CN117821462A - 基因编辑修复阿尔兹海默症相关psen1位点突变 - Google Patents

基因编辑修复阿尔兹海默症相关psen1位点突变 Download PDF

Info

Publication number
CN117821462A
CN117821462A CN202410244403.4A CN202410244403A CN117821462A CN 117821462 A CN117821462 A CN 117821462A CN 202410244403 A CN202410244403 A CN 202410244403A CN 117821462 A CN117821462 A CN 117821462A
Authority
CN
China
Prior art keywords
repair
psen1
disease
sgrna
mutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410244403.4A
Other languages
English (en)
Other versions
CN117821462B (zh
Inventor
李广斌
任斐斐
徐天宏
陆春菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Best Onco Biotechnology Co ltd
Original Assignee
Shanghai Best Onco Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Best Onco Biotechnology Co ltd filed Critical Shanghai Best Onco Biotechnology Co ltd
Priority to CN202410244403.4A priority Critical patent/CN117821462B/zh
Publication of CN117821462A publication Critical patent/CN117821462A/zh
Application granted granted Critical
Publication of CN117821462B publication Critical patent/CN117821462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

基因编辑修复阿尔兹海默症相关PSEN1位点突变。本发明通过利用碱基编辑系统以及相应设计的修复correcting‑sgRNA实现了针对PSEN1G378E的突变修复,为治疗该类突变引起的阿尔兹海默症提供了高效安全的备选方法。

Description

基因编辑修复阿尔兹海默症相关PSEN1位点突变
技术领域
本发明涉及基因修复领域,更具体来说,涉及利用基因编辑技术修复与阿尔兹海默症相关的基因突变。
背景技术
阿尔兹海默症(Alzheimer's disease,AD)是一种常见的神经退行性疾病,临床上表现为失语、失用、失认、记忆障碍等痴呆特征,病理特征表现为脑组织中细胞外β-淀粉样蛋白斑块和细胞内磷酸化tau蛋白缠结(1)。该病影响着全球几千万人。随着全球老龄化程度加重,AD患者数目也快速增加,不仅给患者本身带来沉重的疾病痛苦,同时也给家庭和社会带来巨大的经济压力。阿尔兹海默症分为散发性和家族性。散发性AD主要原因是衰老,涉及到65岁以上个体,不过目前也发现多个基因与散发性AD的不同神经病理相关。家族性表现为常染色体显性,涉及到65岁以下个体。主要涉及的基因有PSEN1, PSEN2以及APP。其中PSEN1基因突变占家族性阿尔兹海默症的70%左右。截止2023年底,在clinVar数据库中,搜索到的关于PSEN1的突变类型有503种,其中缺失18种,插入9种,重复22种,缺失/插入1种,单碱基的改变有453种。91种突变类型与疾病有明确的相关性。目前对于阿尔兹海默症的治疗主要是缓解症状,但是并不能影响疾病的进程。多个临床试验失效也意味着传统药物在治疗该疾病中的不足。针对家族性AD患者,具有比较明确的致病基因,基因治疗对该类患者是一种潜在的有效治疗手段。传统基因治疗方法是利用病毒载体,特别是腺相关病毒(AAV)递送基因药物在靶细胞实现基因表达等(2)。利用病毒进行基因治疗主要是通过表达外源基因方式,而原位修复致病突变将是一种更为安全的方式。
规律性间隔短回文重复序列系统(Clustered regularly interspaced shortpalindromic repeats,CRISPRs)(3), 由于其简便、高效、价廉等特点,成为基因编辑领域内的热门技术。目前,CRISPR-Cas9系统已经被成功地用于DNA的敲除、敲入、替代、修饰、标记,RNA修饰和基因转录调节等研究(4)(5)。CRISPR-Cas9介导的基因编辑是在sgRNA(single guided RNA)通过靶序列互补引导Cas9蛋白定位剪切双链DNA,造成双链DNA断裂(double-strand breaks, DSB),在没有模板的条件下,发生非同源末端连接修复,造成移码突变(frameshift mutation),导致基因敲除(knockout);在有模板的条件下,通过同源重组进行修复,实现基因敲入(knockin),由于HDR效率低,而且非同源性末端接合机制容易产生随机插入和删除(indel),使得在断裂点附近可能随机引入新的碱基,从而导致不精确的基因编辑。
基于CRISPR/Cas9技术所构建的碱基编辑技术(Base editing),目前主要有胞嘧啶碱基编辑器(CBEs,cytosine base editors)和鸟嘌呤碱基编辑器(ABEs,Adenine baseeditors)(6)。其能够在目标基因中精确而有效地引入点突变,而不需要双链DNA断裂或任何供体模板, 展现出很大的基因编辑潜力(7)。利用碱基编辑,在酵母、植物、哺乳动物和人类细胞中进行了修正和遗传多样性研究(8)(9)。本发明将在人的细胞中利用碱基编辑技术实现安全高效的修复与阿尔兹海默症相关的PSEN1G378E突变,为临床上治疗相应突变引起的阿尔兹海默症提供可靠的试剂和方法。
参考文献
1. Tanzi, R.E. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med2 (2012).
2. 戴中华,张丽娜,章嫣,吴小兵阿尔茨海默病的AAV基因治疗研究进展. 中国医 药导刊25, 677-686 (2023).
3. Gaj, T., Gersbach, C.A. & Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology31, 397-405(2013).
4. Hsu, Patrick D., Lander, Eric S. & Zhang, F. Development andApplications of CRISPR-Cas9 for Genome Engineering. Cell157, 1262-1278(2014).
5. Komor, A.C., Badran, A.H. & Liu, D.R. CRISPR-Based Technologiesfor the Manipulation of Eukaryotic Genomes. Cell168, 20-36 (2017).
6. Ledford, H. CRISPR 2.0: a new wave of gene editors heads forclinical trials. Nature624, 234-235 (2023).
7. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. & Liu, D.R.Programmable editing of a target base in genomic DNA without double-strandedDNA cleavage. Nature533, 420 (2016).
8. Ren, B. et al. Improved Base Editor for Efficiently InducingGenetic Variations in Rice with CRISPR/Cas9-Guided Hyperactive hAID Mutant.Molecular Plant11, 623-626 (2018).
9. Nishida, K. et al. Targeted nucleotide editing using hybridprokaryotic and vertebrate adaptive immune systems. Science353 (2016).
发明内容
本发明的目的是提供一种高效修复PSEN1G378E突变的方法。
为了达到上述目的,本发明提供了一种高效修复PSEN1G378E突变的试剂盒,其包括碱基编辑系统(base editor)以及针对PSEN1G378E位点的修复correcting-sgRNA。修复correcting-sgRNA的序列可以为SEQ ID NO.1 (correcting-sgRNA1)、SEQ ID NO.2(correcting-sgRNA2)或者SEQ ID NO.3(correcting-sgRNA3),优选为SEQ ID NO.2(correcting-sgRNA2)。
优选地,所述碱基编辑系统可以为ABE7.10、ABE8e或ceABE8e,更优选为ceABE8e。ABE7.10、ABE8e和ceABE8e对应的氨基酸序列则可以分别对应于SEQ ID NO.6、SEQ ID NO.7以及SEQ ID NO.8。
优选地,所述的碱基编辑系统可以是质粒,mRNA或蛋白形式,优先选择蛋白形式。
优选地,所使用的sgRNA可以是质粒形式,也可以是RNA形式,优选RNA形式。
本发明还提供了一种碱基编辑修复阿尔兹海默症相关PSEN1G378E突变的方法,在含有PSEN1G378E的突变细胞中,利用针对PSEN1G378E位点的修复correcting-sgRNA,引导碱基编辑系统到突变位点进行碱基编辑修复。之后可以收集转染后的细胞,鉴定修复率。
优选地,含有PSEN1G378E的突变细胞为HEK293T细胞或人的原代细胞。
本发明还提供了一种含有PSEN1G378E的突变细胞的构建方法:根据PSEN1G378E位点设计突变mutant-sgRNA和相应的突变ssODN;构建mutant-sgRNA的表达载体,体外将Cas9蛋白和转录出来的mutant-sgRNA组成RNP结合ssODN的方式电转HEK293T细胞。
所述的mutant-sgRNA的序列优选为SEQ ID NO.4,ssODN的序列优选为SEQ IDNO.5。
本发明利用基于CRISPR/Cas9和ssODN的同源重组方法制作含有PSEN1G378E突变的细胞株,其后利用base editor结合特定的sgRNA修复了相应突变(精准实现AG单碱基转换)。本发明还利用深度测序的方式检测了修复效率和脱靶情况。本发明为治疗该类突变引起的阿尔兹海默症疾病提供了一种高效安全的备选方案。
附图说明
图1示出了人第14号染色体上的PSEN1基因的第378位突变;
图2示出了利用CRISPR/Cas9结合ssODN的方式在293T细胞中制作PSEN1G378E突变;
图3示出了利用CRISPR/Cas结合ssODN在293T细胞中制作突变细胞系及其基因型鉴定;
图4示出了对突变的细胞株利用胞嘧啶碱基编辑进行修复的模式图;
图5示出了利用ABE结合correcting-sgRNA1对突变细胞株进行修复;
图6示出了利用ABE结合correcting-sgRNA2对突变细胞株进行修复;
图7 示出了利用ABE结合correcting-sgRNA3对突变细胞株进行修复;
图8 示出了利用三种编辑蛋白结合correcting-sgRNA2对突变细胞株进行靶点修复的编辑效果;
图9 示出了利用correcting-sgRNA2编辑后对预测的脱靶位点进行测序分析的结果。
具体实施方式
下面将结合实施例对本发明进行详细说明。本领域技术人员应当理解,以下实施例仅用于说明而非限制本发明。
图1 示出的PSEN1基因位于人第14号染色体上,第378位的氨基酸位于外显子11上,正常情况下,378位氨基酸是G,致病突变后则变成了A,涉及到的核苷酸序列相应片段从gga突变为了gAa。
图2示出了利用CRISPR/Cas9结合ssODN的方式在293T细胞中制作PSEN1G378E突变。ssODN是合成的单链DNA,其含有突变的碱基。下划线表示sgRNA的靶向位点,后面的ggG为相应的PAM序列。
图3 示出了利用CRISPR/Cas结合ssODN在293T细胞中制作突变细胞系,通过单克隆分选后,鉴定基因型,挑选了20个细胞克隆进行基因型鉴定,其中2个克隆是纯合子突变。
图4示出了对突变的细胞株利用胞嘧啶碱基编辑进行修复的模式图。
图5示出了 利用ABE结合correcting-sgRNA1对突变细胞株进行修复。利用TA克隆分析突变的基因型。在30个编辑的基因型中,只有2个是发生了靶位点的精确编辑。
图6 示出了利用ABE结合correcting-sgRNA2对突变细胞株进行修复。利用TA克隆分析突变的基因型。在28个编辑的基因型中,10个是精确编辑,15个编辑发生了旁观者编辑,即除了靶点意外附近位点也发生了编辑。经过对比发现,旁观者编辑是同义突变,不会改变氨基酸的种类,理论上也是可用的编辑。
图7示出了 利用ABE结合correcting-sgRNA3对突变细胞株进行修复。利用TA克隆分析突变的基因型。在35个编辑的基因型中,没有精确的编辑,存在25个发生了旁观者编辑的克隆。
图8示出了利用三种编辑蛋白结合correcting-sgRNA2对突变细胞株进行靶点修复,ceABE8e展现出了最好的编辑效果。
图9 示出了针对correcting-sgRNA2,编辑后对其预测的脱靶位点深度测序分析,在潜在的19个位点中没有发现明显的脱靶。
构建含有PSEN1G378E的突变细胞
在293T细胞株上利用Cas9/sgRNA结合ssODN制作突变有PSEN1G378E突变细胞株,本方法将利用Cas9-mRNA和sgRNA的RNA结合ssODN形式实现(图2),所使用的Cas9可以是spCas9。
1.1 质粒构建
在突变位点附近,设计突变mutant-sgRNA(SEQ ID NO.4),合成oligos,上下游序列通过程序(95℃,5min;95℃-85℃ at -2℃/s;85℃-25℃ at -0.1℃/s;hold at 4℃)退火,连接到经过BsaI(NEB:R0539L)线性化的PUC57-T7sgRNA载体上(addgene:51132)上。线性化体系如下所示:PUC57-T7sgRNA 2μg;buffer (NEB:R0539L)6μL;BsaI 2μL;ddH2O 补齐到60μL。37℃酶切过夜。所使用的同源模板ssODN(SEQ ID NO.5),利用PAGE纯化的方式由生工生物公司(http://www.sangon.com/)合成。连接体系如下:T4 连接buffer (NEB:M0202L)1μL,线性化载体20ng,退火的oligo片段(10μM)5μL,T4连接酶(NEB:M0202L) 0.5μL,ddH2O 补齐到10μL. 16℃连接过夜。连接的载体通过转化,挑菌,鉴定。对阳性克隆摇菌提取质粒(Axygene:AP-MN-P-250G)测定浓度备用。获得的突变质粒命名为mt-T7-sgRNA。
1.2 sgRNA的体外转录
以构建的mt-T7sgRNA为模板,扩增含有sgRNA的片段。扩增体系如下:2Xbuffer(诺唯赞:P505)25μL;dNTP 1μL;F(10pmol/μL)2μL;R(10pmol/μL)2μL;模板 1ng;DNA聚合酶(诺唯赞:P505) 0.5μL;ddH2O 补齐到50μL。扩增出来的PCR产物经过下述步骤纯化:每100μL体积加4μL RNAsecure(Life:AM7005);60℃ 15分钟;加入三倍体积的PCR-A (Axygen:AP-PCR-250G)过柱,离心,12000转/分钟离心1分钟;加入500μL W2,离心1分钟;空转1分钟;加入20μL无RNAase水洗脱。
利用体外转录试剂盒(Ambion, Life Technologies, AM1354)转录,步骤如下:
反应体系为:reaction buffer 1μL;enzyme mix 1μL;A 1μL;T 1μL;G 1μL;C 1μL;模板 800ng;H2O 补齐到10μL。上述体系混匀后37℃反应5个小时。加入1μL DNase,37℃反应15分钟。利用回收试剂盒(Ambion, Life Technologies, AM1908)回收转录的sgRNA,步骤如下:上步反应体积加入90μL Elution solution移植1.5mlEP管;加入350μL Bindingsolution 混匀;加入250μL无水乙醇混匀;上柱;10000转/分钟离心30秒,倒掉废液;加入500μL Washing solution,10000转/分钟离心30秒,倒掉废液;空转1分钟;换收集管,加入100μL Elution solution洗脱;加入10μL醋酸铵(Ambion, Life Technologies, AM1908)混匀;加入275μL无水乙醇混匀;-20℃放置30分钟,同时准备70%乙醇放置-20℃;4℃环境下13000转/分钟离心15分钟。弃上清,加入500μL 70%乙醇;离心5分钟,吸走废液,晾干5分钟;加入20μL的水溶解;取1μL测浓度。
1.3 Cas9的体外转录
spCas9酶切回收。本步骤是将质粒Cas9进行线性化。体系如下:Cas9 10μg;bufferI (NEB:R0539L)10μL;BbsI 4μL(NEB:R0539L);H2O 补齐到100μL。混匀之后,37℃酶切过夜。
线性化质粒的回收。酶切产物中加入4μL RNAsecure(Life:AM7005),60℃反应10分钟;利用回收试剂盒(QIAGEN:28004)进行操作其余步骤,加入5倍体积buffer PB,过柱;加入750μL buffer PE 离心;空转1分钟;用10μL水洗脱,测定浓度。
体外转录。按照试剂盒(Invitrogen:AM1345)的要求依次加入体系:1入g 线性化载体;10μL2XNTP/ARCA;补齐到20μL水;2μL T7 ezyme mix;2μL 10xreaction buffer。混合之后37℃反应2小时。加入1μL DNasea反应15分钟。
加尾。转录产物进行加尾处理保证转录mRNA的稳定性。具体体系如下:20μL反应产物;36μL H2O;20μL 5xE-PAP buffer;10μL 25mM MnCl2;10μL ATP solution;4μL PEP。反应体系混匀后37℃反应30分钟。
回收。利用回收试剂盒进行(QIAGEN:74104)。步骤如下:上步反应产物加入350μLbuffer RLT;加入250μL 无水乙醇,过柱,离心;加入500μL RPE,离心,加入500μL RPE,离心;空转;加入30μL水洗脱。测定浓度后-80℃保存。
1.4 细胞的培养与电转
(1)以HEK293T细胞(购自ATCC)为例,本发明进行真核生物细胞的培养与转染:HEK293T细胞接种培养于添加10% FBS的DMEM高糖培养液中(HyClone, SH30022.01B),其中含penicillin(100 U/ml)和streptomycin(100 µg/ml)。
(2)转染前两个小时换成无抗生素的培养基,利用LONZA转染试剂(SF KIT)按照说明书转染,细胞通过计数得1X106个。将Cas9的mRNA,sgRNA和ssODN按照3μg,1.5μg和3μg的质量混合。电转程序采用DS150,电转后的细胞在6cm的平皿中培养两天。
(3)细胞通过流式分选仪,分选单细胞培养,等两周以后,通过裂解鉴定基因型,裂解液的成分为50 mM KCl, 1.5 mM MgCl2, 10 mM Tris pH 8.0, 0.5 % Nonidet P-40,0.5 % Tween 20, 100 mg/ml protease K。挑选纯合突变的细胞株扩大培养。
1.5 突变细胞株的筛选与鉴定
通过对分选的单克隆细胞进行鉴定,在选择的20个克隆里,#6和#7克隆是个纯合子突变(图3),将此细胞株扩大培养进行后续的应用。
利用ABE7.10结合不同修复sgRNA修复基因突变
本实施例中,对获得的纯合突变细胞株,利用碱基编辑系统对PSEN1G378E进行修复。本实施例将利用ABE7.10结合相应的修复sgRNA进行突变位点的修复(图5,图6,图7)。
1.1 sgRNA与mRNA体外转录步骤如前。
1.2细胞的培养与电转
(1)获得的纯合突变细胞株接种培养于添加10% FBS的DMEM高糖培养液中(HyClone, SH30022.01B),其中含penicillin(100 U/ml)和streptomycin(100 µg/ml)。
(2)转染前两个小时换成无抗生素的培养基,利用LONZA转染试剂(SF KIT)按照说明书转染,细胞通过计数得1X106个。将Cas9,sgRNA和ssODN按照3μg,1.5μg和3μg的质量混合。电转程序采用DS150,电转后的细胞在6cm的平皿中培养两天。
1.3 突变细胞的修复效率检测
通过对转染后的细胞进行高通量测序,分析碱基编辑的修复效率。如图5,图6和图7所示,本实施例选择了3个用于修复突变的sgRNA,correcting-sgRNA1(SEQ ID NO.1),correcting-sgRNA2(SEQ ID NO.2)和correcting-sgRNA3(SEQ ID NO.3)。
利用不同编辑器结合correcting-sgRNA2修复基因突变
本实施例中,对获得的纯合突变细胞株,利用碱基编辑系统对PSEN1G378E实现修复。本实施例将利用ABE7.10(SEQ ID NO.6), ABE8e(SEQ ID NO.7)以及ceABE8e(SEQ IDNO.8)的蛋白,分别结合correcting-sgRNA2进行突变位点的修复(图8)。
1.1 蛋白纯化
将ABE质粒编码区构建到表达载体中。摇菌,8L LB,Kana,大约摇菌4小时(OD=0.8)后,加入IPTG 1mM,16度摇菌48h。沉菌,离心5000g,20min。重悬,将所有沉菌用bufferA重悬,菌必须完全打散,防止后面破碎的时候堵塞仪器。破碎,将菌液过仪器破碎,直到溶液清亮,一般至少破碎两次。仪器准备,需要清洗3-4遍,高压力部分金属管需要冰浴,仪器使用完毕后需要清洗3-4次。收取10μL全细胞裂解产物,后续western 检测。将裂解产物置于50ml离心管中,80000g,40min。收集上清,重复上述步骤,直到颗粒杂质去除干净。0.45um滤器过滤上清,取10μL用于后续western检测,准备开始固相金属亲和层析(ImmobilizedMetal Affinity Chromatography (IMAC)(钴柱)。钴柱需要用ddH2O洗一遍后,用bufferA润洗几遍。将蛋白样品过钴柱(此次用两个柱子),并收集流出液。重复上述步骤并取10μL样品用于后续western。去杂质,用40mL 添加有5mM咪唑的bufferA 过柱子,以去除亲和力较低的杂质。收集流出液,并取10μL样品用于后续western。
洗脱,用30ml 添加有500mM咪唑的bufferA 过柱子,置换出目的蛋白。收集目的蛋白,并取10μL样品用于后续western。洗脱后的钴柱需要用ddH2O清洗,以除去咪唑,之后再用bufferA平衡。western,目的蛋白约160KD,根据蛋白大小配置合适的SDS-PAGE胶,210V电泳。电泳结束后,将胶割下,置于考马斯亮蓝中,微波炉高温加热1min。之后,用ddH2O清洗,微波炉加热20min。用水冲洗后,拍照。蛋白浓缩:将洗脱下来的目的蛋白加入到蛋白浓缩柱中,3900rpm,20min。浓缩后的蛋白进行离子交换层析(Ion exchange chromatography(IEC)),以除去与蛋白结合的核酸。离子交换层析的原理即高盐溶液下,这种离子键就会被破坏,从而释放出目的蛋白。层析收集的目的蛋白,经浓缩后进行酶切,以除去His-tag。
1.2 细胞的培养与电转
(1)获得的纯合突变细胞株接种培养于添加10% FBS的DMEM高糖培养液中(HyClone, SH30022.01B),其中含penicillin(100 U/ml)和streptomycin(100 µg/ml)。
(2)转染前两个小时换成无抗生素的培养基,利用LONZA转染试剂(SF KIT)按照说明书转染,细胞通过计数得1X106个。将ABE的相关蛋白,sgRNA按照3μg,1.5μg的质量混合,37℃孵育10分钟,形成RNP复合体。电转程序采用CM189,电转后的细胞在6cm的平皿中培养两天。
1.3 突变细胞的修复效率检测
通过对转染后的细胞进行高通量测序,分析碱基编辑的修复效率。如图8,利用ABE的RNP形式, ABE7.10在靶位点的编辑效率(A6)是52%,ABE8e在靶位点编辑效率是69%,ceABE8e在靶位点编辑效率是70%。三种编辑器均有旁观者编辑效应,A7与A10的编辑结果是同义突变。
1.4脱靶检测
进一步地,我们对ceABE8e结合correcting-sgRNA2的编辑结果进行了脱靶位点的检测,通过高通量测序发现,在靶位点中没有发现indel,在潜在的脱靶位点中没有发现明显的脱靶(图9)。上述结果证明本发明可以高效、安全修复PSEN1G378E突变。

Claims (1)

1. 一种修复阿尔兹海默症相关PSEN1G378E突变的试剂盒,包括碱基编辑系统以及针对PSEN1G378E位点的修复correcting-sgRNA,其中所述的碱基编辑系统为腺嘌呤碱基编辑系统,所述修复correcting-sgRNA的序列为SEQ ID NO.2,腺嘌呤碱基编辑系统所使用的腺嘌呤编辑器ceABE8e的氨基酸序列为SEQ ID NO.8。
CN202410244403.4A 2024-03-04 2024-03-04 基因编辑修复阿尔兹海默症相关psen1位点突变 Active CN117821462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410244403.4A CN117821462B (zh) 2024-03-04 2024-03-04 基因编辑修复阿尔兹海默症相关psen1位点突变

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410244403.4A CN117821462B (zh) 2024-03-04 2024-03-04 基因编辑修复阿尔兹海默症相关psen1位点突变

Publications (2)

Publication Number Publication Date
CN117821462A true CN117821462A (zh) 2024-04-05
CN117821462B CN117821462B (zh) 2024-05-07

Family

ID=90519506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410244403.4A Active CN117821462B (zh) 2024-03-04 2024-03-04 基因编辑修复阿尔兹海默症相关psen1位点突变

Country Status (1)

Country Link
CN (1) CN117821462B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150166983A1 (en) * 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
CN113699135A (zh) * 2021-08-10 2021-11-26 国家卫生健康委科学技术研究所 一种无pam限制的腺嘌呤碱基编辑器融合蛋白及应用
CN115820728A (zh) * 2022-07-11 2023-03-21 上海贝斯昂科生物科技有限公司 一种基因编辑的方法和用途
CN117568313A (zh) * 2024-01-15 2024-02-20 上海贝斯昂科生物科技有限公司 基因编辑组合物及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150166983A1 (en) * 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
CN113699135A (zh) * 2021-08-10 2021-11-26 国家卫生健康委科学技术研究所 一种无pam限制的腺嘌呤碱基编辑器融合蛋白及应用
CN115820728A (zh) * 2022-07-11 2023-03-21 上海贝斯昂科生物科技有限公司 一种基因编辑的方法和用途
CN117568313A (zh) * 2024-01-15 2024-02-20 上海贝斯昂科生物科技有限公司 基因编辑组合物及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROKI SASAGURI等: "Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID", NATURE COMMUNICATIONS, vol. 9, no. 1, 24 July 2018 (2018-07-24), pages 2892 *
NICHOLAS BROOKHOUSER等: "A Cas9-mediated adenosine transient reporter enables enrichment of ABEtargeted cells", BMC BIOLOGY, vol. 18, 14 December 2020 (2020-12-14), pages 193 *

Also Published As

Publication number Publication date
CN117821462B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN105518135B (zh) CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA
RU2713328C2 (ru) Гибридные днк/рнк-полинуклеотиды crispr и способы применения
CN107027313B (zh) 用于多元rna引导的基因组编辑和其它rna技术的方法和组合物
CN106922154B (zh) 使用空肠弯曲杆菌crispr/cas系统衍生的rna引导的工程化核酸酶的基因编辑
CN105518138B (zh) CRISPR-Cas9特异性敲除猪GFRA1基因的方法及用于特异性靶向GFRA1基因的sgRNA
CN105492608B (zh) CRISPR-Cas9特异性敲除猪PDX1基因的方法及用于特异性靶向PDX1基因的sgRNA
JP7426370B2 (ja) ゲノムdna断片の標的化された精製のための調製用電気泳動方法
JP2016538001A (ja) 体細胞半数体ヒト細胞株
EP3414333A1 (en) Replicative transposon system
US20210198699A1 (en) Kit for reparing fbn1t7498c mutation, combination for making and repairing mutation, and method of repairing thereof
CN110892074A (zh) 用于增加香蕉的保质期的组成物及方法
Zhong et al. Intron-based single transcript unit CRISPR systems for plant genome editing
CN112430586B (zh) 一种VI-B型CRISPR/Cas13基因编辑系统及其应用
CN114829600A (zh) 植物mad7核酸酶及其扩大的pam识别能力
CN115667283A (zh) Rna指导的千碱基规模基因组重组工程
Kamoen et al. Genetic dissection of mutagenic repair and T-DNA capture at CRISPR-induced DNA breaks in Arabidopsis thaliana
CN117821462B (zh) 基因编辑修复阿尔兹海默症相关psen1位点突变
CN114540356B (zh) 一种红冬孢酵母启动子及其应用
EP3150626A1 (en) Means and methods for accelerated breeding by inducing targeted stimulation of meiotic recombination
WO2022210748A1 (ja) 新規なガイドrnaとの複合体形成能を有するポリペプチド
EP4271805A1 (en) Novel nucleic acid-guided nucleases
CN114045310A (zh) 一种用于提高基因修复效率的方法
Dudley et al. Cas9-mediated targeted mutagenesis in plants
WO2010019386A2 (en) Protein production in plant cells and associated methods and compositions
WO2021046154A1 (en) Genetic modification of plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant