CN117819962A - 一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法 - Google Patents

一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法 Download PDF

Info

Publication number
CN117819962A
CN117819962A CN202410015260.XA CN202410015260A CN117819962A CN 117819962 A CN117819962 A CN 117819962A CN 202410015260 A CN202410015260 A CN 202410015260A CN 117819962 A CN117819962 A CN 117819962A
Authority
CN
China
Prior art keywords
barium titanate
niobium
doped barium
titanate ceramic
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410015260.XA
Other languages
English (en)
Inventor
梁旭
吕睿
井永升
白桂如
贺宇欣
张鑫
胡淑玲
申胜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202410015260.XA priority Critical patent/CN117819962A/zh
Publication of CN117819962A publication Critical patent/CN117819962A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法,涉及功能材料领域。制备方法步骤如下:(1)用高纯度钛酸钡粉体和氧化铌粉体球磨混合并固相烧结制备铌掺杂钛酸钡粉体;(2)用粉体制备待用胚体;(3)将待用胚体进行传统烧结,得到铌掺杂钛酸钡陶瓷;(4)采用铌掺杂钛酸钡陶瓷进行挠曲电性能测试,铌掺杂钛酸钡陶瓷的挠曲电系数为23至380μC/m,挠曲电性能最优的组分与纯钛酸钡陶瓷相比挠曲电系数提高了20倍。

Description

一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法
技术领域
本发明涉及功能材料技术领域,具体涉及一种通过改变铌元素掺杂比例调控钛酸钡(BaTiO3)陶瓷材料挠曲电性能的方法。
背景技术
功能材料是新材料发展的核心,力电耦合功能材料可以实现机械能和电能之间的转换,广泛地应用于滤波器、传感器、换能器、驱动器和能量回收系统等。力电耦合效应主要包括压电效应、电致伸缩效应以及麦克斯韦效应等;其中应用最为广泛的一种力电耦合效应是压电效应。然而压电材料在居里温度以上将失去压电性,并且无铅压电材料压电性远不如含铅压电材料,而铅是一种会对人体和环境造成损害的元素。因此研究人员开始寻找可替代压电材料的其他功能材料,例如挠曲电材料。挠曲电效应描述了介电极化与应变梯度之间的相互作用。
由于应变梯度本身就可以打破材料的中心对称结构,挠曲电效应可存在于所有的介电材料中;而目前被广泛研究的压电效应只存在于不具有对称中心的晶体结构的材料中,因而,挠曲电效应是一种比压电效应更为广泛的力电耦合效应。可以利用这种效应设计一些新型的功能材料和器件。在挠曲电效应的研究中,挠曲电系数μijkl是最常见的用来描述材料挠曲电性能大小的重要参数之一,早期理论预测材料的挠曲电系数在10-12~10-11C/m范围内,而近年来对铁电材料挠曲电系数的测试结果比理论预测大几个数量级,是最具前景的挠曲电材料之一,在实际应用中有很宽广的应用前景。但是当前材料当中的挠曲电效应相比于压电效应还是过于微弱,而且在宏观固体材料中很难产生比较大的应变梯度,因此限制了挠曲电效应的实际应用。
研究表明,具有高介电性能的材料一般具有比较高的挠曲电系数。由于铁电氧化物具有比普通的介电材料更高的介电性能,因而目前所获得的具有高挠曲电系数的材料基本都是铁电材料。这些材料主要包括BaTiO3基的铁电材料,含铋的铁电材料,含铅的铁电材料,SrTiO3基的铁电材料,LiNbO3基铁电材料(Na,K)NbO3基的铁电材料,具有钨青铜结构的铁电材料等。目前这些铁电氧化物材料中测量到了高达10-6~10-4C/m的挠曲电系数,但是当前发现的具有高挠曲电性能的材料(挠曲电系数大于10-4C/m),其制备工艺都比较复杂,制备周期长且产量低,而且影响材料的其他性能。
发明内容
为了克服上述现有技术存在的缺点,本发明的目的在于提供一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法,本发明提供的材料制备方法简单,制备周期短,可实现量产,且不影响材料的其他性能。
为了达到上述目的,本发明采用如下技术方案:
一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法,包括以下步骤:
(1)制备铌掺杂钛酸钡粉体
先将BaTiO3和Nb2O5粉体在烘箱中烘干,然后按照所需要的陶瓷样品组分的化学计量比BaTi1-xNbxO3(0<x<0.05),计算出每个组分所需要的每一种化学药品原料质量,计算时应考虑化学药品的纯度;再将称好的原料倒入装有玛瑙球的聚四氟乙烯球磨罐中,加入无水乙醇作为球磨介质,在行星式球磨机上进行球磨;
充分混合均匀的粉体在1050℃至1150℃下保温2h到3h进行固相烧结,作用是使原料在高温下发生化学反应生成所需要的BaTi1-xNbxO3陶瓷晶相;
将烧制完成的粉体再进行球磨混合得到铌掺杂钛酸钡粉体;
(2)制备待用胚体
将铌掺杂钛酸钡粉体和质量浓度为5wt%至10wt%的聚乙烯醇溶液按铌掺杂钛酸钡粉体和聚乙烯醇为100:1至200:1的质量比混合研磨造粒,将粒料放入直径为40mm的模具中,用液压机以200~300MPa的压力单轴压制成胚体;将胚体放入马弗炉中,在500℃至600℃之间保温3h到5h,得到待用胚体;
(3)固相烧结制备铌掺杂钛酸钡陶瓷
将待用胚体放入马弗炉中,以3℃/min至5℃/min的升温速率加热到1300℃至1350℃,并保温3h到5h,得到铌掺杂钛酸钡陶瓷;
(4)对铌掺杂钛酸钡陶瓷进行退火处理
将烧制好的铌掺杂钛酸钡陶瓷放入马弗炉中,在800℃至1000℃下进行6h到10h退火处理,从而消除陶瓷制备过程中引起的氧空位。
所述铌掺杂钛酸钡陶瓷材料中,铌元素掺杂比例为0至5%。
如果要测量铌掺杂钛酸钡陶瓷材料的挠曲电系数则在对铌掺杂钛酸钡陶瓷进行退火处理前,先将烧制好的铌掺杂钛酸钡陶瓷切割成长方体梁结构,然后再进行退火处理。
采用铌元素掺杂这种施主掺杂,引入半导体特性,铌元素掺杂还可以降低材料的居里温度且抑制陶瓷晶粒的生长,增加陶瓷晶粒尺寸的均匀性,当铌掺杂浓度为0.2%时,铌掺杂钛酸钡陶瓷的挠曲电系数范围在23至380μC/m,挠曲电性能最优的组分与纯钛酸钡陶瓷相比挠曲电系数提高了20倍,且平均晶粒尺寸从5.00μm减小到1μm,成功制备了纳米尺度晶粒的陶瓷。
本发明的有益技术效果体现在以下方面:
挠曲电效应是一种由应变梯度诱导电极化的力电耦合效应,与压电效应相比具有不受晶体材料对称性限制和尺寸效应等特点,在微纳传感与驱动及能量回收等方面具有重要的应用潜质。然而,铁电材料的挠曲电性能仍然无法替代其压电效应,因此需要增强材料的挠曲电效应以用于实际应用。相比于缩小陶瓷尺寸从而增强其挠曲电性能,通过铌元素掺杂调控挠曲电性能的方法操作简单,应用范围更广,且有助于形成具有高致密度的细晶粒陶瓷。随着铌元素的掺杂,钛酸钡陶瓷的晶粒尺寸由5.00μm减小到1μm,挠曲电系数由15.8μC/m增加到380.0μC/m。采用铌元素掺杂这种施主掺杂,引入半导体特性,铌元素掺杂还可以降低材料的居里温度且抑制陶瓷晶粒的生长,这些因素都会对钛酸钡陶瓷的挠曲电效应产生显著影响。
附图说明
图1(a)、图1(b)、图1(c)、图1(d)分别为实施例1、实施例2、实施例3、对比例1制备得到的不同铌掺杂比例的钛酸钡陶瓷的微观结构图。图2为不同铌掺杂比例的钛酸钡陶瓷在室温下的挠曲电系数μ12图。
图3为不同铌掺杂比例的钛酸钡陶瓷的XRD谱图。
具体实施方式
为了进一步理解本发明,下面结合实施例和对比例对本发明提供的提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法进行说明,本发明的保护范围不受以下实施例的限制。
在测量挠曲电效应的过程中,具体按照如下方式进行:用银浆在样品上下表面涂覆面积A为15mm2的银电极,并用银浆将铜线连接至电极,然后对铌掺杂钛酸钡陶瓷样品横向挠曲电系数进行测量。横向挠曲电系数测试使用三点弯法,在铌掺杂钛酸钡陶瓷样品梁的上表面中心施加频率为1Hz的正弦力,三点弯跨距为L=10mm,样品中出现沿长度方向的应变以及厚度方向的应变梯度,厚度方向上的平均应变梯度为其中δ为样品中心的位移,a为电极的半长。使用电荷放大器和示波器检测极化电荷Q,平均极化P可以通过P=Q/A得到。根据样品的应变梯度与电极上测量得到的挠曲电信号,得到横向挠曲电系数μ12
以下实施例所用材料说明如下:BaTiO3(99.9%纯,上海沃凯药业有限公司)和Nb2O5(99.9%纯,上海麦克林生化科技股份有限公司)。
实施例1
(1)制备铌掺杂钛酸钡粉体
将BaTiO3(99.9%纯,上海沃凯药业有限公司)和Nb2O5(99.9%纯,上海麦克林生化科技股份有限公司)粉体在烘箱中烘干,然后按照1:0.001的摩尔比称取BaTiO3和Nb2O5粉体。再将称好的原料倒入装有玛瑙球的聚四氟乙烯球磨罐中,加入无水乙醇作为球磨介质,在行星式球磨机球磨24h后烘干,放入马弗炉,在1050℃下保温2h进行固相烧结;然后将烧制完成的粉体再进行球磨混合得到铌掺杂钛酸钡粉体。
(2)制备待用胚体
将铌掺杂钛酸钡粉体和质量浓度为5wt%的聚乙烯醇溶液在研钵中按10:1的质量比混合研磨造粒,使粒料能够通过60目筛;将粒料放入直径为40mm的模具中,用液压机以200MPa的压力单轴压制成胚体,胚体厚度为2mm;将胚体放入马弗炉中,在500℃下保温3h去除胚体中的粘结剂,得到待用胚体。
(3)固相烧结制备铌掺杂钛酸钡陶瓷
将待用胚体放入马弗炉中,以3℃/min的升温速率加热到1300℃,并保温3h,得到铌掺杂钛酸钡陶瓷。晶粒是组成多晶体的外形不规则的小晶体,晶粒尺寸是陶瓷微结构的重要因素,对材料的力学、电学等性能有着显著影响。本发明通过在SEM图中选取400到600个晶粒并对其尺寸进行测量,再对数据进行高斯拟合得到的平均值就是陶瓷的平均晶粒尺寸。由图1(a)的SEM图观测到铌掺杂比为0.2%的钛酸钡陶瓷平均晶粒尺寸为1.00μm。
(4)铌掺杂钛酸钡陶瓷切割
将烧结制备好的铌掺杂钛酸钡陶瓷圆片切割成尺寸为25mm×8mm×1.5mm的梁。
(5)对陶瓷进行退火处理
由于铌掺杂钛酸钡陶瓷在高温下很容易产生氧空位,氧空位浓度过高会显著增加陶瓷的电导率,在这种情况下,介电和挠曲电系数将大于固有值,因此需要对切割好的铌掺杂钛酸钡陶瓷进行退火处理,从而消除陶瓷制备过程中引起的氧空位。将切割好的铌掺杂钛酸钡陶瓷放入马弗炉中,在800℃下进行6h退火处理。
(6)涂覆电极
用银浆在铌掺杂钛酸钡陶瓷样品上下表面涂覆面积为15mm2的银电极,并用银浆将铜线连接至电极;将涂覆银浆的样品在100℃条件下进行烘干15h,烘干后放入马弗炉在550℃下保温30min进行电极烧制。
使用三点弯法测得其挠曲电系数为379.66μC/m。
实施例2
(1)制备铌掺杂钛酸钡粉体
将BaTiO3(99.9%纯,上海沃凯药业有限公司)和Nb2O5(99.9%纯,上海麦克林生化科技股份有限公司)粉体在烘箱中烘干,然后按照1:0.002的摩尔比称取BaTiO3和Nb2O5粉体。再将称好的原料倒入装有玛瑙球的聚四氟乙烯球磨罐中,加入无水乙醇作为球磨介质,在行星式球磨机球磨24h后烘干,放入马弗炉,在1100℃下保温2.5h进行固相烧结;然后将烧制完成的粉体再进行球磨混合得到铌掺杂钛酸钡粉体。
(2)制备待用胚体
将铌掺杂钛酸钡粉体和质量浓度为8wt%的聚乙烯醇溶液在研钵中按10:1的质量比混合研磨造粒,使粒料能够通过60目筛;将粒料放入直径为40mm的模具中,用液压机以250MPa的压力单轴压制成胚体,胚体厚度为2mm;将胚体放入马弗炉中,在550℃下保温4h去除胚体中的粘结剂,得到待用胚体。
(3)固相烧结制备铌掺杂钛酸钡陶瓷
将待用胚体放入马弗炉中,以4℃/min的升温速率加热到1325℃,并保温4h,得到铌掺杂钛酸钡陶瓷。由图1(b)的SEM图观测到铌掺杂比为0.4%的钛酸钡陶瓷平均晶粒尺寸为0.74μm。
(4)铌掺杂钛酸钡陶瓷切割
将烧结制备好的铌掺杂钛酸钡陶瓷圆片切割成尺寸为25mm×8mm×1.5mm的梁。
(5)对铌掺杂钛酸钡陶瓷进行退火处理
将切割好的铌掺杂钛酸钡陶瓷放入马弗炉中,在900℃下进行8h退火处理,从而消除陶瓷制备过程中引起的氧空位。
(6)涂覆电极
用银浆在铌掺杂钛酸钡陶瓷样品上下表面涂覆面积为15mm2的银电极,并用银浆将铜线连接至电极;将涂覆银浆的样品在100℃条件下进行烘干15h,烘干后放入马弗炉在550℃下保温30min进行电极烧制。
使用三点弯法测得其挠曲电系数为184.78μC/m。
实施例3
(1)制备铌掺杂钛酸钡粉体
将BaTiO3(99.9%纯,上海沃凯药业有限公司)和Nb2O5(99.9%纯,上海麦克林生化科技股份有限公司)粉体在烘箱中烘干,然后按照1:0.003的摩尔比称取BaTiO3和Nb2O5粉体。再将称好的原料倒入装有玛瑙球的聚四氟乙烯球磨罐中,加入无水乙醇作为球磨介质,在行星式球磨机球磨24h后烘干,放入马弗炉,在1150℃下保温3h进行固相烧结;然后将烧制完成的粉体再进行球磨混合得到铌掺杂钛酸钡粉体。
(2)制备待用胚体
将铌掺杂钛酸钡粉体和质量浓度为10wt%的聚乙烯醇溶液在研钵中按10:1的质量比混合研磨造粒,使粒料能够通过60目筛;将粒料放入直径为40mm的模具中,用液压机以300MPa的压力单轴压制成胚体,胚体厚度为2mm;将胚体放入马弗炉中,在600℃下保温5h去除胚体中的粘结剂,得到待用胚体。
(3)固相烧结制备铌掺杂钛酸钡陶瓷
将待用胚体放入马弗炉中,以5℃/min的升温速率加热到1350℃,并保温5h,得到铌掺杂钛酸钡陶瓷。由图1(c)的SEM图观测到铌掺杂比为0.6%的钛酸钡陶瓷平均晶粒尺寸为0.73μm。
(4)铌掺杂钛酸钡陶瓷切割
将烧结制备好的陶瓷圆片切割成尺寸为25mm×8mm×1.5mm的梁。
(5)对铌掺杂钛酸钡陶瓷进行退火处理
将切割好的铌掺杂钛酸钡陶瓷放入马弗炉中,在1000℃下进行10h退火处理,从而消除陶瓷制备过程中引起的氧空位。
(6)涂覆电极
用银浆在铌掺杂钛酸钡陶瓷样品上下表面涂覆面积为15mm2的银电极,并用银浆将铜线连接至电极;将涂覆银浆的样品在100℃条件下进行烘干15h,烘干后放入马弗炉在550℃下保温30min进行电极烧制。
使用三点弯法测得其挠曲电系数为22.95μC/m。
对比例1
(1)制备钛酸钡待用胚体
将BaTiO3(99.9%纯,上海沃凯药业有限公司)粉体在烘箱中烘干,然后和质量浓度为5wt%的聚乙烯醇溶液在研钵中按10:1的质量比混合研磨造粒,使粒料能够通过60目筛;将粒料放入直径为40mm的模具中,用液压机以200MPa的压力单轴压制成胚体,胚体厚度为2mm;将胚体放入马弗炉中,在500℃下保温3h去除胚体中的粘结剂,得到待用胚体。
(2)固相烧结制备陶瓷
将待用胚体放入马弗炉中,以3℃/min的升温速率加热到1300℃,并保温3h,得到不同比例的铌掺杂钛酸钡陶瓷。由图1(d)的SEM图观测到钛酸钡陶瓷平均晶粒尺寸为5.00μm。
(3)陶瓷切割
将制备好的陶瓷圆片切割成尺寸为25mm×8mm×1.5mm的梁。
(4)对陶瓷进行退火处理
将烧制好的陶瓷放入马弗炉中,在800℃下进行6h退火处理,从而消除陶瓷制备过程中引起的氧空位。
(5)涂覆电极
用银浆在样品上下表面涂覆面积为15mm2的银电极,并用银浆将铜线连接至电极;将涂覆银浆的样品在100℃条件下进行烘干15h,烘干后放入马弗炉在550℃下保温30min进行电极烧制。
使用三点弯法测得其挠曲电系数为15.79μC/m。
图1(a)、图1(b)、图1(c)、图1(d)分别为实施例1的0.2%Nb掺杂BaTiO3陶瓷表面SEM图像、实施例2的0.4%Nb掺杂BaTiO3陶瓷表面SEM图像、实施例3的0.6%Nb掺杂BaTiO3陶瓷表面SEM图像、对比例1的BaTiO3陶瓷表面SEM图像,可以看到本发明成功制备出具有高致密度的纳米尺度晶粒的陶瓷,且晶粒尺寸分布均匀。从图3可以看出所有样品均为四方钙钛矿结构,无第二相产生。
图2为钛酸钡陶瓷的横向挠曲电系数随铌掺杂比例的变化,当铌掺杂浓度为0.2%时,挠曲电系数为380μC/m,与纯钛酸钡陶瓷相比挠曲电系数提高了20倍,且平均晶粒尺寸从5.00μm减小到1μm,成功制备了纳米尺度晶粒的陶瓷。采用铌元素掺杂这种施主掺杂,引入半导体特性,铌元素掺杂还可以降低材料的居里温度且抑制陶瓷晶粒的生长,增加陶瓷晶粒尺寸的均匀性,这些因素都会对钛酸钡陶瓷的挠曲电效应产生显著影响。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法,其特征在于,具体步骤如下:
(1)制备铌掺杂钛酸钡粉体
先将BaTiO3和Nb2O5粉体在烘箱中烘干,然后按照所需要的陶瓷样品组分的化学计量比BaTi1-xNbxO3,其中0<x<0.05,计算出每个组分所需要的每一种化学药品原料质量,计算时应考虑化学药品的纯度;再将称好的原料倒入球磨罐中,加入无水乙醇作为球磨介质,在球磨机上进行球磨;
充分混合均匀的粉体在1050℃至1150℃下保温2h到3h进行固相烧结,使原料在高温下发生化学反应生成所需要的BaTi1-xNbxO3陶瓷晶相;
将烧制完成的粉体再进行球磨混合得到铌掺杂钛酸钡粉体;
(2)制备待用胚体
将铌掺杂钛酸钡粉体和质量浓度为5wt%至10wt%的聚乙烯醇溶液按铌掺杂钛酸钡粉体和聚乙烯醇为100:1至200:1的质量比混合研磨造粒,将粒料在模具中单轴压制成胚体;将胚体放入马弗炉中,在500℃至600℃之间保温3h到5h,得到待用胚体;
(3)固相烧结制备铌掺杂钛酸钡陶瓷
将待用胚体放入马弗炉中,以3℃/min至5℃/min的升温速率加热到1300℃到1350℃,并保温3h至5h,得到铌掺杂钛酸钡陶瓷;
(4)对铌掺杂钛酸钡陶瓷进行退火处理
将烧制好的铌掺杂钛酸钡陶瓷放入马弗炉中,在800℃至1000℃下进行6h到10h退火处理,从而消除铌掺杂钛酸钡陶瓷制备过程中引起的氧空位。
所述铌掺杂钛酸钡陶瓷材料中,铌元素掺杂比例为0至5%。
2.根据权利要求1所述的一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法,其特征在于:采用铌元素掺杂,引入半导体特性,铌元素掺杂还能够降低材料的居里温度且抑制陶瓷晶粒的生长,增加陶瓷晶粒尺寸的均匀性,铌掺杂钛酸钡陶瓷的挠曲电系数为23μC/m至380μC/m,挠曲电性能最优的组分与纯钛酸钡陶瓷相比挠曲电系数提高了20倍。
3.根据权利要求1所述的一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法,其特征在于:如果要测量铌掺杂钛酸钡陶瓷材料的挠曲电系数则在对铌掺杂钛酸钡陶瓷进行退火处理前,先将烧制好的铌掺杂钛酸钡陶瓷切割成长方体梁结构,然后再进行退火处理。
4.根据权利要求1所述的一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法,其特征在于:步骤(1)中钛酸钡和氧化铌粉体的纯度≥99.9%,粒度为100nm。
CN202410015260.XA 2024-01-04 2024-01-04 一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法 Pending CN117819962A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410015260.XA CN117819962A (zh) 2024-01-04 2024-01-04 一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410015260.XA CN117819962A (zh) 2024-01-04 2024-01-04 一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法

Publications (1)

Publication Number Publication Date
CN117819962A true CN117819962A (zh) 2024-04-05

Family

ID=90517214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410015260.XA Pending CN117819962A (zh) 2024-01-04 2024-01-04 一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN117819962A (zh)

Similar Documents

Publication Publication Date Title
EP2414303B1 (en) Ceramic, piezoelectric device, and production method thereof
JP4541985B2 (ja) 多結晶体の製造方法
CN101024574B (zh) 铋基钙钛矿替代的铌酸钾钠系无铅压电陶瓷及其制备方法
CN104876567A (zh) 高压电系数铌酸钾钠基无铅压电陶瓷及其制备方法
CN112552048B (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN103979955A (zh) 锂-铝离子对掺杂改性的钛酸钡基无铅压电陶瓷材料及其制备方法
CN111362695A (zh) 一种锆钛酸铅压电陶瓷及其制备方法
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
KR101333792B1 (ko) 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
KR101333793B1 (ko) 비스무스계 압전 세라믹스 및 그 제조방법
CN104529447A (zh) 铋层状复合结构压电陶瓷材料及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN111170736B (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
CN109437857B (zh) 一种用于高温压电传感器的压电陶瓷材料及其制备方法
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN117819962A (zh) 一种提高挠曲电性能的铌掺杂钛酸钡陶瓷材料的制备方法
CN115385675A (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
Li et al. Phase Structures and Piezoelectric Properties of (K, Na, Li)(Nb, Sb) O 3-(Bi, Ag) ZrO 3 Lead-Free Ceramics
CN103539447B (zh) 一种低温烧结的压电陶瓷材料及其制备方法
CN103435344B (zh) 一种高频陶瓷滤波器用压电陶瓷材料
KR20080108781A (ko) 비납계 압전 세라믹스 조성물 및 그 제조방법
CN116751057B (zh) 一种具有超高电致应变和逆压电系数的压电陶瓷及其制备方法
CN114276134B (zh) 一种具有高温度稳定电致应变的无铅压电陶瓷材料及其制备方法
KR102664918B1 (ko) 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination