CN117844155A - 用于射频应用的磁性官能化聚合物基板 - Google Patents

用于射频应用的磁性官能化聚合物基板 Download PDF

Info

Publication number
CN117844155A
CN117844155A CN202311284458.XA CN202311284458A CN117844155A CN 117844155 A CN117844155 A CN 117844155A CN 202311284458 A CN202311284458 A CN 202311284458A CN 117844155 A CN117844155 A CN 117844155A
Authority
CN
China
Prior art keywords
magneto
dielectric
particles
polymer
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311284458.XA
Other languages
English (en)
Inventor
君特·普夫卢格
迈克尔·格拉迪茨
施特凡·赖内曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thueringisches Institut fuer Textil und Kunststoff Forschung eV
Original Assignee
Thueringisches Institut fuer Textil und Kunststoff Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thueringisches Institut fuer Textil und Kunststoff Forschung eV filed Critical Thueringisches Institut fuer Textil und Kunststoff Forschung eV
Publication of CN117844155A publication Critical patent/CN117844155A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2345/00Characterised by the use of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Details Of Aerials (AREA)

Abstract

本专利描述了用于MHz和邻近GHz的频率范围内天线小型化的具有增加的折射率和极大降低的衰减损耗的磁介电聚合物复合材料,其中通过在所涉及的聚合物中使用高度支化的聚合物化合物,在加工过程中磁性填料组分被更有效地分散,并且由于所述化合物的间隔功能,其还与周围的聚合物基体更好地结合为0‑3型结构。

Description

用于射频应用的磁性官能化聚合物基板
技术领域
本专利描述了用于MHz和邻近GHz的频率范围内天线小型化的具有增加的折射率和极大降低的衰减损耗的磁介电聚合物复合材料,其中通过在所涉及的聚合物中使用高度支化的聚合物化合物,在加工过程中磁性填料组分被更有效地分散,并且由于所述化合物的间隔功能,其还与周围的聚合物基体更好地结合为0-3型结构。
背景技术
磁介电聚合物复合材料是介电塑料基体中一种或多于一种磁性填料组分的非均质混合物,因此综合了塑料中磁性材料和介电材料两者的特性。
与Mosallaei和Sarabandi,“Magneto-Dielectrics in Electromagnetics:Concepts and Applications”,IEEE Transactions on Antennas and PropagationVol.52,No.6(2004)pp.1558-1569,以及Juuti和Teirikangas,“Thermoplastic 0-3Ceramic–Polymer Composites with Adjustable Magnetic and DielectricCharacteristics for Radio Frequency Applications”,International Journal ofApplied Ceramic Technology Vol.7,No.4(2010)pp.452-460,发表的研究一致,磁介电聚合物复合材料可用作小型化射频装置如天线的基板。
杨及其同事的工作“Comprehensive Study on the Impact of Dielectric andMagnetic Loss on Performance of a Novel Flexible Magnetic CompositeMaterial”,Proceedings of the 38th European Microwave Conference,in Amsterdam,October 2008,涉及了磁介电聚合物复合材料在射频识别系统(RFID)中的应用。
Lee和Cho等人在2020年发表的论文“Flexible Magnetic Polymer CompositeSubstrate with Ba1.5Sr1.5Z Hexaferrite Particles of VHF/Low UHF Patch Antennasfor UAVs and Medical Implant Devices”in Materials 2020,13,1021pp.1-10中,报告了通过聚氨酯/六角铁氧体的集成柔性聚合物复合材料实现天线的小型化,该复合材料可用于几百MHz的频率范围内,特别是在400MHz的无人机或医疗植入物。
对于介电常数ε′和磁导率μ′的实分量,使用磁介电聚合物复合材料,在带状线天线的背景下,小型化与折射率n和小型化系数k的关系如下:
与纯电介质填充型聚合物复合材料相比,由于μ>1,具有磁介电聚合物基板的带状线天线具有更高的折射率,并且根据公式2其阻抗匹配IM也更好。
对于阻抗匹配IM=(μ′/ε′)1/2=1或阻抗差ID=0的理想情况,带状线天线的反射和表面波消失;这种现象本身可能在天线运行期间产生一定的功率损耗。
如果选择了不适宜的磁介电聚合物基板,尤其是在强烈衰减磁性填料和聚合物基板的情况下,在MHz和GHz频率范围内,可能会出现明显的磁性和介电衰减损耗,从而导致天线接收和发射期间吸收和输出的功率损耗。对于在谐振频率fr范围内具有高辐射效率和相对较大天线增益的天线,要求所用聚合物复合材料的介电衰减损耗和磁性衰减损耗极小。损耗角正切值分别根据虚分量μ″和ε″以及相关实分量ε′和μ′的商计算,其中足够小的衰减损耗仍低于0.1:
在磁介电填充的聚合物复合材料的生产中,目标是在0-3环境中与聚合物基体一起实现磁性填料颗粒的高度分散和基本个性化。Sebastian和Jantunen在论文“Polymer–Ceramic Composites of 0–3Connectivity for Circuits in Electronics:AReview”,International Journal of Applied Ceramic Technology,Vol.7,No.4,(2010)pages415-434中概述了纯介电和磁性填充的聚合物-陶瓷复合材料,其陶瓷成分与聚合物相具有三维连通性,。
范德华力是原子和分子之间的弱相互作用力,在Winkler的论文“Dispergierenvon Pigmenten und Füllstoffen,Farben und Lacke”,Vincentz出版,SBN-10:3866309090,November2010中,随着距离的增加,包括填料颗粒之间的距离,范德华力以6的幂减少。
与凯泽斯劳滕工业大学Damavandi自2015年来在“Internal surface of thefillers”中发表的论文“Effect of internal surfaces on the structural andmechanical properties of polymer-metal composites”第2.5.5节中的研究一致,范德华力和形成团聚的倾向随着堆积密度的增加而大量增加,特别是当填料的颗粒尺寸从几微米减小到亚微米或纳米尺度的颗粒时。
通过降低分散度和通过聚合物基板中磁性填料组分的不充分个体化,降低了介电常数ε′和磁导率μ′,并且在射频范围内,伴随着聚合物复合材料的折射率降低。
使用超支化或树状聚合物化合物的目的是将磁性填充颗粒分散在聚合物基体中,并将它们与聚合物组分在理想的0-3环境中结合。超支化聚合物在高填充磁介电聚合物复合材料中的特殊间隔功能使其介电常数ε′和磁导率μ′得以提高,从而提高了基于聚合物的天线基板的折射率。
根据由Elsevier公司Myer Kutz编辑的“Applied Plastics EngineeringHandbook”2017,ISBN:978-0-323-39040-8,在第25章“Dispersants and Coupling”中,适合于将填料和颜料加入塑料中的具有化学耦合效应的典型的分散添加剂,包括有机硅烷、有机金属化合物(如钛酸盐、锆酸盐和铝酸盐)、不饱和羧酸、丙烯酸和马来酸官能化的聚合物,由于锚定-缓冲结构,这些添加剂也可有助于磁介电聚合物复合材料中磁性颗粒的空间稳定作用和更好的解聚。
然而,由于这些分散助剂的极性性质,填充型聚合物复合材料的介电和磁性衰减损耗急剧上升。
不具有特殊偶联功能的非极性或极性蜡添加剂,如聚烯烃蜡、酰胺和褐煤蜡,根据与聚合物基体的相容性,充当外部(不相容)和内部(相容)润滑剂,其可以改善加工过程中的熔体加工性,特别是可以降低黏度。
在烧结铁氧体的情况下,易流动的蜡添加剂的分散效果由于陶瓷颗粒的孔隙率以及聚合物熔体在开孔铁氧体表面的更大吸收而降低。
南佛罗里达大学2015年的专利US20150255196“Magneto-Dielectric PolymerNanocomposites and Method of Making”要求保护丁二烯共聚物溶液中的CoFe2O4和Fe3O4纳米颗粒,并使用界面活性物质油胺和油酸来稳定纳米颗粒,特别是在氧化方面。然而,在高度支化的聚合物或树状聚合物的高度支化的分子结构的空间范围不存在的情况下,所述界面活性物质不能在聚合物复合材料中的磁性颗粒之间产生足够的个体化和间隔效应。
LG Electronics公司2018年的专利KR20180060496“Magnetic and DielectricComposite Structure and Method for Fabricating the same and Antenna for Usingthe same”报道了通过电绝缘氧化物如SiO2、Al2O3、TiO2和ZrO2,以1nm至30nm厚的层包覆颗粒直径为10nm至500nm的Fe、Co、Ni、Mn及其合金的软磁金属颗粒,以结合到聚合物基体如聚乙烯吡咯烷酮、聚二甲基硅氧烷、PMMA、PET、环烯烃共聚物、聚苯乙烯和聚萘二甲酸乙二醇酯中,并在700MHz至3GHz范围内用作天线(例如PIFA)的磁介电基板。但由于在研究的频率范围内,天线基板的介电衰减值和磁性衰减值在tanδε为0.25和tanδμ为0.9至1.0时都远高于公式3的上限值,因此这些天线系统的辐射效率和增益都大大降低。
Rogers公司2019年的专利WO2019143502,“Core-Shell Particles,Magneto-Dielectric Materials,Methods of Making,and Uses thereof”,要求保护在具有核-壳体系结构(核-壳颗粒)的磁介电聚合物复合材料中频率范围在1GHz左右和以上的磁性颗粒的生产和用途,其中Fe、Ni或Co颗粒的壳是通过包括使用化学氧化剂如氧气或在等离子体中氧化的方法形成的,也可以在单独的工艺步骤中从氮化物形成。缺点以及这个额外的工艺步骤是使用氧化剂,如KMnO4、K2Cr2O7和HNO3,其反应产物必须从操作中和处理后的磁性颗粒中去除。
近年来,为填充型聚合物复合材料确定的纳米分散添加剂包括多面体低聚倍半硅氧烷(POSS化合物)。
这些半有机骨架硅酸盐的具体性质和应用描述在Xanthos,“Functional Fillersfor Plastics”,Chapter 23:Polyhedral Oligomeric Silsesquioxanes.WILEY-VCH,Weinheim,2010和Blanco及其同事的研究“POSS-Based Polymers”,Polymers 11,1727pp.1-5,2019中。
根据Lee,Hwang等人的论文,“Low Dielectric Materials for Micro-electronics in Dielectric Materials”,Silaghi编辑,Chapter:3,pp.59-76,INTECHOpen Access Publisher from January2012,聚合物-POSS复合材料的介电常数和折射率通过POSS化合物的笼状结构中的纳米腔而降低。
将这些半有机骨架硅酸盐插入到磁介电聚合物复合材料中以更有效地分散铁氧体组分,因此与预期的折射率增加和天线基板的小型化背道而驰。
BluesShift材料公司2019年的专利WO2019006184,“Hyperbranched POSS basedPolymer Aerogels”,要求保护超支化聚合物气凝胶,该气凝胶由具有开孔结构的聚合物基体和有机改性的POSS聚合物组成。
由于密度较低,这种聚合物材料用于射频应用,具体用作具有降低的介电常数的天线基板。由于密度的降低也导致气凝胶的折射率下降,因此这些材料不适合天线小型化。
Gao和Yan在研究“Hyperbranched Polymers:from Synthesis toApplications”,Progress in Polymer Science,29,(2004)pp.183–275中,阐述了超支化/树状聚合物化合物在改善塑料加工加工性能方面的潜力,以及它们尤其作为填充型聚合物的分散添加剂的适用性。
在Douloudi及其同事的综述文章“Dendritic Polymers as promisingAdditives for the Manufacturing of Hybrid Organoceramic Nanocomposites withameliorated Properties suitable for an extensive Diversity of Applications”,Nanomaterials 2021,11,19,pp.1-36中,超支化和树状聚合物也用作分析(层析)的添加剂,用于电子和传感器技术中的功能涂层,用于化学催化和医学应用(基因转移,作为抗菌聚合物复合材料和用于活性成分的施用)。
在Rogers公司2018年的专利WO2018119341“Multi-Layer Magneto-DielectricMaterials”和WO2018140588“Method of Making a Multi-Layer Magneto-DielectricMaterial”中,在磁介电材料的上下文中,以及在热塑性和热固性塑料的大类聚合物基体的用途中,也提到使用了其他未指定的树状聚合物,尽管它们仅用于层压材料的介电中间层中,因此不能在铁磁层的磁性填料颗粒之间的0-3型结构中充当间隔物。
2009年授予亚利桑那州ABOR大学的专利US20090053512“MultifunctionalPolymer coated Magnetic Nanocomposite Material”描述了由金属铁磁性核特别是钴,和聚合物壳组成的聚合物包覆的纳米颗粒。这些聚合物包覆的纳米颗粒还可以包括树状/超支化聚合物壳。覆壳颗粒也可以在磁场的作用下定向成链状结构。根据专利US20090053512(第0155段)中的观察,覆壳钴纳米颗粒可以在涂层中或在基板中用作微波吸收剂,尽管这排除了它们作为低衰减、基于聚合物的天线基板的用途。
深圳华力兴新材料股份有限公司2020年的中国专利CN111548612“一种5G天线振子基材用PCT/TLCP树脂组合物及其制备方法和应用”,要求保护PCT(环己烷二甲醇-对苯二甲酸二甲酯-CHDM-DMT)和TLCP(热塑性LCP)的聚合物共混物与玻璃或硅灰石纤维或矿物组分作为用于5G频率范围的天线基板。
PCT/TLCP聚合物复合材料中使用的分散剂包括超支化聚合物等。但所述PCT/TLCP聚合物复合材料仅作为纯介电填充型聚合物配方存在。根据Sebastian、Ubic和Jantunen2017年的综述研究“Microwave Materials and Application”,ISBN9871119208525,第一版,John Wiley&Sons,pp.855ff.,由于所使用的介电玻璃纤维或矿物成分的介电常数低于常用的钛酸盐、铌酸盐或锆酸盐,因此对提高聚合物复合材料的折射率只有很小的贡献,尤其是非磁性填料的磁导率仅为1。
Menezes和Fechine等人在“From Magneto-Dielectric Biocomposite Films toMicrostrip Antenna Devices”,Journal of Composite Science,2020,4,144,pp.1-20的研究中,将超顺磁性氧化铁纳米颗粒(SPIONS)结合到壳聚糖、纤维素和胶原蛋白的生物聚合物中。为了改善磁性铁粒子在聚合物基体中的分散性和更高的氧化稳定性,用超支化聚乙烯亚胺(BPEI)对纳米颗粒进行了表面官能化。然后研究了合成的磁介电生物复合材料作为聚合物基板在贴片天线中的适用性。
在这种情况下,由于实部的μ′被设置为1,因此忽略复磁导率(μ*=μ′–iμ″)和磁性衰减损耗tanδμ的影响。然而,在0.4GHz至4.5GHz的频率范围内,对于所研究的生物聚合物SPIONS,发现了明显的介电衰减损耗,在0.15至0.4之间。再加上未捕获的磁性衰减损耗,在贴片天线中使用这些高衰减聚合物基板可能会导致天线增益和辐射效率的急剧下降。
发明内容
下面使用的超支化间隔分子的概念涉及聚合物化合物的有机分子结构,其特征在于具有随机的三维空间支化,具有多种官能团和纳米腔,并且具有假中心,因此当这些分子用于填充型聚合物复合材料中时,空间占据功能(间隔效应)也是明显的。
在随后的发明中,超支化聚乙烯亚胺(PEI)在与棕榈酸C15H31COOH酰胺化后的反应产物命名为PEI-C16,与硬脂酸C17H35COOH的反应产物被命名为PEI-C18,缩写PEIA作为通用术语引入。
本发明的目的是改进贴片、偶极和平面倒置F天线(PIFA)类型的天线的小型化,例如用于MHz和邻近GHz的频率区域。
该目的通过超支化间隔分子的引入和存在来实现。在特定的填料范围内或在磁性组分的恒定填料分量下,这些分子提高了所使用的聚合物基板的折射率,同时伴随着介电常数ε′和磁导率μ′的提高。
具有超支化聚合物化合物的用于天线小型化的聚合物基板采用具有磁性填料的磁介电聚合物复合材料的形式,或者具有两种或多于两种磁性填料组分的聚合物混杂复合材料的形式。
这些磁介电聚合物基板具有较低的介电衰减损耗和磁性衰减损耗,因此可以满足tanδε=ε″/ε′<0.1和tanδμ=μ″/μ′<0.1的要求。
通过添加μ′>1的超支化间隔分子,相对于μ′=1的纯介质填充型聚合物复合材料,磁介电聚合物基板实现了改善的阻抗匹配IM,因此也降低了天线因表面波和反射而产生的损耗。
本发明的目的是通过使用具有由两亲性超支化间隔分子包围的磁性颗粒填充的磁介电聚合物基板来实现的。间隔分子的两亲性使它们通过其极性侧附着到磁性颗粒的高能表面,而间隔物化合物分子的非极性区域能够在非极性、低能聚合物基体中展开。结果,磁性颗粒以胶束的方式与超支化间隔分子包裹,并以0-3连接性结合到基体中。
磁性颗粒的分散性和个性化的改善导致介电常数ε′和磁导率μ′增加,从而使磁介电聚合物复合材料的折射率增加,而介电衰减损耗和磁性衰减损耗降低至tanδε<0.1和tanδμ<0.1的值。
所用的磁性颗粒具有软磁特性,如低矫顽力Hc<1000A/m和低剩磁(剩余磁化强度),导致磁导率实分量的值为μ′>1或μ′>>1。
软磁颗粒是含有元素钴、铁、锰或镍的陶瓷或合金。特别适用于在MHz和邻近GHz的频率范围内的天线小型化的聚合物基体中使用的是Z型钡钴六角铁氧体(Ba3Co2Fe24O41)、通式为NiaZn(1-a)Fe2O4或磁铁矿(Fe3O4)的镍锌铁氧体或这些物质的其他组合。具有软磁性的颗粒的平均粒径D50为0.05μm至10.0μm。
所用的间隔分子是超支化的聚乙烯亚胺,其还被非极性基团官能化。这导致两亲物质既能与磁性颗粒的极性表面相互作用,又能在非极性基体中扩散。磁性颗粒以胶束方式被超支化间隔分子包裹,因此更有效地个体化并更均匀地分散在基体中。
超支化的间隔分子优选与脂肪酸官能化,更优选棕榈酸和硬脂酸官能化。
在天线结构中,聚合物基体是磁介电聚合物基板的主要组成部分。基体对所用塑料的强度和结构或弹性负责。
基体材料由具有低介电衰减tanδε<0.02,更特别是tanδε<0.01的非极性低能量聚合物组成,例如聚烯烃如环烯烃聚合物(COP)、环烯烃共聚物(COC)、聚乙烯(PE)和聚丙烯(PP)、含苯乙烯的聚合物如聚苯乙烯(PS)、冲击改性的聚苯乙烯(高抗冲聚苯乙烯,HIPS)和丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚甲醛(POM)、聚酯如聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)和聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚苯醚(PPO)、聚苯硫醚(PPS)、含氟聚合物如聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、全氟(乙烯-丙烯)(FEP)和乙烯-四氟乙烯共聚物(ETFE)、热塑性弹性体(TPE)如聚醚嵌段酰胺(PEBA)、单组分固体有机硅弹性体如室温交联(RTV)硅橡胶或高温交联(HTV)硅橡胶、液体双组分硅橡胶(液体硅橡胶,LSR)如聚二甲基硅氧烷或乙烯-丙烯-二烯橡胶(EPDM,三元乙丙橡胶,M组)、环氧树脂浇注化合物(冷固化或热固化)或含丙烯酸酯的环氧树脂。
本发明的聚合物复合材料是通过挤出或捏合热塑性基质聚合物,或通过溶解的聚合物与两亲性超支化间隔分子和磁性颗粒的混合物的液体颗粒分散体复合来生产的。在去除溶剂之后,在进一步的工艺步骤中,从溶解的聚合物的液体磁性颗粒分散体获得磁介电聚合物复合材料。在本发明的上下文中,术语“聚合物基板”和“聚合物复合材料”是同义的和可互换的。
将磁性填充型聚合物复合材料在注射成型机上造粒和加工,以提供片状中间体作为天线的聚合物基板,或者提供用于容纳天线结构的外壳。
由磁介电聚合物复合材料的颗粒制成的长丝可以使用熔丝成型(FFF)的增材制造方法来加工成特定的中间体。
由长丝印刷出用于容纳天线的外壳,或者通过FFF工艺直接用磁介电聚合物复合材料包裹天线结构。
为了从单组分固体有机硅弹性体或EPDM生产磁性填充型聚合物复合材料,橡胶在捏合机中与两亲性超支化间隔分子和磁性颗粒混合,随后在辊磨机上加工混合物。磁性填充的橡胶混合物被压制成片状中间体,其可用作天线小型化的聚合物基板。
磁性颗粒子和两亲性超支化间隔分子通过分散加入液体双组分硅氧烷弹性体中,或者通过高速均质和超声波的组合处理将其并入环氧树脂混合物中。
液体基质/磁性颗粒分散体可以浇注在空腔中并固化成片状中间体,然后用作天线结构的聚合物基板。液体基质/磁性颗粒分散体也可以通过浇注来包裹天线,然后允许天线结构小型化。
在双螺杆挤出机上,将聚合物与铁氧体填料复合后,通过水浴将熔体作为拉条抽出并进行拉条切粒,即可获得磁介电聚合物复合材料和混杂复合材料的颗粒。然后,在注射成型机上对颗粒进行模压,得到片状中间体。
Gladitz在2015年3月12日在哈勒-维滕贝格马丁·路德大学发表的论文“Untersuchungen zur Herstellung,Charakterisierung und Applikation vonantimikrobiellen Metall-Hybriden fürBeschichtungen und Compounds”中描述了酰胺化的聚乙烯亚胺(PEIA)如PEI-C16和PEI-C18的生产。
在挤出机中混合时,将PEIA组分计量加入聚合物熔体中。PEIA还被加入到丙酮聚合物溶液中,与磁性铁氧体颗粒一起,通过剪切进入聚合物/铁氧体分散体,然后在减压下干燥。
在有机溶剂蒸发并且薄膜状残留物造粒后,磁性填充型聚合物材料可以注射成型为片状中间体。
另一种含有铁氧体填料和酰胺化聚酯亚胺的聚合物复合材料可以在导管挤出生产线上加工成1.75mm厚的长丝,然后打印成片状中间体,还可以通过熔丝成型(FFF)的方法用于包裹偶极天线。
将由多面体低聚倍半硅氧烷八甲基-POSS(OMP)和三硅烷醇异丁基-POSS(TSP)组成的聚合物助剂和用于基于硬蜡的聚合物-填料浓缩物分散体的两亲性共聚物TegomerP121作为参比添加剂与磁介电聚合物-铁氧体复合材料中的酰胺化聚乙烯亚胺(PEIA)进行比较。只有当使用具有足够小的衰减损耗tanδε<0.1和tanδμ<0.1的两亲性和超支化PEIA时,介电常数ε′和磁导率μ′才能提高聚合物复合材料的折射率n。
优选的使用形式
磁介电聚合物复合材料和混杂复合材料可用作天线小型化的基板材料,条件是介电衰减损耗和磁性衰减损耗较低,tanδε=ε″/ε′<0.1和tanδμ=μ″/μ′<0.1,用于在MHz和邻近GHz的范围内实现天线的小型化。
两亲性超支化聚合物PEIA在通过挤出或掺入液体聚合物-铁氧体颗粒分散体中加工磁介电复合材料时起到分散助剂的作用,并且预期的参考添加剂不同,OMP、TSP和P121还充当聚合物复合材料中磁性填料颗粒之间的有效间隔分子。
由于磁介电聚合物复合材料和混杂复合材料的介电常数ε′和磁导率μ′都随着PEIA分量的增加而增加,折射率也明显增加,这可以用于例如天线结构的进一步小型化,或者节省磁性填料,同时降低衰减损耗。
在小型化天线中具有间隔化合物PEIA的本发明的磁介电聚合物复合材料的可能工作频率是用于紧急频率的400MHz和用于移动通信标准LTE(长期演进)/4G的800MHz的特定范围,或者是从700MHz至900MHz的更低的5G范围,尽管聚合物基板倾向于从50MHz到4GHz的较大频率范围。
附图说明
图1示出了超支化PEI和用通式R-COOH的脂肪酸修饰得到的两亲性超支化PEI(PEIA)。
图2示意性地示出了由非极性区域(101)和极性区域(102)组成的PEIA(100)与磁性颗粒(103)的相互作用,以得到PEIA包裹的磁性颗粒(104)。在PEIA包裹的磁性颗粒(104)和基体聚合物(106)的聚合物复合材料(105)中,覆盖层导致磁性颗粒的个体化。
图3使用例如400MHz和800MHz的实际相关频率,比较了没有附加添加剂、具有OMP和具有PEIA间隔化合物的COC-六角铁氧体复合材料的介电常数ε′、磁导率μ′和折射率。
图4比较了在400MHz和800MHz下,没有附加添加剂、具有POSS添加剂OMP和TSP以及具有PEIA化合物的ABS-尖晶石铁氧体复合材料的介电常数ε′、磁导率μ′和折射率。
图5使用例如800MHz的频率,比较了没有附加添加剂、具有POSS添加剂OMP和TSP以及具有PEIA化合物的ABS-尖晶石铁氧体复合材料的介电衰减损耗和磁性衰减损耗。
图6示出了当在400MHz和800MHz下使用PEIA间隔化合物时,ABS-磁铁矿六角铁氧体和ABS-尖晶石六角铁氧体的混杂复合材料的介电常数ε′、磁导率μ′和折射率的增加。
图7示出了用于确定由平面天线偶极子上的周围磁介电材料引起的谐振频率偏移的实验装置。
平面天线偶极子(700)由磁介电基板层(701)嵌入两侧。通过网络分析器(703)的端口1(702)测量S11散射参数。
图8显示了9.4cm长的偶极天线在不同磁介电环境中的谐振频率随频率和折射率的变化。
(800)空气环境中的天线
(801)天线与ABS
(802)天线与ABS-65gFi130复合材料
(803)天线与ABS-65gFi130-2OMP复合材料
(804)天线与ABS-65gFi130-2TSP复合材料
(805)天线与ABS-65gFi130-2PEIA复合材料
图9示出了在空气电介质(900)中包裹之前和施加聚合物基板(901)之后,通过3D印刷工艺用磁介电聚合物复合材料UBE-65gFi130-2PEIA和两亲性改性的聚酯-亚胺组分包裹之后,具有两个偶极子的天线结构的谐振频率偏移。
图10示出了在包裹(1000)之前和在应用磁介电聚合物复合材料UBE-65gFi130-2PEIA(1001)之后的天线结构的照片。
具体实施方式
实施例
方法
安捷伦E4991A型阻抗分析仪用于通过测量插座16454A和16453A在10MHz至1GHz的频率范围内测定复磁导率μ*(μ′、μ″和tanδμ)和复介电常数ε*(ε′、ε″和tanδε)。根据频率在2mm厚、外径19mm和内径6mm的穿孔圆盘上测量复磁导率μ*,并在2mm厚、直径19mm的试样上测量复介电常数ε*,所述试样通过研磨从磁介电聚合物复合材料和混杂复合材料中提取。
化学品
APELTM APL5014DP是来自Mitsu Chemicals America,Inc.的环烯烃共聚物,根据ASTM D1238测量,其MFI为36克/10分钟260℃/2.16kg。
ELIX ABS 3D GP是来自塔拉戈纳ELIX Polymers的丙烯腈-丁二烯-苯乙烯共聚物,根据ISO 1133测量,其MVR为18厘米/10分钟220℃/10kg。
UBE68 UBESTA XPA 9068X1是来自日本UBE Industries,Ltd.的聚酰胺12弹性体,根据ISO 1133-2测量,其MFR为4克/10分钟190℃/2.16kg。
Co2Z是来自Trans-Tech的Z型Ba3Co2Fe24O41六角铁氧体,其d50为5.1μm。
gFi130是来自Sumida AG的亚铁酸盐型NiZn铁氧体,研磨后其d50为0.7μm。
Fe3O4是来自Lanxess的E8707H磁铁矿,其d平均为0.2μm。
来自Hybrid Plastics,Hattiesburg的八甲基聚倍半硅氧烷(八甲基-POSS,OMP)和三硅醇异丁基-聚倍半硅氧烷(三硅醇异丁基-POSS,TSP)。
分散添加剂P121是来自Evonik Nutrition&Care GmbH的两亲性共聚物。
PEIA是酰胺化的聚乙烯亚胺。制备描述在Gladitz在2015年3月12日在哈勒-维滕贝格马丁·路德大学发表的论文“Untersuchungen zur Herstellung,Charakterisierungund Applikation von antimikrobiellen Metall-Hybriden für Beschichtungen undCompounds”中。
表1列出了所用的聚合物、磁性填料和特殊添加剂以及磁介电聚合物复合材料的详细加工条件。
表1:用于生产磁介电聚合物复合材料的聚合物、磁性填料、特殊助剂和加工条件
在给出的实施例中,使用了BASF的聚乙烯亚胺WF,其平均分子质量为25000,水分含量不超过1%,黏度(50℃)为13000mPa·s至18000mPa·s,然后与Roth公司的棕榈酸进行酰胺化,其熔点为62.5℃,相对分子质量为256.4克/摩尔。
实施例1
通过挤出将60质量%和65质量%的Co2Z六角铁氧体(Ba3Co2Fe24O41)和在每种情况下2质量%的粉状PEIA结合到环烯烃共聚物APELTM APL5014DP中。
对于具有60质量%和65质量%的Co2Z六角铁氧体的两种配方,为了进行比较,不含PEIA,对于另外两个相应的配方,通过挤出将2质量%的POSS化合物OMP引入COC基质中。
如图3所示,在400MHZ和800MHZ下,与不含PEIA和POSS化合物OMP的比较配方相比,含酰胺化聚乙烯亚胺(PEIA)的磁介电聚合物复合材料的介电常数ε′和磁导率μ′的增加以及随之而来的更高的折射率均得到了验证。
实施例2
通过挤出将65质量%和69质量%的细磨尖晶石铁氧体gFi130(NiZn-Fe2O4)和在每种情况下2质量%的粉状PEIA结合到聚合物ELIX ABS 3D GP中。
对于具有65质量%和69质量%的尖晶石铁氧体gFi130的两种配方,为了进行比较,不含PEIA,对于具有65质量%gFi130的两种配方,在每种情况下加入2质量%的POSS化合物OMP和TSP,对于另一种参考配方,加入2质量%的分散添加剂Tegomer P121。
如图4所示,在400MHZ和800MHZ下,与不含PEIA和POSS化合物OMP和TSP的试验配方相比,含酰胺化聚乙烯亚胺(PEIA)的磁介电聚合物复合材料的介电常数ε′和磁导率μ′的更大增加以及随之而来的更高的折射率是可见的。
实施例3
为了比较介电衰减损耗和磁性衰减损耗,将60质量%、65质量%和69质量%的不含PEIA的细磨尖晶石铁氧体gFi130(NiZn-Fe2O4)结合到聚合物ELIX ABS 3D GP中。
在具有65质量%尖晶石铁氧体gFi130的其他配方中,2质量%的POSS化合物OMP和TSP、gFi130以及在具有65质量%gFi130的配方中,通过挤出加入2质量%的分散添加剂Tegomer P121作为参考配方。
然后将这些参比试样的介电衰减损耗和磁性衰减损耗与每种情况下PEIA组分为2质量%的尖晶石铁氧体gFi130填充水平为65质量%和69质量%的挤出ABS-铁氧体复合材料的相应损耗角正切值进行比较。
与不含PEIA的配方相比,酰胺化聚乙烯亚胺的更有效的分散和更好的间隔效果导致特别是ABS-65gFi130-2PEIA和ABS-69gFi130-2PEIA配方的介电衰减损耗分别降低了25.8%和51.5%。
如图5所示,当使用PEIA时,相对于含有POSS化合物OMP和TSP的ABS-铁氧体复合材料,使用分散剂Tegomer P121时,介电衰减损耗一直较低。在具有65质量%和69质量%的铁氧体和2质量%的PEIA的ABS-gFi130复合材料的情况下,在400MHz和800MHz下,介电衰减损耗和磁性衰减损耗达到tanδε=ε″/ε′<0.1和tanδμ=μ″/μ′<0.1。
实施例4
将PEIA引入到液体丙酮ABS-铁氧体颗粒分散体中,根据表1,通过Ultraturrax和超声波的组合处理对其进行强烈剪切。在减压下去除丙酮和ABS-铁氧体复合材料薄膜状残留物粉碎后,注射成型得到片状中间体。
表2比较了填充型ABSgFi130复合材料在800MHz下的介电常数ε′和磁导率μ′以及衰减损耗tanδε和tanδμ,这些复合材料是通过熔融共混和铁氧体在丙酮ABS溶液中分散获得的。
与传统熔融共混工艺制备的ABS铁氧体配方相比,分散工艺制备的ABS铁氧体复合材料的介电常数ε′和磁导率μ′的实分量值显著降低。
ε′和μ′的降低与分散工艺制备的ABS-铁氧体复合材料的密度降低有关。
这些ABS-铁氧体复合材料的介电常数ε′和磁导率μ′的降低是由在复合材料的注射成型过程中丙酮的溶剂残余物蒸发形成的空腔引起的。
然而,当PEIA组分被插入到丙酮型铁酸盐分散体中时,相对于不含PEIA的复合材料,介电常数ε′、磁导率μ′和折射率n同时增加。
特别令人感兴趣的是,通过在高度填充的ABS-铁氧体复合结构中安装微孔来降低介电衰减损耗和磁性衰减损耗。在PEIA间隔化合物的存在下,损耗角正切值再次被额外降低。
表2:在800MHz下,聚合物复合材料的介电常数、磁导率和损耗角正切、折射率n和密度ρ随制备方法的变化
实施例5
为了改善聚合物复合材料中磁性颗粒的颗粒分布和混合质量,使用了第二磁性组分,以增加磁介电聚合物系统的折射率、介电常数ε′和/或磁导率μ′。对于初级磁性组分c1相对于次级组分c2的填充水平,c1>c2
本文初级磁性填充物的平均直径d1相对于次级组分的平均直径d2的尺寸差旨在满足条件d1>>d2或d1>d2
随后,比较了添加PEIA间隔化合物前后三元磁性填充聚合物混杂复合材料在400MHz和800MHz下的介电常数ε′和磁导率μ′以及折射率n。
作为添加PEIA的结果,图6中的混杂复合材料ABS-10Fe3O4-55Co2Z和ABS-10gFi130-59Co2Z的介电常数ε′和磁导率μ′显著增加,并且这与公式1一致,提高了折射率,因此降低了具有磁介电基板的天线的小型化系数。
对于具有PEIA分量的混杂复合材料的介电衰减损耗和磁性衰减损耗,在400MHz和800MHz下,tanδε=ε″/ε′<0.1和tanδμ=μ″/μ′<0.1。
实施例6
在ZVB14网络分析仪上对称地围绕着长9.4cm、谐振频率为1335MHz的偶极天线布置在ZVB14网络分析仪上用于测量S11散射参数(回波衰减)的注塑板,分别是2mm厚的纯ABS、不加添加剂的ABS-65gFi130、ABS-65gFi130-2OMP和含有两种不同POSS化合物的ABS-65gFi130-2TSP以及含有PEIA间隔物添加剂的ABS-65gFi130-2PEIA。所用的实验装置如图7所示。
在图8中,对于所选择的聚合物基板,偶极天线的谐振频率fr的偏移表示为频率随折射率的变化而变化。
相对于空气环境(800)并且与样品ABS(801)、不含添加剂的ABS65gFi130(802)、具有POSS化合物的ABS-65gFi130-2OMP(803)和ABS-65gFi130-2TSP(804)相比,具有PEIA组分的样品ABS-65gFi130-2PEIA(805)的偶极天线在谐振频率上表现出最大的偏移。
谐振频率向偶极天线低频范围的偏移与所研究的聚合物复合材料的折射率相关,因此使用样品ABS-65gFi130-2PEIA(805)作为天线基板的折射率最高,符合公式1,导致最小的小型化系数。
实施例7
具有两个长度为10.7mm和5.5mm的偶极子并且在空气中具有1158MHz和2022MHz的谐振频率的天线结构用由基体UBE68、铁氧体填料gFi130和PEIA添加剂组成的聚酰胺弹性体复合材料使用熔丝成型(FFF)的3D打印工艺包裹。对于3D打印,由具有65质量%的尖晶石铁氧体和2质量%的PEIA的磁介电聚合物复合材料UBE68-65gFi130-2PEIA制造直径为1.75mm的长丝。天线结构上印刷层材料的厚度为每侧3mm。
从图9可以明显看出,在两侧天线结构周围印刷聚合物复合材料UBE68-65gFi130-2PEIA将1158MHz和2022MHz(900)处的原始谐振频率移动到805MHz和1295MHz(901)的区域,对应于fr1*/fr1=805/1158~0.69和fr2*/fr2=1295/2022~0.64分别为31%和36%的构建尺寸减小。

Claims (12)

1.一种磁介电聚合物复合材料,其基体为容纳具有软磁性且平均粒度d50为0.05μm至10μm的分散颗粒的一种或多于一种非极性聚合物,其特征在于具有软磁性的颗粒被两亲性超支化间隔分子包围,因此磁介电聚合物基板具有小于0.1的介电衰减损耗tanδε、小于0.1的磁性衰减损耗tanδμ和与不具有两亲性超支化间隔分子的磁介电聚合物复合材料相比增加的折射率n,折射率n定义为:
其中ε′为磁介电聚合物复合材料的介电常数,μ′为磁介电聚合物复合材料的磁导率。
2.根据权利要求1所述的磁介电聚合物复合材料,其特征在于,具有软磁性的颗粒包括含有元素钴、铁、锰和/或镍的陶瓷或金属氧化物化合物,优选式为Ba3Co2Fe24O41的Z型钴六角铁氧体颗粒、通式为NiaZn(1-a)Fe2O4的镍锌铁氧体颗粒和/或磁铁矿(Fe3O4)颗粒。
3.根据权利要求1所述的磁介电聚合物复合材料,其特征在于,具有软磁性的颗粒是平均粒度d50为0.1μm至10.0μm的NiZn铁氧体型的微米级/亚微米级尖晶石铁氧体、或平均粒度d50为0.1μm至10.0μm的式Ba3Co2Fe24O41的Co2Z型的微米级/亚微米级六角铁氧体、或平均粒度d50为0.05μm至10.0μm的式Fe3O4的亚微米级/纳米级磁铁矿。
4.根据权利要求3所述的磁介电聚合物复合材料,其特征在于,具有软磁性的颗粒包括具有不同组成和不同平均粒度d50的混合物,相同组成的颗粒的平均粒度d50与不同组成的颗粒的平均粒度d50相差至少1μm,优选至少2μm,更优选至少3μm。
5.根据权利要求1至4中任一项所述的磁介电聚合物复合材料,其特征在于,具有非极性基团的两亲性超支化间隔分子为官能化聚乙烯亚胺,所述非极性基团优选n≥6的式为CO-CnH2n+1的酰基,优选n=16的十六酰基或n=18的十八酰基,其与聚乙烯亚胺的伯氨基形成酰胺键。
6.根据权利要求1至5中任一项所述的磁介电聚合物复合材料,其特征在于,聚合物基体包括一种或多于一种介电衰减tanδε<0.02、优选tanδε<0.01的非极性聚合物。
7.根据权利要求1至6中任一项所述的磁介电聚合物复合材料,其特征在于,基体的非极性聚合物为聚烯烃,优选环烯烃聚合物(COP)、环烯烃共聚物(COC)、聚乙烯(PE)、聚丙烯(PP)、含苯乙烯的聚合物,优选聚苯乙烯(PS)、冲击改性的聚苯乙烯(高抗冲聚苯乙烯,HIPS)和丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚甲醛(POM)、聚酯,优选聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)和聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚苯醚(PPE)、聚亚苯基氧化物(PPO)、聚苯硫醚(PPS)、含氟聚合物,优选聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、全氟(乙烯-丙烯)(FEP)和乙烯-四氟乙烯共聚物(ETFE)、热塑性弹性体(TPE),优选聚醚嵌段酰胺(PEBA)、单组分固体有机硅弹性体,优选室温交联(RTV)硅橡胶或高温交联(HTV)硅橡胶、液体双组分硅橡胶(液体硅橡胶,LSR),优选聚二甲基硅氧烷、乙烯-丙烯-二烯橡胶(EPDM)、环氧树脂浇注化合物(冷固化或热固化)和/或含丙烯酸酯的环氧树脂。
8.根据权利要求1至7中任一项所述的磁介电聚合物复合材料,其特征在于,各个组分通过复合而彼此混合,优选通过在挤出机或捏合机中混合,或者通过提供由至少一种非极性聚合物、具有软磁性的颗粒和两亲性超支化间隔分子的溶液构成的分散体并随后去除溶剂来制备。
9.根据权利要求5所述的磁介电聚合物复合材料,其特征在于,其由10重量%至80重量%的至少一种非极性聚合物、20重量%至90重量%的具有软磁性的颗粒和0.1重量%至10重量%的两亲性超支化聚乙烯亚胺组成。
10.根据权利要求1至9中任一项所述的磁介电聚合物复合材料,其特征在于,其包裹工作频率范围为50MHz至4GHz的天线。
11.根据权利要求1至10中任一项所述的磁介电聚合物复合材料,其特征在于,其能够通过塑料成型工艺来加工,优选通过注射成型、注射-压缩成型、压缩成型或挤出或通过树脂浇注工艺来加工。
12.根据权利要求1至10中任一项所述的磁介电聚合物复合材料,其特征在于,其具有适用于3D打印的形式,优选长丝、团粒、粉末、液体树脂或液体有机硅弹性体。
CN202311284458.XA 2022-10-07 2023-10-07 用于射频应用的磁性官能化聚合物基板 Pending CN117844155A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022125940.4A DE102022125940A1 (de) 2022-10-07 2022-10-07 Magnetische, funktionalisierte Polymersubstrate für Hochfrequenzanwendungen
DE102022125940.4 2022-10-07

Publications (1)

Publication Number Publication Date
CN117844155A true CN117844155A (zh) 2024-04-09

Family

ID=88315669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311284458.XA Pending CN117844155A (zh) 2022-10-07 2023-10-07 用于射频应用的磁性官能化聚合物基板

Country Status (7)

Country Link
US (1) US20240128000A1 (zh)
EP (1) EP4350718A1 (zh)
JP (1) JP2024062948A (zh)
KR (1) KR20240049191A (zh)
CN (1) CN117844155A (zh)
CA (1) CA3215587A1 (zh)
DE (1) DE102022125940A1 (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106771A2 (en) 2006-03-10 2007-09-20 The Arizona Board Of Regents On Behalf Of The University Of Arizona Multifunctional polymer coated magnetic nanocomposite materials
US9384877B2 (en) 2010-05-27 2016-07-05 University Of South Florida Magneto dielectric polymer nanocomposites and method of making
US20130063296A1 (en) * 2011-08-11 2013-03-14 Basf Se Microwave absorbing composition
EP3036076B1 (de) * 2013-08-21 2017-10-11 Basf Se Compositkunststoffteil mit verbesserter wärmealterungsbeständigkeit
KR20180060496A (ko) 2016-11-29 2018-06-07 엘지전자 주식회사 자기 유전 복합 구조체 및 그 제조 방법 및 그를 이용한 안테나
US11626228B2 (en) 2016-12-22 2023-04-11 Rogers Corporation Multi-layer magneto-dielectric material
KR20190110530A (ko) 2017-01-30 2019-09-30 로저스코포레이션 다층 자성-유전체 물질의 제조방법
WO2019006184A1 (en) 2017-06-29 2019-01-03 Blueshift Materials, Inc. POLYMER AEROGELS BASED ON HYPER-RAMIFIED POSS
US20190221343A1 (en) 2018-01-16 2019-07-18 Rogers Corporation Core-shell particles, magneto-dielectric materials, methods of making, and uses thereof
DE102018115503A1 (de) * 2018-06-27 2020-01-02 Carl Freudenberg Kg Zusammensetzung zur Abschirmung elektromagnetischer Strahlung
CN111548612B (zh) 2020-06-16 2022-12-02 深圳华力兴新材料股份有限公司 一种5g天线振子基材用pct/tlcp树脂组合物及其制备方法和应用

Also Published As

Publication number Publication date
JP2024062948A (ja) 2024-05-10
US20240128000A1 (en) 2024-04-18
CA3215587A1 (en) 2024-04-07
DE102022125940A1 (de) 2024-04-18
EP4350718A1 (de) 2024-04-10
KR20240049191A (ko) 2024-04-16

Similar Documents

Publication Publication Date Title
US20110017501A1 (en) Composite material and manufacturing method thereof
TWI773882B (zh) 六方晶系鐵氧體複合材料、包含六方晶系鐵氧體複合材料之物品及片材之製作方法
Zahid et al. Polyaniline-based nanocomposites for electromagnetic interference shielding applications: A review
WO2001082311A1 (fr) Ceramique dielectrique, composite de resine ceramique, pieces electriques, antenne et procede de fabrication correspondant
WO2014047298A1 (en) Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
EP3308614B1 (en) High frequency electromagnetic interference (emi) composites
WO2015051354A1 (en) Thermally conductive electrically insulating particles and compositions
Mobarak et al. Materials selection, synthesis, and dielectrical properties of PVC nanocomposites
US9384877B2 (en) Magneto dielectric polymer nanocomposites and method of making
KR20200121298A (ko) Mn 페라이트 분말, 수지 조성물, 전자파 쉴드재, 전자 재료 및 전자 부품
Silakaew et al. Highly enhanced frequency-and temperature-stability permittivity of three-phase poly (vinylidene-fluoride) nanocomposites with retaining low loss tangent and high permittivity
Ratheesh et al. Polymer–Ceramic Composites for Microwave Applications
CN117844155A (zh) 用于射频应用的磁性官能化聚合物基板
EP2740340B1 (en) A composite for providing electromagnetic shielding
TW201323502A (zh) 高介電率的樹脂複合材料、及其製造方法
JP2013207234A (ja) 高周波用圧粉体、及びそれを用いた電子部品
Niu et al. Fabrication, structure, and property of epoxy-based composites with metal–insulator core–shell structure fillers
CN111653408B (zh) 一种电磁复合材料及其制备方法和应用
WO2011150345A2 (en) Magneto-dielectric polymer nanocomposites and method of making
US9666342B2 (en) Magneto-dielectric polymer nanocomposites
Jabbar et al. The Effect of CoFe2O4 Weight Fraction on the Properties of Magnetic CoFe2O4/Unsaturated Polyester Nanocomposites Synthesized by Hand Lay-up Method
Irzhak et al. Epoxy Nanocomposites with Metal-Containing Fillers: Synthesis, Structure, and Properties
CN113462114B (zh) 一种高填充的复合电磁吸波片材及其制备方法
Li et al. Large-scale production of oxidation-resistant Cu@ SiO 2 core-shell nanoparticles for dielectric applications
WO2012064488A1 (en) Method of forming nanodielectrics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination