的其他结构。在第一晶体管制备完成后,对第一晶体管进行翻转,并去除半导体衬底,使得第二有源结构朝上放置,便于后续制备第二晶体管。It is understandable that after forming the first source-drain structure, the first interlayer dielectric layer and the first source-drain metal, other structures in the first transistor can be prepared according to standard steps. After the first transistor is prepared, the first transistor is flipped and the semiconductor substrate is removed so that the second active structure is placed upward, which is convenient for the subsequent preparation of the second transistor.

在一些实施例中,在S103之前,上述方法还可以包括:基于第一层间介质层,形成第一晶体管;将第一晶体管与载片晶圆键合。In some embodiments, before S103, the method may further include: forming a first transistor based on the first interlayer dielectric layer; and bonding the first transistor to the carrier wafer.

可以理解的,在第一层间介质层之上进行后道工艺(如互连线间介质沉积、金属线条形成、引出焊盘形成等),以形成第一晶体管的第一金属互连层。在第一金属互连层上沉积绝缘材料(如氧化硅),以形成第一绝缘层,并将第一绝缘层与载片晶圆键合。It can be understood that a back-end process (such as deposition of dielectric between interconnect lines, formation of metal lines, formation of lead pads, etc.) is performed on the first interlayer dielectric layer to form a first metal interconnect layer of the first transistor. An insulating material (such as silicon oxide) is deposited on the first metal interconnect layer to form a first insulating layer, and the first insulating layer is bonded to the carrier wafer.

在本申请实施例中,键合后的载片晶圆可以在倒片后,为翻转后的第一晶体管提供物理支撑,有效防止在制备第二晶体管的过程中第一晶体管受到外力而破碎的情况发生。In the embodiment of the present application, the bonded carrier wafer can provide physical support for the flipped first transistor after inversion, thereby effectively preventing the first transistor from being broken by external force during the preparation of the second transistor.

在一些实施例中,在形成第一金属互连层之前,上述方法还可以包括:通过刻蚀去除第一伪栅结构,暴露出第一晶体管的栅极区域,在第一晶体管的栅极区域沉积金属材料,以形成第一晶体管的第一栅极结构。In some embodiments, before forming the first metal interconnect layer, the method may further include: removing the first dummy gate structure by etching to expose the gate region of the first transistor, and depositing metal material in the gate region of the first transistor to form a first gate structure of the first transistor.

在一些实施例中,去除半导体衬底之后,上述方法还可以包括:通过刻蚀,去除浅槽隔离结构的一部分,以暴露第二有源结构。In some embodiments, after removing the semiconductor substrate, the method may further include: removing a portion of the shallow trench isolation structure by etching to expose the second active structure.

可以理解的,为了在第二有源结构上进行第二晶体管后续的制备,如制备第二源漏结构等,可以先刻蚀浅槽隔离结构的下半部分,使得第二有源结构被暴露出来,用于后续的制备流程。It is understandable that in order to perform subsequent preparation of the second transistor on the second active structure, such as preparing a second source-drain structure, the lower half of the shallow trench isolation structure can be etched first to expose the second active structure for subsequent preparation processes.

需要说明的是,在刻蚀浅沟槽隔离结构的下半部分时,可以保留一定厚度的浅沟槽隔离结构,保留的浅沟槽隔离结构可以用于隔离第一晶体管和第二晶体管。It should be noted that when etching the lower half of the shallow trench isolation structure, a shallow trench isolation structure of a certain thickness may be retained, and the retained shallow trench isolation structure may be used to isolate the first transistor from the second transistor.

S104,基于第二有源结构,依次形成第二源漏结构、第二层间介质层和第二源漏金属,第二层间介质层包裹第二有源结构、第二源漏结构和第二源漏金属。S104, based on the second active structure, a second source-drain structure, a second interlayer dielectric layer and a second source-drain metal are sequentially formed, and the second interlayer dielectric layer wraps the second active structure, the second source-drain structure and the second source-drain metal.

其中,第一源漏金属和第二源漏金属通过互连通孔结构连通,互连通孔结构贯穿第一层间介质层和第二层间介质层。The first source-drain metal and the second source-drain metal are connected through an interconnection through-hole structure, and the interconnection through-hole structure penetrates the first interlayer dielectric layer and the second interlayer dielectric layer.

可以理解的,浅槽隔离结构的去除以及第二有源结构的暴露,可以提供第二晶体管的栅极区域和源漏凹槽。在第二晶体管的栅极区域沉积半导体材料,可以得到第二晶体管的第二伪栅结构。在第二晶体管的源漏凹槽进行源漏外延生长,可以得到第二源漏结构。在第二有源结构的上方沉积半导体材料,可以得到第二层间介质层。在第二源漏结构的上方沉积金属材料,可以得到第二源漏金属。It can be understood that the removal of the shallow trench isolation structure and the exposure of the second active structure can provide a gate region and a source-drain groove of the second transistor. Semiconductor material is deposited in the gate region of the second transistor to obtain a second pseudo-gate structure of the second transistor. Source-drain epitaxial growth is performed in the source-drain groove of the second transistor to obtain a second source-drain structure. Semiconductor material is deposited above the second active structure to obtain a second interlayer dielectric layer. Metal material is deposited above the second source-drain structure to obtain a second source-drain metal.

在一些实施例中,形成第二伪栅结构的方法可以包括:光刻打开第二晶体管的栅极区域,并在栅极区域沉积半导体材料(如多晶硅),形成第二晶体管的第一伪栅结构。In some embodiments, the method of forming the second dummy gate structure may include: photolithography to open the gate region of the second transistor, and depositing a semiconductor material (such as polysilicon) in the gate region to form a first dummy gate structure of the second transistor.

在一些实施例中,在形成第二伪栅结构之后,可以在第二伪栅结构的两侧形成间隙壁(spacer)。In some embodiments, after the second dummy gate structure is formed, spacers may be formed on both sides of the second dummy gate structure.

在一些可能的实施方式中,上述S104可以包括:刻蚀第二有源结构的一部分,以形成第二源漏结构;在第二有源结构和第二源漏结构上沉积半导体材料,以形成第二层间介质层;刻蚀第二层间介质层的第一部分,以形成第二源漏金属;刻蚀第二层间介质层的第二部分,直至与第一互连通孔结构连通,以形成第二互连通孔结构,第二互连通孔结构与第一互连通孔结构组成互连通孔结构。In some possible embodiments, the above S104 may include: etching a portion of the second active structure to form a second source-drain structure; depositing a semiconductor material on the second active structure and the second source-drain structure to form a second interlayer dielectric layer; etching a first portion of the second interlayer dielectric layer to form a second source-drain metal; etching a second portion of the second interlayer dielectric layer until it is connected to the first interconnection through-hole structure to form a second interconnection through-hole structure, and the second interconnection through-hole structure and the first interconnection through-hole structure constitute an interconnection through-hole structure.

在一些实施例中,刻蚀第二有源结构的一部分,以形成第二源漏结构,可以包括:通过刻蚀去除第二有源结构的一部分,可以提供第二晶体管的源漏凹槽。以间隙壁为掩模,在源漏凹槽中通过选择性外延生长形成硅锗或碳化硅等应变材料以填充第二晶体管的源漏凹槽,然后通过重掺杂工艺,在上述应变材料上形成第二源漏结构。In some embodiments, etching a portion of the second active structure to form a second source-drain structure may include: removing a portion of the second active structure by etching to provide a source-drain groove of the second transistor. Using the spacer as a mask, forming a strained material such as silicon germanium or silicon carbide in the source-drain groove by selective epitaxial growth to fill the source-drain groove of the second transistor, and then forming the second source-drain structure on the strained material by a heavy doping process.

在一些实施例中,在第二有源结构和第二源漏结构上沉积半导体材料,以形成第二层间介质层,可以包括:在第二有源结构和第二源漏结构的上方沉积绝缘材料(如二氧化硅),形成第二层间介质层;第二层间介质层可以覆盖第二有源结构和第二源漏结构。In some embodiments, depositing a semiconductor material on the second active structure and the second source-drain structure to form a second interlayer dielectric layer may include: depositing an insulating material (such as silicon dioxide) above the second active structure and the second source-drain structure to form a second interlayer dielectric layer; the second interlayer dielectric layer may cover the second active structure and the second source-drain structure.

需要说明的是,本申请实施例中的第一层间介质层和第二层间介质层可以由同一种材料或不同种的材料形成。It should be noted that the first interlayer dielectric layer and the second interlayer dielectric layer in the embodiment of the present application may be formed of the same material or different materials.

在一些实施例中,刻蚀第二层间介质层的第一部分,以形成第二源漏金属;刻蚀第二层间介质层的第二部分,直至与第一互连通孔结构连通,以形成第二互连通孔结构,第二互连通孔结构与第一互连通孔结构组成互连通孔结构,可以包括:刻蚀第二层间介质层位于第二源漏结构上方的部分(即第二层间介质层的第一部分),直至暴露出第二源漏结构的上表面,以形成第二源漏金属凹槽。在第二源漏金属凹槽中沉积金属材料,可以得到第二源漏金属。接着,刻蚀第二层间介质层位于第二源漏凹槽侧面的部分(即第二层间介质层的第二部分),第二层间介质层的第二部分与上述第一层间介质层的第二部分是对准的,刻蚀至与上述第一互连通孔结构连通的位置时,停止刻蚀,形成一槽形孔,在该槽形孔中沉积与第二源漏金属相同的金属材料,得到第二互连通孔结构。In some embodiments, etching the first portion of the second interlayer dielectric layer to form a second source-drain metal; etching the second portion of the second interlayer dielectric layer until it is connected to the first interconnection through-hole structure to form a second interconnection through-hole structure, wherein the second interconnection through-hole structure and the first interconnection through-hole structure form an interconnection through-hole structure, which may include: etching the portion of the second interlayer dielectric layer located above the second source-drain structure (i.e., the first portion of the second interlayer dielectric layer) until the upper surface of the second source-drain structure is exposed to form a second source-drain metal groove. A metal material is deposited in the second source-drain metal groove to obtain a second source-drain metal. Next, etching the portion of the second interlayer dielectric layer located on the side of the second source-drain groove (i.e., the second portion of the second interlayer dielectric layer), the second portion of the second interlayer dielectric layer is aligned with the second portion of the first interlayer dielectric layer, and etching is stopped when etching reaches a position connected to the first interconnection through-hole structure to form a slot-shaped hole, and a metal material identical to the second source-drain metal is deposited in the slot-shaped hole to obtain a second interconnection through-hole structure.

在本申请实施例中,由于第一互连通孔结构与第一源漏金属连接,第二互连通孔结构与第二源漏金属连接,且第二互连通孔结构与第一互连通孔结构之间是连通的,这使得第一源漏金属和第二源漏金属之间也实现了互连。In the embodiment of the present application, since the first interconnected via structure is connected to the first source-drain metal, the second interconnected via structure is connected to the second source-drain metal, and the second interconnected via structure is connected to the first interconnected via structure, the first source-drain metal and the second source-drain metal are also interconnected.

需要说明的是,上述制备第二互连通孔结构的方案对应上述制备第一互连通孔结构的方案,第一互连通孔结构与第二互连通孔结构一起组成了自对准晶体管中的互连通孔结构,实现了第一源漏金属和第二源漏金属的互连。It should be noted that the above-mentioned scheme for preparing the second interconnection through-hole structure corresponds to the above-mentioned scheme for preparing the first interconnection through-hole structure. The first interconnection through-hole structure and the second interconnection through-hole structure together constitute the interconnection through-hole structure in the self-aligned transistor, realizing the interconnection between the first source-drain metal and the second source-drain metal.

需要说明的是,上述实施例中先制备第二源漏金属再制备第二互连通孔结构的制备顺序仅为示例,还可以先制备第二互连通孔结构再制备第二源漏金属,也可以同时制备第二源漏金属和第二互连通孔结构,本申请实施例对此不作具体限定。制备好的第二源漏金属和第二互连通孔结构是互相连接的,可以理解为第二源漏金属和第二互连通孔结构为一个整体结构。It should be noted that the preparation order of first preparing the second source-drain metal and then preparing the second interconnection through-hole structure in the above embodiment is only an example, and the second interconnection through-hole structure can also be prepared first and then the second source-drain metal, or the second source-drain metal and the second interconnection through-hole structure can be prepared at the same time, and the embodiment of the present application does not specifically limit this. The prepared second source-drain metal and the second interconnection through-hole structure are connected to each other, and it can be understood that the second source-drain metal and the second interconnection through-hole structure are an integral structure.

在另一些可能的实施方式中,在制备第一晶体管的过程中,可以不制备第一晶体管中的第一互连通孔结构,在不制备第一互连通孔结构的情况下,上述S104可以包括:刻蚀第二有源结构的一部分,以形成第二源漏结构;在第二有源结构和第二源漏结构上沉积半导体材料,以形成第二层间介质层;刻蚀第二层间介质层的第三部分,以形成第二源漏金属;刻蚀第二层间介质层的第四部分直至贯穿第一层间介质层,以形成互连通孔结构。In some other possible embodiments, during the process of preparing the first transistor, the first interconnection through-hole structure in the first transistor may not be prepared. When the first interconnection through-hole structure is not prepared, the above S104 may include: etching a portion of the second active structure to form a second source-drain structure; depositing semiconductor material on the second active structure and the second source-drain structure to form a second interlayer dielectric layer; etching a third portion of the second interlayer dielectric layer to form a second source-drain metal; and etching a fourth portion of the second interlayer dielectric layer until it penetrates the first interlayer dielectric layer to form an interconnection through-hole structure.

需要说明的是,形成第二源漏结构、第二层间介质层和第二源漏金属的过程与上述实施例相同,本申请实施例对此不作赘述。It should be noted that the process of forming the second source-drain structure, the second interlayer dielectric layer and the second source-drain metal is the same as that in the above embodiment, and will not be described in detail in the embodiment of the present application.

在一些实施例中,刻蚀第二层间介质层的第四部分直至贯穿第一层间介质层,以形成互连通孔结构,可以包括:刻蚀位于第二层间介质层位于第二源漏金属凹槽侧面的部分(即第二层间介质层的第四部分),直至刻蚀到第一源漏金属的侧面时,停止刻蚀,形成一槽形孔,在该槽形孔中沉积与第二源漏金属相同的金属材料,得到互连通孔结构。互连通孔结构贯穿第一层间介质层和第二层间介质层。In some embodiments, etching the fourth portion of the second interlayer dielectric layer until penetrating the first interlayer dielectric layer to form an interconnection through-hole structure may include: etching the portion of the second interlayer dielectric layer located on the side of the second source-drain metal groove (i.e., the fourth portion of the second interlayer dielectric layer) until etching reaches the side of the first source-drain metal, stopping etching to form a slot-shaped hole, depositing the same metal material as the second source-drain metal in the slot-shaped hole to obtain an interconnection through-hole structure. The interconnection through-hole structure penetrates the first interlayer dielectric layer and the second interlayer dielectric layer.

在一些可能的实施方式中,互连通孔结构位于有源结构的一侧;或,互连通孔结构位于有源结构的两侧;或,互连通孔结构位于有源结构的中间。In some possible implementations, the interconnection via structure is located at one side of the active structure; or, the interconnection via structure is located at both sides of the active structure; or, the interconnection via structure is located in the middle of the active structure.

可以理解的,对于鳍式场效应晶体管,有源结构为多个鳍状结构,互连通孔结构可以位于多个鳍状结构的一侧;也可以位于多个鳍状结构的两侧;当多个鳍状结构之间的间隔较大,并且源漏外延不融合在一起时,互连通孔结构可以位于相邻的源漏之间(也可以理解为互连通孔结构可以位于左侧鳍状结构和右侧鳍状结构的中间)。对于全环绕栅极晶体管,有源结构为间隔设置的纳米片层结构,互连通孔结构可以位于纳米片层结构的一侧;也可以位于纳米片层结构的两侧。对于平面晶体管,有源结构为块状结构,互连通孔结构可以位于块状结构的一侧;也可以位于块状结构的两侧。It can be understood that for fin field effect transistors, the active structure is a plurality of fin structures, and the interconnection through-hole structure can be located on one side of the plurality of fin structures; it can also be located on both sides of the plurality of fin structures; when the intervals between the plurality of fin structures are large and the source and drain epitaxy are not fused together, the interconnection through-hole structure can be located between adjacent source and drain (it can also be understood that the interconnection through-hole structure can be located between the left fin structure and the right fin structure). For all-around gate transistors, the active structure is an interval-arranged nanosheet structure, and the interconnection through-hole structure can be located on one side of the nanosheet structure; it can also be located on both sides of the nanosheet structure. For planar transistors, the active structure is a block structure, and the interconnection through-hole structure can be located on one side of the block structure; it can also be located on both sides of the block structure.

在另一些可能的实施方式中,在版图设计时,可以将有源结构的位置偏向自对准晶体管的左侧或右侧,使得有源结构的位置不是处于半导体衬底的中间;在另一侧(即右侧或左侧),形成宽度更大的互连通孔结构。In some other possible implementations, during layout design, the position of the active structure can be biased toward the left or right side of the self-aligned transistor so that the active structure is not located in the middle of the semiconductor substrate; on the other side (i.e., the right or left side), a wider interconnection via structure is formed.

在本申请实施例中,将有源结构的位置向一侧移动,可以给互连通孔结构留出更大的空间,增大了互连通孔结构的宽度,从而降低第一源漏金属和第二源漏金属互连时的电阻。In the embodiment of the present application, the position of the active structure is moved to one side, which can leave more space for the interconnection through-hole structure, increase the width of the interconnection through-hole structure, and thus reduce the resistance when the first source-drain metal and the second source-drain metal are interconnected.

在一些可能的实施方式中,在上述S104之后,上述方法还可以包括:基于第二层间介质层,形成第二晶体管。In some possible implementations, after S104, the method may further include: forming a second transistor based on the second interlayer dielectric layer.

其中,第二晶体管与第一晶体管在半导体衬底的垂直方向上自对准。The second transistor is self-aligned with the first transistor in a vertical direction of the semiconductor substrate.

可以理解的,在第二层间介质层之上进行后道工艺(如互连线间介质沉积、金属线条形成、引出焊盘形成等),以形成第二晶体管的第二金属互连层,至此,自对准晶体管中的第二晶体管制备完成。It can be understood that the post-process (such as interconnect line dielectric deposition, metal line formation, lead pad formation, etc.) is performed on the second interlayer dielectric layer to form the second metal interconnect layer of the second transistor. At this point, the second transistor in the self-aligned transistor is completed.

在一些实施例中,在形成第二金属互连层之前,上述方法还可以包括:通过刻蚀去除第二伪栅结构,暴露出第二晶体管的栅极区域,在第二晶体管的栅极区域沉积金属材料,以形成第二晶体管的第二栅极结构。In some embodiments, before forming the second metal interconnect layer, the method may further include: removing the second dummy gate structure by etching to expose the gate region of the second transistor, and depositing metal material in the gate region of the second transistor to form a second gate structure of the second transistor.

在本申请实施例中,第一栅极结构和第二栅极结构的金属材料可以为以下任一种:氮化钽(TaN)、氮化钛(TiN)、氮化铝(AlN)、钛铝碳化物(TiAlC)、钛铝氮化物(TiAlN),第一栅极结构和第二栅极结构的材料可以根据实际情况进行选择,并不限于上述列出的金属材料。In the embodiment of the present application, the metal material of the first gate structure and the second gate structure can be any one of the following: tantalum nitride (TaN), titanium nitride (TiN), aluminum nitride (AlN), titanium aluminum carbide (TiAlC), titanium aluminum nitride (TiAlN). The materials of the first gate structure and the second gate structure can be selected according to actual conditions and are not limited to the metal materials listed above.

在本申请实施例中,第一栅极结构和第二栅极结构的材料可以根据实际情况采用相同或不同的金属材料制成,本申请实施例对此不作具体限定。In the embodiment of the present application, the materials of the first gate structure and the second gate structure can be made of the same or different metal materials according to actual conditions, and the embodiment of the present application does not specifically limit this.

在一些实施例中,在制备第一栅极结构之前,上述方法还可以包括:在第一有源结构的表面沉积半导体材料,以形成第一晶体管的第一栅极介质层,第一栅极介质层用于隔离第一有源结构和第一栅极结构。In some embodiments, before preparing the first gate structure, the method may further include: depositing a semiconductor material on the surface of the first active structure to form a first gate dielectric layer of the first transistor, wherein the first gate dielectric layer is used to isolate the first active structure from the first gate structure.

在本申请实施例中,第二晶体管的第二栅极介质层的制备方法与第一栅极介质层的制备方法相同,本申请实施例对此不作赘述。In the embodiment of the present application, the method for preparing the second gate dielectric layer of the second transistor is the same as the method for preparing the first gate dielectric layer, which is not described in detail in the embodiment of the present application.

需要说明的是,制备第一栅极介质层和第二栅极介质层的材料可以相同也可以不同,本申请实施例对此不作具体限定。It should be noted that the materials used to prepare the first gate dielectric layer and the second gate dielectric layer may be the same or different, and this embodiment of the present application does not specifically limit this.

下面,以第一晶体管和第二晶体管为鳍式场效应晶体管为例,对本申请实施例所提供的自对准晶体管进行说明。图2为本申请实施例中自对准晶体管的第一种结构示意图。其中,图2中的(a)为自对准晶体管的俯视图,需要说明的是,为便于理解,俯视图中仅示出了鳍状结构、栅极结构、源漏结构;(b)为沿源漏结构的切面方向(即A-A'方向)所做的自对准晶体管的切面图;(c)为沿栅极结构的切面方向(即B-B'方向)所做的自对准晶体管的切面图。Below, taking the first transistor and the second transistor as fin field effect transistors as an example, the self-aligned transistor provided in the embodiment of the present application is described. Figure 2 is a schematic diagram of the first structure of the self-aligned transistor in the embodiment of the present application. Among them, (a) in Figure 2 is a top view of the self-aligned transistor. It should be noted that, for ease of understanding, only the fin structure, gate structure, and source-drain structure are shown in the top view; (b) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the source-drain structure (i.e., the A-A' direction); (c) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the gate structure (i.e., the B-B' direction).

参见图2所示,自对准晶体管10包括第一晶体管11和第二晶体管12,自对准晶体管10中的有源结构为多个鳍状结构。鳍状结构分为上下两部分,分别记为第一部分和第二部分,第一部分用作第一晶体管11中的第一有源结构111,第二部分用作第二晶体管12中的第二有源结构121。第一晶体管11中的第一源漏金属113和第二晶体管12中的第二源漏金属123通过互连通孔结构13互相连通。第一晶体管11和第二晶体管12之间设置有一浅槽隔离层14,浅槽隔离层14用于隔离第一晶体管11和第二晶体管12。As shown in FIG. 2 , the self-aligned transistor 10 includes a first transistor 11 and a second transistor 12, and the active structure in the self-aligned transistor 10 is a plurality of fin structures. The fin structure is divided into two parts, namely, the first part and the second part, the first part is used as the first active structure 111 in the first transistor 11, and the second part is used as the second active structure 121 in the second transistor 12. The first source-drain metal 113 in the first transistor 11 and the second source-drain metal 123 in the second transistor 12 are interconnected through an interconnection via structure 13. A shallow trench isolation layer 14 is provided between the first transistor 11 and the second transistor 12, and the shallow trench isolation layer 14 is used to isolate the first transistor 11 from the second transistor 12.

图3为本申请实施例中的互连通孔结构的第一种结构示意图。图3示出的是互连通孔结构13、第一源漏金属113和第二源漏金属123的拆解示意图。参见图3所示,互连通孔结构13可以包括两部分,一部分是第一互连通孔结构131,第一互连通孔结构131与第一源漏金属113连接;另一部分是第二互连通孔结构132,第二互连通孔结构132与第二源漏金属123连接;第一互连通孔结构131和第二互连通孔结构132连接。FIG3 is a schematic diagram of the first structure of the interconnection through-hole structure in the embodiment of the present application. FIG3 shows a disassembled schematic diagram of the interconnection through-hole structure 13, the first source-drain metal 113 and the second source-drain metal 123. Referring to FIG3, the interconnection through-hole structure 13 may include two parts, one part is the first interconnection through-hole structure 131, the first interconnection through-hole structure 131 is connected to the first source-drain metal 113; the other part is the second interconnection through-hole structure 132, the second interconnection through-hole structure 132 is connected to the second source-drain metal 123; the first interconnection through-hole structure 131 and the second interconnection through-hole structure 132 are connected.

需要说明的是,图3中的互连通孔结构13对应图2所示的自对准晶体管中的互连通孔结构13,本申请实施例中的互连通孔结构13还可以为其他结构。It should be noted that the interconnection via structure 13 in FIG. 3 corresponds to the interconnection via structure 13 in the self-aligned transistor shown in FIG. 2 , and the interconnection via structure 13 in the embodiment of the present application may also be other structures.

在本申请实施例中,第一晶体管11的第一有源结构111与第二晶体管12的第二有源结构121是通过同一道刻蚀工序形成的,如此,可以实现第一晶体管11和第二晶体管12的自对准。In the embodiment of the present application, the first active structure 111 of the first transistor 11 and the second active structure 121 of the second transistor 12 are formed by the same etching process, so that the first transistor 11 and the second transistor 12 can be self-aligned.

下面结合上述制备方法,对图2所示的自对准晶体管的制备过程进行说明。图2所示的自对准晶体管可以通过图4A至图4E所示的流程制备,图4A至图4E为本申请实施例中自对准晶体管的第一种制备过程的示意图。The following describes the preparation process of the self-aligned transistor shown in Figure 2 in combination with the above preparation method. The self-aligned transistor shown in Figure 2 can be prepared by the process shown in Figures 4A to 4E, which are schematic diagrams of the first preparation process of the self-aligned transistor in the embodiment of the present application.

在一示例中,以第一晶体管11和第二晶体管12为鳍式场效应晶体管为例,源漏互连的自对准晶体管10的第一种制备过程可以包括以下步骤:In one example, taking the first transistor 11 and the second transistor 12 as fin field effect transistors as an example, a first preparation process of the source-drain interconnected self-aligned transistor 10 may include the following steps:

第一步:提供半导体衬底21(如Si衬底)(参见图4A中的(a))。The first step is to provide a semiconductor substrate 21 (eg, a Si substrate) (see (a) in FIG. 4A ).

第二步:刻蚀半导体衬底21,以形成多个鳍状结构22(参见图4A中的(b))。Step 2: etching the semiconductor substrate 21 to form a plurality of fin structures 22 (see (b) in FIG. 4A ).

第三步:在鳍状结构22的上方填充氧化物,以形成浅槽隔离结构23(参见图4A中的(c))。其中,浅槽隔离结构23的高度大于鳍状结构22的高度,可以覆盖多个鳍状结构22。然后,对浅槽隔离结构23进行化学机械平坦化处理。Step 3: Fill the fin-like structure 22 with oxide to form a shallow trench isolation structure 23 (see (c) in FIG. 4A ). The height of the shallow trench isolation structure 23 is greater than the height of the fin-like structure 22 and can cover multiple fin-like structures 22. Then, the shallow trench isolation structure 23 is subjected to chemical mechanical planarization.

第四步:采用标准步骤,刻蚀浅槽隔离结构23的一部分,以将鳍状结构22的第一部分(即第一有源结构111)暴露出来(参见图4B中的(a))。Step 4: Using standard steps, a portion of the shallow trench isolation structure 23 is etched to expose the first portion of the fin structure 22 (ie, the first active structure 111 ) (see (a) in FIG. 4B ).

第五步:刻蚀鳍状结构22的第一部分,以形成第一晶体管11的源漏凹槽。然后光刻打开第一晶体管11的栅极区域,在栅极区域处沉积多晶硅,形成第一伪栅结构241。在第一伪栅结构241的两侧形成第一间隙壁116(参见图4B中的(b))。Step 5: Etch the first portion of the fin structure 22 to form source and drain grooves of the first transistor 11. Then, photolithography is performed to open the gate region of the first transistor 11, and polysilicon is deposited at the gate region to form a first dummy gate structure 241. First spacers 116 are formed on both sides of the first dummy gate structure 241 (see (b) in FIG. 4B ).

第六步:在第一晶体管11的源漏凹槽处,进行源漏外延生长,以形成第一源漏结构112。然后,在第一有源结构111的上方沉积半导体材料,以形成第一层间介质层114(参见图4B中的(c))。Step 6: epitaxially grow source and drain at the source and drain grooves of the first transistor 11 to form a first source and drain structure 112. Then, a semiconductor material is deposited on the first active structure 111 to form a first interlayer dielectric layer 114 (see (c) in FIG. 4B ).

第七步:通过刻蚀去除第一层间介质层114的一部分,以形成第一源漏金属凹槽,在第一源漏金属凹槽中沉积金属材料,形成第一源漏金属113。接着,通过刻蚀,在第一源漏金属113的侧面(即源漏外延的侧面),形成第一槽形孔,在第一槽形孔中沉积金属材料,形成第一互连通孔结构131,第一互连通孔结构131与第一源漏金属113连接(参见图4C中的(a))。Step 7: A portion of the first interlayer dielectric layer 114 is removed by etching to form a first source-drain metal groove, and a metal material is deposited in the first source-drain metal groove to form a first source-drain metal 113. Next, a first slot-shaped hole is formed on the side of the first source-drain metal 113 (i.e., the side of the source-drain epitaxy) by etching, and a metal material is deposited in the first slot-shaped hole to form a first interconnection through-hole structure 131, and the first interconnection through-hole structure 131 is connected to the first source-drain metal 113 (see (a) in FIG. 4C ).

第八步:去除第一伪栅结构241,在栅极区域沉积金属,形成第一栅极结构115。然后,在第一层间介质层114的上方,进行后道工艺,形成第一金属互连层117(参见图4C中的(b))。Step 8: Remove the first dummy gate structure 241 and deposit metal in the gate region to form a first gate structure 115. Then, a back-end process is performed on the first interlayer dielectric layer 114 to form a first metal interconnect layer 117 (see FIG. 4C (b)).

第九步:在第一金属互连层117的上方沉积氧化物,形成第一绝缘层15,第一绝缘层15与载片晶圆16键合。接着,对键合载片晶圆16后的第一晶体管11进行倒片,以使得半导体衬底21朝上放置(参见图4C中的(c))。Step 9: Deposit oxide on the first metal interconnect layer 117 to form a first insulating layer 15, and the first insulating layer 15 is bonded to the carrier wafer 16. Next, the first transistor 11 bonded to the carrier wafer 16 is flipped over so that the semiconductor substrate 21 is placed upward (see (c) in FIG. 4C ).

第十步:通过刻蚀,去除半导体衬底21,并刻蚀浅槽隔离结构23,将鳍状结构22的第二部分暴露出来(参见图4D中的(a))。Step 10: The semiconductor substrate 21 is removed by etching, and the shallow trench isolation structure 23 is etched to expose the second portion of the fin structure 22 (see (a) in FIG. 4D ).

需要说明的是,在刻蚀浅槽隔离结构23时,控制刻蚀深度,保留一定厚度的浅槽隔离结构23,用作浅槽隔离层14。浅槽隔离层14用于隔离第一晶体管11和第二晶体管12。It should be noted that when etching the shallow trench isolation structure 23 , the etching depth is controlled to retain a certain thickness of the shallow trench isolation structure 23 to serve as the shallow trench isolation layer 14 . The shallow trench isolation layer 14 is used to isolate the first transistor 11 from the second transistor 12 .

第十一步:在鳍状结构22的第二部分上形成第二源漏结构122、第二伪栅结构242、第二间隙壁126和第二层间介质层124(参见图4D中的(b))(具体制备过程可参见第五步和第六步)。Step 11: Form a second source-drain structure 122, a second dummy gate structure 242, a second spacer 126 and a second interlayer dielectric layer 124 on the second portion of the fin structure 22 (see (b) in FIG. 4D ) (see steps 5 and 6 for the specific preparation process).

第十二步:通过刻蚀去除第二层间介质层124的一部分,以形成第二源漏金属凹槽,在第二源漏金属凹槽中沉积金属材料,形成第二源漏金属123。其中,第一源漏金属113与第二源漏金属123的形状相同,并相对设置。接着,通过刻蚀,在第二源漏金属123的侧面(对准第一互连通孔结构131的位置),形成第二槽形孔。其中,刻蚀第二槽形孔时,直至第二槽形孔与第一槽形孔连通时,才停止刻蚀。在第二槽形孔中沉积金属材料,形成第二互连通孔结构132,第二互连通孔结构132与第二源漏金属123连接(参见图4D中的(c))。Step 12: Remove a portion of the second interlayer dielectric layer 124 by etching to form a second source-drain metal groove, and deposit metal material in the second source-drain metal groove to form a second source-drain metal 123. The first source-drain metal 113 and the second source-drain metal 123 have the same shape and are arranged opposite to each other. Then, by etching, a second slot-shaped hole is formed on the side of the second source-drain metal 123 (aligned with the position of the first interconnection through-hole structure 131). When etching the second slot-shaped hole, the etching is stopped until the second slot-shaped hole is connected to the first slot-shaped hole. Metal material is deposited in the second slot-shaped hole to form a second interconnection through-hole structure 132, and the second interconnection through-hole structure 132 is connected to the second source-drain metal 123 (see (c) in FIG. 4D).

第十三步:形成第二栅极结构125、第二金属互连层127(具体制备过程可参见第八步)(参见图4E)。Step 13: forming a second gate structure 125 and a second metal interconnection layer 127 (the specific preparation process can refer to step 8) (see FIG. 4E ).

至此,便制备完成了第一晶体管11和第二晶体管12为鳍式场效应晶体管,且第一源漏金属113与第二源漏金属123通过第一互连通孔结构131和第二互连通孔结构132实现互连的自对准晶体管10。At this point, the self-aligned transistor 10 is prepared in which the first transistor 11 and the second transistor 12 are fin field effect transistors, and the first source-drain metal 113 and the second source-drain metal 123 are interconnected through the first interconnection via structure 131 and the second interconnection via structure 132 .

上述图2所示的自对准晶体管10中的互连通孔结构13由两个部分组成(即第一互连通孔结构131和第二互连通孔结构132),可以理解为,上述图2所示的自对准晶体管10中的互连通孔结构13是由两道工序形成的。在另一种实施例中,自对准晶体管10中的互连通孔结构13可以是由一道工序形成的。图5为本申请实施例中自对准晶体管的第二种结构示意图。其中,图5中的(a)为自对准晶体管的俯视图,需要说明的是,为便于理解,俯视图中仅示出了鳍状结构、栅极结构、源漏结构;(b)为沿源漏结构的切面方向(即A-A'方向)所做的自对准晶体管的切面图;(c)为沿栅极结构的切面方向(即B-B'方向)所做的自对准晶体管的切面图。The interconnection through-hole structure 13 in the self-aligned transistor 10 shown in FIG. 2 is composed of two parts (i.e., the first interconnection through-hole structure 131 and the second interconnection through-hole structure 132). It can be understood that the interconnection through-hole structure 13 in the self-aligned transistor 10 shown in FIG. 2 is formed by two processes. In another embodiment, the interconnection through-hole structure 13 in the self-aligned transistor 10 can be formed by one process. FIG. 5 is a schematic diagram of the second structure of the self-aligned transistor in the embodiment of the present application. Among them, (a) in FIG. 5 is a top view of the self-aligned transistor. It should be noted that, for ease of understanding, only the fin structure, the gate structure, and the source-drain structure are shown in the top view; (b) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the source-drain structure (i.e., the A-A' direction); (c) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the gate structure (i.e., the B-B' direction).

参见图5所示,自对准晶体管10包括第一晶体管11和第二晶体管12,自对准晶体管10中的有源结构为多个鳍状结构。鳍状结构分为上下两部分,分别记为第一部分和第二部分,第一部分用作第一晶体管11中的第一有源结构111,第二部分用作第二晶体管12中的第二有源结构121。第一晶体管11中的第一源漏金属113和第二晶体管12中的第二源漏金属123通过互连通孔结构13互相连通。互连通孔结构13位于有源结构的一侧。互连通孔结构13的两端分别与第一源漏金属113和第二源漏金属123连接。第一晶体管11和第二晶体管12之间设置有一浅槽隔离层14,浅槽隔离层14用于隔离第一晶体管11和第二晶体管12。As shown in FIG5 , the self-aligned transistor 10 includes a first transistor 11 and a second transistor 12, and the active structure in the self-aligned transistor 10 is a plurality of fin structures. The fin structure is divided into two parts, upper and lower, respectively, and is recorded as a first part and a second part. The first part is used as a first active structure 111 in the first transistor 11, and the second part is used as a second active structure 121 in the second transistor 12. The first source-drain metal 113 in the first transistor 11 and the second source-drain metal 123 in the second transistor 12 are interconnected through an interconnection through-hole structure 13. The interconnection through-hole structure 13 is located on one side of the active structure. The two ends of the interconnection through-hole structure 13 are connected to the first source-drain metal 113 and the second source-drain metal 123, respectively. A shallow trench isolation layer 14 is provided between the first transistor 11 and the second transistor 12, and the shallow trench isolation layer 14 is used to isolate the first transistor 11 and the second transistor 12.

图6为本申请实施例中互连通孔结构的第二种结构示意图。图6示出的是互连通孔结构13、第一源漏金属113和第二源漏金属123的拆解示意图,参见图6所示,互连通孔结构13从第二源漏金属123引出,延伸至第一源漏金属113。互连通孔结构13的两端分别与第一源漏金属113和第二源漏金属123连接。FIG6 is a schematic diagram of a second structure of the interconnection via structure in the embodiment of the present application. FIG6 shows a disassembled schematic diagram of the interconnection via structure 13, the first source-drain metal 113, and the second source-drain metal 123. Referring to FIG6, the interconnection via structure 13 is led out from the second source-drain metal 123 and extends to the first source-drain metal 113. Both ends of the interconnection via structure 13 are connected to the first source-drain metal 113 and the second source-drain metal 123, respectively.

下面结合上述制备方法,对图5所示的自对准晶体管的制备过程进行说明。In the following, the preparation process of the self-aligned transistor shown in FIG. 5 is described in combination with the above preparation method.

第一步:提供硅衬底。The first step: providing a silicon substrate.

第二步:刻蚀硅衬底,以形成多个鳍状结构。Step 2: Etch the silicon substrate to form multiple fin structures.

第三步:形成浅槽隔离结构(具体可参见自对准晶体管的第一种制备过程中的第三步)。Step 3: forming a shallow trench isolation structure (for details, please refer to the third step in the first preparation process of the self-aligned transistor).

第四步:暴露鳍状结构的第一部分(即第一有源结构)(具体可参见自对准晶体管的第一种制备过程中的第四步)。Step 4: Expose the first portion of the fin structure (ie, the first active structure) (for details, please refer to the fourth step in the first preparation process of the self-aligned transistor).

第五步:形成第一伪栅结构和间隙壁(具体可参见自对准晶体管的第一种制备过程中的第五步)。Step 5: forming a first dummy gate structure and a spacer (for details, please refer to the fifth step in the first preparation process of the self-aligned transistor).

第六步:形成第一源漏结构和第一层间介质层(具体可参见自对准晶体管的第一种制备过程中的第六步)。Step 6: forming a first source-drain structure and a first interlayer dielectric layer (for details, please refer to the sixth step in the first preparation process of the self-aligned transistor).

第七步:通过刻蚀去除第一层间介质层的一部分,以形成第一源漏金属凹槽,在第一源漏金属凹槽中沉积金属材料,形成第一源漏金属。Step 7: remove a portion of the first interlayer dielectric layer by etching to form a first source-drain metal groove, and deposit a metal material in the first source-drain metal groove to form a first source-drain metal.

第八步:形成第一栅极结构和第一金属互连层(具体可参见自对准晶体管的第一种制备过程中的第八步)。Step 8: forming a first gate structure and a first metal interconnection layer (for details, please refer to the eighth step in the first preparation process of the self-aligned transistor).

第九步:倒片、去除半导体衬底,并暴露鳍状结构的第二部分(具体可参见自对准晶体管的第一种制备过程中的第九步和第十步)。Step 9: Flip the wafer, remove the semiconductor substrate, and expose the second portion of the fin structure (for details, please refer to the ninth and tenth steps in the first preparation process of the self-aligned transistor).

第十步:在鳍状结构的第二部分上形成第二源漏结构、第二伪栅结构、第二层间介质层(具体制备过程可参见对准晶体管的第一种制备过程中的第五步和第六步)。Step 10: forming a second source-drain structure, a second dummy gate structure, and a second interlayer dielectric layer on the second portion of the fin structure (for the specific preparation process, please refer to the fifth and sixth steps in the first preparation process of the aligned transistor).

第十一步:通过刻蚀去除第二层间介质层的一部分,以形成第二源漏金属凹槽,在第二源漏金属凹槽中沉积金属材料,形成第二源漏金属。其中,第一源漏金属与第二源漏金属的形状相同,并相对设置。接着,通过刻蚀,在第二源漏金属的侧面,形成第三槽形孔。其中,刻蚀第三槽形孔时,直至第三槽形孔与第一源漏金属接触,并且第三槽形孔贯穿第一层间介质层时,才停止刻蚀。在第三槽形孔中沉积金属材料,形成互连通孔结构,互连通孔结构的两端分别与第一源漏金属和第二源漏金属连接。Step 11: Remove a portion of the second interlayer dielectric layer by etching to form a second source-drain metal groove, and deposit metal material in the second source-drain metal groove to form a second source-drain metal. The first source-drain metal and the second source-drain metal have the same shape and are arranged opposite to each other. Then, a third slot-shaped hole is formed on the side of the second source-drain metal by etching. When etching the third slot-shaped hole, etching is stopped until the third slot-shaped hole contacts the first source-drain metal and the third slot-shaped hole penetrates the first interlayer dielectric layer. Metal material is deposited in the third slot-shaped hole to form an interconnected through-hole structure, and the two ends of the interconnected through-hole structure are respectively connected to the first source-drain metal and the second source-drain metal.

第十二步:形成第二栅极结构、第二金属互联层(具体可参见自对准晶体管的第一种制备过程中的第八步)。Step 12: Form a second gate structure and a second metal interconnection layer (for details, please refer to step 8 in the first preparation process of the self-aligned transistor).

至此,便制备完成了第一晶体管11和第二晶体管12为鳍式场效应晶体管,且第一源漏金属113与第二源漏金属123通过互连通孔结构13实现互连的自对准晶体管10。At this point, the self-aligned transistor 10 is prepared, in which the first transistor 11 and the second transistor 12 are fin field effect transistors, and the first source-drain metal 113 and the second source-drain metal 123 are interconnected through the interconnection via structure 13 .

在一些实施例中,图7为本申请实施例中自对准晶体管的第三种结构示意图。其中,图7中的(a)为自对准晶体管的俯视图,需要说明的是,为便于理解,俯视图中仅示出了鳍状结构、栅极结构、源漏结构;(b)为沿源漏结构的切面方向(即A-A'方向)所做的自对准晶体管的切面图;(c)为沿栅极结构的切面方向(即B-B'方向)所做的自对准晶体管的切面图。In some embodiments, FIG7 is a schematic diagram of the third structure of the self-aligned transistor in the embodiments of the present application. Among them, (a) in FIG7 is a top view of the self-aligned transistor. It should be noted that, for ease of understanding, the top view only shows the fin structure, the gate structure, and the source-drain structure; (b) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the source-drain structure (i.e., the A-A' direction); (c) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the gate structure (i.e., the B-B' direction).

参见图7所示,自对准晶体管10包括第一晶体管11和第二晶体管12,自对准晶体管10中的有源结构为多个鳍状结构。在A-A'方向上,多个鳍状结构的位置偏向于半导体衬底的一侧(如A侧)。鳍状结构分为上下两部分,分别记为第一部分和第二部分,第一部分用作第一晶体管11中的第一有源结构111,第二部分用作第二晶体管12中的第二有源结构121。第一晶体管11中的第一源漏金属113和第二晶体管12中的第二源漏金属123通过互连通孔结构13互相连通。互连通孔结构13的两端分别与第一源漏金属113和第二源漏金属123连接。第一晶体管11和第二晶体管12之间设置有一浅槽隔离层14,浅槽隔离层14用于隔离第一晶体管11和第二晶体管12。As shown in FIG. 7 , the self-aligned transistor 10 includes a first transistor 11 and a second transistor 12, and the active structure in the self-aligned transistor 10 is a plurality of fin-shaped structures. In the A-A' direction, the positions of the plurality of fin-shaped structures are biased toward one side (such as the A side) of the semiconductor substrate. The fin-shaped structure is divided into two parts, which are respectively recorded as the first part and the second part. The first part is used as the first active structure 111 in the first transistor 11, and the second part is used as the second active structure 121 in the second transistor 12. The first source-drain metal 113 in the first transistor 11 and the second source-drain metal 123 in the second transistor 12 are interconnected through an interconnection through-hole structure 13. The two ends of the interconnection through-hole structure 13 are connected to the first source-drain metal 113 and the second source-drain metal 123, respectively. A shallow trench isolation layer 14 is provided between the first transistor 11 and the second transistor 12, and the shallow trench isolation layer 14 is used to isolate the first transistor 11 and the second transistor 12.

参见图7和图2所示,图7中的互连通孔结构13相较于图2中的互连通孔结构13,前者的的宽度更大。这是由于图7所示的自对准晶体管10的有源结构并未设置在半导体衬底的中间位置,而是偏向于半导体衬底的一侧,给互连通孔结构13预留的空间更大。互连通孔结构13的宽度增大,可以降低第一源漏结构112和第二源漏结构122互连时的电阻。Referring to FIG. 7 and FIG. 2 , the interconnection via structure 13 in FIG. 7 is wider than the interconnection via structure 13 in FIG. 2 . This is because the active structure of the self-aligned transistor 10 shown in FIG. 7 is not arranged in the middle of the semiconductor substrate, but is biased to one side of the semiconductor substrate, and a larger space is reserved for the interconnection via structure 13. The increase in the width of the interconnection via structure 13 can reduce the resistance when the first source-drain structure 112 and the second source-drain structure 122 are interconnected.

在一些实施例中,在制备图7所示的自对准晶体管10的过程中,在刻蚀半导体衬底,形成鳍状结构时,控制刻蚀的位置,使得形成的鳍状结构的位置偏向半导体衬底的一侧,在半导体衬底的另一侧预留出较大的空间用于后续制备互连通孔结构13。在形成互连通孔结构13时,刻蚀直径较大的槽形孔,然后在槽形孔中沉积金属材料,以形成互连通孔结构13。图7所示的自对准晶体管10中的其他结构的制备方法与图2所示的自对准晶体管10的制备方法相同,可以参见自对准晶体管10的第一种制备过程,本申请实施例对此不作赘述。In some embodiments, during the process of preparing the self-aligned transistor 10 shown in FIG. 7 , when etching the semiconductor substrate to form a fin-shaped structure, the etching position is controlled so that the position of the formed fin-shaped structure is biased toward one side of the semiconductor substrate, and a larger space is reserved on the other side of the semiconductor substrate for the subsequent preparation of the interconnection through-hole structure 13. When forming the interconnection through-hole structure 13, a slot-shaped hole with a larger diameter is etched, and then a metal material is deposited in the slot-shaped hole to form the interconnection through-hole structure 13. The preparation method of other structures in the self-aligned transistor 10 shown in FIG. 7 is the same as the preparation method of the self-aligned transistor 10 shown in FIG. 2 , and reference can be made to the first preparation process of the self-aligned transistor 10, which will not be described in detail in the present embodiment of the application.

在一些实施例中,图8为本申请实施例中自对准晶体管的第四种结构示意图。其中,图6中的(a)为自对准晶体管的俯视图,需要说明的是,为便于理解,俯视图中仅示出了鳍状结构、栅极结构、源漏结构;(b)为沿源漏结构的切面方向(即A-A'方向)所做的自对准晶体管的切面图;(c)为沿栅极结构的切面方向(即B-B'方向)所做的自对准晶体管的切面图。In some embodiments, FIG8 is a schematic diagram of the fourth structure of the self-aligned transistor in the embodiments of the present application. Among them, (a) in FIG6 is a top view of the self-aligned transistor. It should be noted that, for ease of understanding, the top view only shows the fin structure, the gate structure, and the source-drain structure; (b) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the source-drain structure (i.e., the A-A' direction); (c) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the gate structure (i.e., the B-B' direction).

参见图8所示,自对准晶体管10包括第一晶体管11和第二晶体管12,自对准晶体管10中的有源结构为多个鳍状结构。鳍状结构分为上下两部分,分别记为第一部分和第二部分,第一部分用作第一晶体管11中的第一有源结构111,第二部分用作第二晶体管12中的第二有源结构121。第一晶体管11中的第一源漏金属113和第二晶体管12中的第二源漏金属123通过互连通孔结构13互相连通。互连通孔结构13位于有源结构的两侧,互连通孔结构13的两端分别与第一源漏金属113和第二源漏金属123连接。第一晶体管11和第二晶体管12之间设置有一浅槽隔离层14,浅槽隔离层14用于隔离第一晶体管11和第二晶体管12。As shown in FIG8 , the self-aligned transistor 10 includes a first transistor 11 and a second transistor 12, and the active structure in the self-aligned transistor 10 is a plurality of fin structures. The fin structure is divided into two parts, which are respectively referred to as the first part and the second part. The first part is used as the first active structure 111 in the first transistor 11, and the second part is used as the second active structure 121 in the second transistor 12. The first source-drain metal 113 in the first transistor 11 and the second source-drain metal 123 in the second transistor 12 are interconnected through an interconnection through-hole structure 13. The interconnection through-hole structure 13 is located on both sides of the active structure, and the two ends of the interconnection through-hole structure 13 are respectively connected to the first source-drain metal 113 and the second source-drain metal 123. A shallow trench isolation layer 14 is provided between the first transistor 11 and the second transistor 12, and the shallow trench isolation layer 14 is used to isolate the first transistor 11 and the second transistor 12.

在一些实施例中,在制备图8所示的自对准晶体管的过程中,在形成互连通孔结构13时,在有源结构的两侧同时刻蚀槽形孔,以形成位于有源结构两侧的互连通孔结构13。图8所示的自对准晶体管10中的其他结构的制备方法与图2所示的自对准晶体管10的制备方法相同,可以参见自对准晶体管10的第一种制备过程,本申请实施例对此不作赘述。In some embodiments, during the process of preparing the self-aligned transistor shown in FIG8, when forming the interconnection through hole structure 13, slot-shaped holes are simultaneously etched on both sides of the active structure to form the interconnection through hole structures 13 located on both sides of the active structure. The preparation method of other structures in the self-aligned transistor 10 shown in FIG8 is the same as the preparation method of the self-aligned transistor 10 shown in FIG2, and reference may be made to the first preparation process of the self-aligned transistor 10, which will not be described in detail in the present embodiment of the application.

在一些实施例中,图9为本申请实施例中自对准晶体管的第五种结构示意图。其中,图9中的(a)为自对准晶体管的俯视图,需要说明的是,为便于理解,俯视图中仅示出了鳍状结构、栅极结构、源漏结构;(b)为沿源漏结构的切面方向(即A-A'方向)所做的自对准晶体管的切面图;(c)为沿栅极结构的切面方向(即B-B'方向)所做的自对准晶体管的切面图。In some embodiments, FIG9 is a fifth structural schematic diagram of a self-aligned transistor in an embodiment of the present application. Among them, (a) in FIG9 is a top view of the self-aligned transistor. It should be noted that, for ease of understanding, the top view only shows the fin structure, the gate structure, and the source-drain structure; (b) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the source-drain structure (i.e., the A-A' direction); (c) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the gate structure (i.e., the B-B' direction).

参见图9所示,自对准晶体管10包括第一晶体管11和第二晶体管12,自对准晶体管10中的有源结构为多个鳍状结构。鳍状结构分为上下两部分,分别记为第一部分和第二部分,第一部分用作第一晶体管11中的第一有源结构111,第二部分用作第二晶体管12中的第二有源结构121。第一晶体管11中的第一源漏金属113和第二晶体管12中的第二源漏金属123通过互连通孔结构13互相连通。互连通孔结构13位于相邻的源漏外延的中间(可以理解为位于多个鳍状结构的中间位置),互连通孔结构13的两端分别与第一源漏金属113和第二源漏金属123连接。第一晶体管11和第二晶体管12之间设置有一浅槽隔离层14,浅槽隔离层14用于隔离第一晶体管11和第二晶体管12。As shown in FIG. 9 , the self-aligned transistor 10 includes a first transistor 11 and a second transistor 12, and the active structure in the self-aligned transistor 10 is a plurality of fin-shaped structures. The fin-shaped structure is divided into two parts, which are respectively referred to as the first part and the second part. The first part is used as the first active structure 111 in the first transistor 11, and the second part is used as the second active structure 121 in the second transistor 12. The first source-drain metal 113 in the first transistor 11 and the second source-drain metal 123 in the second transistor 12 are interconnected through an interconnection via structure 13. The interconnection via structure 13 is located in the middle of adjacent source-drain epitaxy (which can be understood as being located in the middle of a plurality of fin-shaped structures), and the two ends of the interconnection via structure 13 are respectively connected to the first source-drain metal 113 and the second source-drain metal 123. A shallow trench isolation layer 14 is provided between the first transistor 11 and the second transistor 12, and the shallow trench isolation layer 14 is used to isolate the first transistor 11 and the second transistor 12.

在一些实施例中,在制备图9所示的自对准晶体管10的过程中,在半导体衬底上刻蚀多个鳍状结构时,增大鳍状结构之间的间距,并且在生长源漏外延时,未将源漏外延融合在一起,在多个鳍状结构和源漏外延的中间预留出互连通孔结构13的位置。在形成互连通孔结构13时,在有源结构的中间刻蚀槽形孔,以形成位于有源结构中间的互连通孔结构13。图9所示的自对准晶体管10中的其他结构的制备方法与图2所示的自对准晶体管的制备方法相同,可以参见自对准晶体管的第一种制备过程,本申请实施例对此不作赘述。In some embodiments, during the process of preparing the self-aligned transistor 10 shown in FIG. 9 , when etching multiple fin structures on a semiconductor substrate, the spacing between the fin structures is increased, and when growing source and drain epitaxy, the source and drain epitaxy is not fused together, and a position for an interconnection via structure 13 is reserved in the middle of the multiple fin structures and the source and drain epitaxy. When forming the interconnection via structure 13, a slot-shaped hole is etched in the middle of the active structure to form an interconnection via structure 13 located in the middle of the active structure. The preparation method of other structures in the self-aligned transistor 10 shown in FIG. 9 is the same as the preparation method of the self-aligned transistor shown in FIG. 2 , and reference can be made to the first preparation process of the self-aligned transistor, which will not be described in detail in the present embodiment of the application.

在一些实施例中,图10为本申请实施例中自对准晶体管的第六种结构示意图。其中,图10中的(a)为自对准晶体管的俯视图,需要说明的是,为便于理解,俯视图中仅示出了纳米片层结构、栅极结构、源漏结构;(b)为沿源漏结构的切面方向(即A-A'方向)所做的自对准晶体管的切面图;(c)为沿栅极结构的切面方向(即B-B'方向)所做的自对准晶体管的切面图。In some embodiments, FIG10 is a sixth structural schematic diagram of a self-aligned transistor in an embodiment of the present application. Among them, (a) in FIG10 is a top view of the self-aligned transistor. It should be noted that, for ease of understanding, the top view only shows the nanosheet structure, the gate structure, and the source-drain structure; (b) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the source-drain structure (i.e., the A-A' direction); (c) is a cross-sectional view of the self-aligned transistor taken along the cross-sectional direction of the gate structure (i.e., the B-B' direction).

参见图10所示,自对准晶体管10包括第一晶体管11和第二晶体管12,自对准晶体管10中的有源结构为多个纳米片层结构。纳米片层结构分为上下两部分,分别记为第一部分和第二部分,第一部分用作第一晶体管11中的第一有源结构111,第二部分用作第二晶体管12中的第二有源结构121。第一晶体管11中的第一源漏金属113和第二晶体管12中的第二源漏金属123通过互连通孔结构13互相连通。互连通孔结构13位于有源结构的一侧,互连通孔结构13的两端分别与第一源漏金属113和第二源漏金属123连接。第一晶体管11和第二晶体管12之间设置有一浅槽隔离层14,浅槽隔离层14用于隔离第一晶体管11和第二晶体管12。As shown in FIG. 10 , the self-aligned transistor 10 includes a first transistor 11 and a second transistor 12, and the active structure in the self-aligned transistor 10 is a plurality of nanosheet structures. The nanosheet structure is divided into two parts, which are respectively referred to as the first part and the second part. The first part is used as the first active structure 111 in the first transistor 11, and the second part is used as the second active structure 121 in the second transistor 12. The first source-drain metal 113 in the first transistor 11 and the second source-drain metal 123 in the second transistor 12 are interconnected through an interconnection through-hole structure 13. The interconnection through-hole structure 13 is located on one side of the active structure, and the two ends of the interconnection through-hole structure 13 are respectively connected to the first source-drain metal 113 and the second source-drain metal 123. A shallow trench isolation layer 14 is provided between the first transistor 11 and the second transistor 12, and the shallow trench isolation layer 14 is used to isolate the first transistor 11 and the second transistor 12.

在一些实施例中,在制备图10所示的自对准晶体管10的过程中,在刻蚀半导体衬底,形成纳米片层结构时,控制刻蚀的位置,使得形成的纳米片层结构的位置偏向半导体衬底的一侧,在半导体衬底的另一侧预留出较大的空间用于后续制备互连通孔结构13。在形成互连通孔结构13时,刻蚀直径较大的槽形孔,然后在槽形孔中沉积金属材料,以形成互连通孔结构13。图10所示的自对准晶体管10中的其他结构的制备方法与图2所示的自对准晶体管10的制备方法相同,可以参见自对准晶体管10的第一种制备过程,本申请实施例对此不作赘述。In some embodiments, during the process of preparing the self-aligned transistor 10 shown in FIG. 10, when etching the semiconductor substrate to form the nanosheet structure, the etching position is controlled so that the position of the formed nanosheet structure is biased toward one side of the semiconductor substrate, and a larger space is reserved on the other side of the semiconductor substrate for the subsequent preparation of the interconnection through-hole structure 13. When forming the interconnection through-hole structure 13, a slot-shaped hole with a larger diameter is etched, and then a metal material is deposited in the slot-shaped hole to form the interconnection through-hole structure 13. The preparation method of other structures in the self-aligned transistor 10 shown in FIG. 10 is the same as the preparation method of the self-aligned transistor 10 shown in FIG. 2, and reference can be made to the first preparation process of the self-aligned transistor 10, which will not be described in detail in the present embodiment of the application.

在本申请实施例中,自对准晶体管10中的互连通孔结构13贯穿第一层间介质层114和第二层间介质层124,在实现第一源漏结构112和第二源漏结构122之间的互连;In the embodiment of the present application, the interconnection via structure 13 in the self-aligned transistor 10 penetrates the first interlayer dielectric layer 114 and the second interlayer dielectric layer 124 to realize the interconnection between the first source-drain structure 112 and the second source-drain structure 122;

进一步地,由于互连通孔结构13贯穿第一层间介质层114和第二层间介质层124,所以通过选择性刻蚀的手段,可以使刻蚀自停止于源漏金属,从而降低源漏互连方案中对刻蚀时间的控制难度;Furthermore, since the interconnection through-hole structure 13 penetrates the first interlayer dielectric layer 114 and the second interlayer dielectric layer 124, the etching can be stopped at the source-drain metal by means of selective etching, thereby reducing the difficulty of controlling the etching time in the source-drain interconnection scheme;

进一步地,互连通孔结构13可以设置在以下任一种位置:有源结构的一侧、有源结构的两侧、有源结构的中间,这使得自对准晶体管10中的第一源漏结构112和第二源漏结构122的互连更加灵活。Furthermore, the interconnection via structure 13 can be arranged at any of the following positions: one side of the active structure, both sides of the active structure, or the middle of the active structure, which makes the interconnection between the first source-drain structure 112 and the second source-drain structure 122 in the self-aligned transistor 10 more flexible.

进一步地,本申请实施例提供的自对准晶体管10可以使用检测分析仪器进行检测,例如:扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)、扫描透射电子显微镜(scanningtransmission electron microscopy、STEM)等。以TEM为例,本申请实施例提供的自对准晶体管10可以采用TEM切片的方式,检测第一源漏金属113和第二源漏金属123之间的互连。Furthermore, the self-aligned transistor 10 provided in the embodiment of the present application can be inspected using an inspection and analysis instrument, such as a scanning electron microscope (SEM), a transmission electron microscope (TEM), a scanning transmission electron microscope (STEM), etc. Taking TEM as an example, the self-aligned transistor 10 provided in the embodiment of the present application can be inspected by TEM slicing to inspect the interconnection between the first source-drain metal 113 and the second source-drain metal 123.

本申请实施例提供一种半导体器件,包括:如上述实施例的自对准晶体管。自对准晶体管的具体限定可以参见上述图2、图5、图7、图8、图9和图10所示的自对准晶体管,在此不做赘述。The present application provides a semiconductor device, including: a self-aligned transistor as described in the above embodiment. The specific definition of the self-aligned transistor can be found in the self-aligned transistors shown in Figures 2, 5, 7, 8, 9 and 10, which will not be described in detail here.

本申请实施例提供一种电子设备,包括:电路板以及如上述实施例的半导体器件,半导体器件设置于电路板。该半导体器件包括上述自对准晶体管。自对准晶体管的具体限定可以参见上述图2、图5、图7、图8、图9和图10所示的自对准晶体管,在此不做赘述。The embodiment of the present application provides an electronic device, including: a circuit board and a semiconductor device as in the above embodiment, the semiconductor device being arranged on the circuit board. The semiconductor device includes the above self-aligned transistor. The specific definition of the self-aligned transistor can be referred to the self-aligned transistor shown in the above-mentioned Figures 2, 5, 7, 8, 9 and 10, which will not be described in detail here.

在本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不是必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本申请中描述的不同实施例或示例以及不同实施例或示例的特征进行结合。In the description of the present application, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the embodiments of the present application. In the present application, the schematic representation of the above terms is not necessarily for the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art may combine different embodiments or examples described in the present application and the features of different embodiments or examples without contradiction.

以上仅为本申请的较佳实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only preferred embodiments of the present application and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application shall be included in the protection scope of the present application.

Claims (11)

1.一种自对准晶体管的源漏互连方法,其特征在于,所述方法包括:1. A method for interconnecting source and drain of a self-aligned transistor, characterized in that the method comprises: 在半导体衬底上形成有源结构,所述有源结构包括第一有源结构和第二有源结构;forming an active structure on a semiconductor substrate, the active structure comprising a first active structure and a second active structure; 基于所述第一有源结构,依次形成第一源漏结构、第一层间介质层和第一源漏金属,所述第一层间介质层包裹所述第一有源结构、所述第一源漏结构和所述第一源漏金属;Based on the first active structure, a first source-drain structure, a first interlayer dielectric layer and a first source-drain metal are sequentially formed, wherein the first interlayer dielectric layer wraps the first active structure, the first source-drain structure and the first source-drain metal; 倒片并去除所述半导体衬底;Flipping and removing the semiconductor substrate; 基于所述第二有源结构,依次形成第二源漏结构、第二层间介质层和第二源漏金属,所述第二层间介质层包裹所述第二有源结构、所述第二源漏结构和所述第二源漏金属;Based on the second active structure, a second source-drain structure, a second interlayer dielectric layer and a second source-drain metal are sequentially formed, wherein the second interlayer dielectric layer wraps the second active structure, the second source-drain structure and the second source-drain metal; 其中,所述第一源漏金属和所述第二源漏金属通过互连通孔结构连通,所述互连通孔结构贯穿所述第一层间介质层和所述第二层间介质层。The first source-drain metal and the second source-drain metal are connected via an interconnection through-hole structure, and the interconnection through-hole structure penetrates the first interlayer dielectric layer and the second interlayer dielectric layer. 2.根据权利要求1所述的方法,其特征在于,所述基于所述第一有源结构,依次形成第一源漏结构、第一层间介质层和第一源漏金属,包括:2. The method according to claim 1, characterized in that the step of sequentially forming a first source-drain structure, a first interlayer dielectric layer and a first source-drain metal based on the first active structure comprises: 刻蚀所述第一有源结构的一部分,以形成所述第一源漏结构;Etching a portion of the first active structure to form the first source-drain structure; 在所述第一有源结构和所述第一源漏结构上沉积半导体材料,以形成第一层间介质层;Depositing a semiconductor material on the first active structure and the first source-drain structure to form a first interlayer dielectric layer; 刻蚀所述第一层间介质层的第一部分,以形成所述第一源漏金属;Etching a first portion of the first interlayer dielectric layer to form the first source and drain metal; 刻蚀所述第一层间介质层的第二部分,以形成第一互连通孔结构,所述第一互连通孔结构与所述第一源漏金属连接。A second portion of the first interlayer dielectric layer is etched to form a first interconnection via structure, wherein the first interconnection via structure is connected to the first source-drain metal. 3.根据权利要求2所述的方法,其特征在于,所述基于所述第二有源结构,依次形成第二源漏结构、第二层间介质层和第二源漏金属,包括:3. The method according to claim 2, characterized in that the step of sequentially forming a second source-drain structure, a second interlayer dielectric layer, and a second source-drain metal based on the second active structure comprises: 刻蚀所述第二有源结构的一部分,以形成所述第二源漏结构;Etching a portion of the second active structure to form the second source-drain structure; 在所述第二有源结构和所述第二源漏结构上沉积半导体材料,以形成第二层间介质层;Depositing a semiconductor material on the second active structure and the second source-drain structure to form a second interlayer dielectric layer; 刻蚀所述第二层间介质层的第一部分,以形成第二源漏金属;Etching a first portion of the second interlayer dielectric layer to form a second source/drain metal; 刻蚀所述第二层间介质层的第二部分,直至与所述第一互连通孔结构连通,以形成第二互连通孔结构,所述第二互连通孔结构与所述第一互连通孔结构组成所述互连通孔结构。The second portion of the second interlayer dielectric layer is etched until it is connected with the first interconnection through-hole structure to form a second interconnection through-hole structure, wherein the second interconnection through-hole structure and the first interconnection through-hole structure constitute the interconnection through-hole structure. 4.根据权利要求1所述的方法,其特征在于,所述基于所述第一有源结构,依次形成第一源漏结构、第一层间介质层和第一源漏金属,包括:4. The method according to claim 1, characterized in that the step of sequentially forming a first source-drain structure, a first interlayer dielectric layer and a first source-drain metal based on the first active structure comprises: 刻蚀所述第一有源结构的一部分,以形成所述第一源漏结构;Etching a portion of the first active structure to form the first source-drain structure; 在所述第一有源结构和所述第一源漏结构上沉积半导体材料,以形成第一层间介质层;Depositing a semiconductor material on the first active structure and the first source-drain structure to form a first interlayer dielectric layer; 刻蚀所述第一层间介质层的第三部分,以形成所述第一源漏金属。A third portion of the first interlayer dielectric layer is etched to form the first source/drain metal. 5.根据权利要求4所述的方法,其特征在于,所述基于所述第二有源结构,依次形成第二源漏结构、第二层间介质层和第二源漏金属,包括:5. The method according to claim 4, characterized in that the step of sequentially forming a second source-drain structure, a second interlayer dielectric layer, and a second source-drain metal based on the second active structure comprises: 刻蚀所述第二有源结构的一部分,以形成所述第二源漏结构;Etching a portion of the second active structure to form the second source-drain structure; 在所述第二有源结构和所述第二源漏结构上沉积半导体材料,以形成第二层间介质层;Depositing a semiconductor material on the second active structure and the second source-drain structure to form a second interlayer dielectric layer; 刻蚀所述第二层间介质层的第三部分,以形成第二源漏金属;Etching a third portion of the second interlayer dielectric layer to form a second source and drain metal; 刻蚀所述第二层间介质层的第四部分直至贯穿所述第一层间介质层,以形成所述互连通孔结构。The fourth portion of the second interlayer dielectric layer is etched until penetrating the first interlayer dielectric layer to form the interconnection through-hole structure. 6.根据权利要求1所述的方法,其特征在于,6. The method according to claim 1, characterized in that 所述互连通孔结构位于所述有源结构的一侧;或,The interconnection via structure is located on one side of the active structure; or, 所述互连通孔结构位于所述有源结构的两侧;或,The interconnecting via structures are located on both sides of the active structure; or, 所述互连通孔结构位于所述有源结构的中间。The interconnect via structure is located in the middle of the active structure. 7.根据权利要求1所述的方法,其特征在于,在所述倒片并去除所述半导体衬底之前,所述方法还包括:7. The method according to claim 1, characterized in that before flipping and removing the semiconductor substrate, the method further comprises: 基于所述第一层间介质层,形成第一晶体管;Based on the first interlayer dielectric layer, forming a first transistor; 将所述第一晶体管与载片晶圆键合。The first transistor is bonded to a carrier wafer. 8.根据权利要求7所述的方法,其特征在于,在基于所述第二有源结构,依次形成第二源漏结构、第二层间介质层和第二源漏接触结构之后,所述方法还包括:8. The method according to claim 7, characterized in that after sequentially forming a second source-drain structure, a second interlayer dielectric layer, and a second source-drain contact structure based on the second active structure, the method further comprises: 基于所述第二层间介质层,形成第二晶体管,所述第二晶体管与所述第一晶体管在所述半导体衬底的垂直方向上自对准。A second transistor is formed based on the second interlayer dielectric layer, and the second transistor is self-aligned with the first transistor in a vertical direction of the semiconductor substrate. 9.一种自对准晶体管,其特征在于,包括:9. A self-aligned transistor, comprising: 第一晶体管;a first transistor; 第二晶体管,所述第二晶体管与所述第一晶体管相背设置;a second transistor, the second transistor being arranged opposite to the first transistor; 其中,所述第一晶体管的第一源漏金属与所述第二晶体管的第二源漏金属通过互连通孔结构连通,所述互连通孔结构贯穿所述第一晶体管的第一层间介质层和所述第二晶体管的第二层间介质层。The first source-drain metal of the first transistor is connected to the second source-drain metal of the second transistor through an interconnection via structure, and the interconnection via structure penetrates the first interlayer dielectric layer of the first transistor and the second interlayer dielectric layer of the second transistor. 10.一种半导体器件,其特征在于,包括:如权利要求9所述的自对准晶体管。10 . A semiconductor device, comprising: the self-aligned transistor according to claim 9 . 11.一种电子设备,其特征在于,包括:电路板以及如权利要求10所述的半导体器件,所述半导体器件设置于所述电路板。11 . An electronic device, comprising: a circuit board and the semiconductor device according to claim 10 , wherein the semiconductor device is arranged on the circuit board.
CN202311694549.0A 2023-08-07 2023-12-11 Source-drain interconnection method of self-aligned transistor, self-aligned transistor and device Pending CN117855145A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202311694549.0A CN117855145A (en) 2023-12-11 2023-12-11 Source-drain interconnection method of self-aligned transistor, self-aligned transistor and device
PCT/CN2024/110462 WO2025031417A1 (en) 2023-08-07 2024-08-07 Semiconductor structure and preparation method therefor, and semiconductor device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311694549.0A CN117855145A (en) 2023-12-11 2023-12-11 Source-drain interconnection method of self-aligned transistor, self-aligned transistor and device

Publications (1)

Publication Number Publication Date
CN117855145A true CN117855145A (en) 2024-04-09

Family

ID=90545466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311694549.0A Pending CN117855145A (en) 2023-08-07 2023-12-11 Source-drain interconnection method of self-aligned transistor, self-aligned transistor and device

Country Status (1)

Country Link
CN (1) CN117855145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117832173A (en) * 2023-12-18 2024-04-05 北京大学 Preparation method of semiconductor structure, semiconductor structure and semiconductor device
CN118538665A (en) * 2024-05-20 2024-08-23 北京大学 Metal wiring method of flip-chip transistor, device and equipment
WO2025031417A1 (en) * 2023-08-07 2025-02-13 北京大学 Semiconductor structure and preparation method therefor, and semiconductor device and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823666A (en) * 2021-01-18 2022-07-29 三星电子株式会社 Stacked semiconductor device and method of making the same
US20230135946A1 (en) * 2021-11-04 2023-05-04 Shanghai Huali Integrated Circuit Corporation Self-Aligned Gate Contact Fin Field Effect Transistor and Method for Manufacturing the Same
CN116072676A (en) * 2021-11-03 2023-05-05 中芯国际集成电路制造(上海)有限公司 Semiconductor structures and methods of forming them
CN117116942A (en) * 2023-08-07 2023-11-24 北京大学 Preparation method of semiconductor structure, and semiconductor structure
CN117133715A (en) * 2022-05-18 2023-11-28 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure
CN117133719A (en) * 2023-08-07 2023-11-28 北京大学 Preparation method of semiconductor structure and semiconductor structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823666A (en) * 2021-01-18 2022-07-29 三星电子株式会社 Stacked semiconductor device and method of making the same
CN116072676A (en) * 2021-11-03 2023-05-05 中芯国际集成电路制造(上海)有限公司 Semiconductor structures and methods of forming them
US20230135946A1 (en) * 2021-11-04 2023-05-04 Shanghai Huali Integrated Circuit Corporation Self-Aligned Gate Contact Fin Field Effect Transistor and Method for Manufacturing the Same
CN117133715A (en) * 2022-05-18 2023-11-28 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure
CN117116942A (en) * 2023-08-07 2023-11-24 北京大学 Preparation method of semiconductor structure, and semiconductor structure
CN117133719A (en) * 2023-08-07 2023-11-28 北京大学 Preparation method of semiconductor structure and semiconductor structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025031417A1 (en) * 2023-08-07 2025-02-13 北京大学 Semiconductor structure and preparation method therefor, and semiconductor device and electronic device
CN117832173A (en) * 2023-12-18 2024-04-05 北京大学 Preparation method of semiconductor structure, semiconductor structure and semiconductor device
CN117832173B (en) * 2023-12-18 2025-03-21 北京大学 Semiconductor structure preparation method, semiconductor structure and semiconductor device
CN118538665A (en) * 2024-05-20 2024-08-23 北京大学 Metal wiring method of flip-chip transistor, device and equipment

Similar Documents

Publication Publication Date Title
CN117855145A (en) Source-drain interconnection method of self-aligned transistor, self-aligned transistor and device
CN108400137B (en) Integration of Vertical Field Effect Transistor and Saddle Fin Field Effect Transistor
TW202236599A (en) Semiconductor device structure
CN117133719B (en) A method for preparing a semiconductor structure and a semiconductor structure
CN117352459B (en) A method for preparing a semiconductor structure, a semiconductor structure, a device and an apparatus
CN117116858B (en) Semiconductor structure and method for manufacturing the same
CN117116942B (en) Semiconductor structure preparation method and semiconductor structure
CN117293090B (en) Preparation method of self-aligned transistor, device and equipment
CN117995778A (en) Method for preparing semiconductor structure, device and equipment
CN117995776B (en) Preparation method of stacked transistor, device and equipment
CN117855144A (en) Source-drain interconnection method of semiconductor structure, device and equipment
CN118315343A (en) Method for preparing semiconductor structure, device and equipment
CN117878061A (en) Method for preparing stacked transistor, stacked transistor, device and equipment
CN118352296A (en) Preparation method of stacked transistor, stacked transistor and semiconductor device
CN118366928A (en) Gate interconnection method of stacked transistor, stacked transistor, device and apparatus
CN117894754A (en) Interconnection method of stacked transistor, stacked transistor and semiconductor device
CN118039568B (en) Semiconductor structure preparation method, semiconductor structure and semiconductor device
CN117995753B (en) Method for preparing stacked transistor, stacked transistor, device and equipment
CN118039565A (en) Preparation method of semiconductor structure, semiconductor structure and semiconductor device
WO2025031417A1 (en) Semiconductor structure and preparation method therefor, and semiconductor device and electronic device
CN118280925B (en) Semiconductor device manufacturing method, semiconductor device and electronic equipment
CN119364839B (en) Preparation method of stacked transistor, stacked transistor and semiconductor device
CN118016592A (en) Semiconductor structure preparation method, semiconductor structure, device and equipment
WO2025031407A1 (en) Preparation method for semiconductor structure, semiconductor structure and device, and device
CN117936462A (en) Preparation method of stacked fork plate transistor, stacked fork plate transistor and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination