CN117812999A - 鉴定、选择和产生炭疽茎腐病抗性作物的方法 - Google Patents

鉴定、选择和产生炭疽茎腐病抗性作物的方法 Download PDF

Info

Publication number
CN117812999A
CN117812999A CN202280054862.5A CN202280054862A CN117812999A CN 117812999 A CN117812999 A CN 117812999A CN 202280054862 A CN202280054862 A CN 202280054862A CN 117812999 A CN117812999 A CN 117812999A
Authority
CN
China
Prior art keywords
seq
plant
sequence
leu
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280054862.5A
Other languages
English (en)
Inventor
A·M·德莱安
K·A·芬格勒
M·T·荣格
G·M·塔博尔
S·撒切尔
P·J·沃尔特斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Hi Bred International Inc
Original Assignee
Pioneer Hi Bred International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi Bred International Inc filed Critical Pioneer Hi Bred International Inc
Publication of CN117812999A publication Critical patent/CN117812999A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本领域涉及植物育种以及鉴定和选择对炭疽茎腐病具有抗性的植物的方法。提供了鉴定编码提供对炭疽茎腐病具有植物抗性的蛋白质的新颖基因的方法及其用途。这些疾病抗性基因通过育种、转基因修饰或基因组编辑可用于抗性植物的产生。

Description

鉴定、选择和产生炭疽茎腐病抗性作物的方法
技术领域
本领域涉及植物育种以及鉴定和选择对炭疽茎腐病(Anthracnose stalk rot)具有抗性的植物的方法。提供了鉴定编码提供对炭疽茎腐病具有植物抗性的蛋白质的新颖基因的方法及其用途。这些疾病抗性基因通过育种、转基因修饰或基因组编辑可用于抗性植物的产生。
对经由EFS-Web以文本文件
提交的序列表的引用
按照美国信息交换标准码(ASCII),该序列表的官方副本经由EFS-Web作为文本文件与本说明书同时提交,其中文件名为8931WOPCT SEQ LISTING_ST25.txt,创建日期为2022年5月31日,并且大小为34KB。经由EFS-Web提交的该序列表是说明书的一部分并通过引用以其全文并入本文。
背景技术
由真菌病原体禾生炭疽菌(Colletotrichum graminicola(Ces.)Wils)(Cg)引起的炭疽茎腐病(ANTROT)是玉蜀黍(maize,Zea mays L.)中主要的茎腐病之一。由于产量、谷物重量和质量的显著下降,ANTROT成为主要关注的问题。未成熟植物死亡(中断籽粒灌浆)以及茎秆折断和倒伏(导致谷穗损失在田间)导致产量损失。ANTROT发生在所有的玉米种植区域中并且可能导致10%至20%的损失。
虽然农民可以通过使用杀真菌剂抵抗真菌感染(如炭疽病),但是这些杀真菌剂对环境具有副作用并且需要田间监测和诊断技术以确定哪种真菌引起感染,从而可以使用正确的杀真菌剂。如果可以将负责抗性的基因并入优良、高产种质中而不降低产量,则使用携带抗性的基因来源或转基因来源的玉米品系更具实用性。已经描述了Cg抗性的基因来源(White,等人(1979)Annu.Corn Sorghum Res.Conf.Proc.[玉米高粱研究大会年鉴]34:1-15;Carson.1981.Sources of inheritance of resistance to anthracnose stalk rotof corn.[玉米炭疽茎腐病抗性的遗传来源]Ph.D.Thesis,University of Illinois,Urbana-Champaign[伊利诺伊大学尚佩恩分校博士论文];Badu-Apraku等人,(1987)Phytopathology[植物病理学]77:957-959;Toman等人1993.Phytopathology[植物病理学],83:981-986;Cowen,N等人(1991)Maize Genetics Conference Abstracts[玉蜀黍遗传学会议摘要]33;Jung,等人,1994.Theoretical and Applied Genetics[理论与应用遗传学],89:413-418)。然而,抗性的渗入可能非常复杂。
通过使用与炭疽茎腐病抗性性状相关联的分子标记进行选择,允许仅基于子代的基因组成的选择。结果,植物育种可以更迅速地发生,由此产生商业上可接受的、对炭疽茎腐病具有更高水平的抗性的玉蜀黍植物。存在多个控制炭疽茎腐病抗性的QTL(例如4号染色体上的rcg1和rcg1b(WO 2008157432和WO 2006107931)),每个QTL对性状具有不同的作用。因此,令人希望的是提供用于鉴定和选择具有新赋予的或增强的炭疽茎腐病抗性的玉蜀黍植物的组合物和方法。这些植物可以用于育种程序中,以产生对炭疽茎腐病具有抗性的高产杂交体。持续需要疾病抗性植物和寻找疾病抗性基因的方法。
发明内容
提供了鉴定和选择对炭疽茎腐病具有抗性的植物的方法和组合物。
在一个方面,本文提供了获得子代玉蜀黍植物的方法,所述子代玉蜀黍植物包含与炭疽茎腐病抗性相关联的标记等位基因。所述方法包括:a.提供玉蜀黍植物群体并且从所述玉蜀黍植物群体中的每一个玉蜀黍植物分离核酸;b.分析所述分离的核酸中的每一种核酸在10号染色体上是否存在与炭疽茎腐病抗性相关联的标记等位基因,其中所述标记等位基因包含:i.在SEQ ID NO:21的位置61的PHM12处的“C”,ii.在SEQ ID NO:22的位置56的19705-9处的“T”,iii.在SEQ ID NO:23的位置51的19707-15处的“A”,iv.在SEQ ID NO:15的位置201的C01964-1处的“G”,v.在SEQ ID NO:16的位置201的C01957-1处的“T”,vi.在SEQ ID NO:24的位置51的SBD_INBREDA_24处的“A”,vii.在SEQ ID NO:25的位置51的PHM10处的“A”,以及viii.在SEQ ID NO:26的位置51的SBD_INBREDA_109处的“A”;c.选择其中检测到所述标记等位基因的一个或多个玉蜀黍植物;d.将所选择的一个或多个玉蜀黍植物与一个或多个第二玉蜀黍植物杂交以获得包含所述标记等位基因的子代植物。
在第二方面,本文提供了鉴定具有与增加的炭疽茎腐病抗性相关联的NLR04等位基因的植物的方法,所述方法包括:a.从玉蜀黍植物、植物细胞、或其种质中获得核酸样品;以及b.对所述样品进行包含以下的序列的筛选:(i).多核苷酸,所述多核苷酸编码:具有SEQ ID NO:30中所示的氨基酸序列的多肽;(ii).多核苷酸,所述多核苷酸包含SEQ ID NO:28中所示的序列;或(iii).(i)或(ii)的5cM内的一个或多个标记等位基因,所述一个或多个标记等位基因与(i)或(ii)连锁并相关联。例如,该方法可以包括对所述样品进行包含以下的标记等位基因的筛选:i.在SEQ ID NO:21的位置61的PHM12处的“C”,ii.在SEQ ID NO:22的位置56的19705-9处的“T”,iii.在SEQ ID NO:23的位置51的19707-15处的“A”,iv.在SEQ ID NO:15的位置201的C01964-1处的“G”,v.在SEQ ID NO:16的位置201的C01957-1处的“T”,vi.在SEQ ID NO:24的位置51的SBD_INBREDA_24处的“A”,vii.在SEQ ID NO:25的位置51的PHM10处的“A”,以及viii.在SEQ ID NO:26的位置51的SBD_INBREDA_109处的“A”。
在另一方面,本文提供了增加植物中炭疽茎腐病抗性的方法,所述方法包括在植物中表达异源多核苷酸,所述异源多核苷酸编码具有与SEQ ID NO:30的氨基酸序列具有至少90%序列同一性的氨基酸序列的多肽;其中当与不包含所述异源多核苷酸的对照植物相比时,表达所述异源多肽的植物对所述植物中的炭疽茎腐病具有增加的抗性。在一个实例中,所述异源多核苷酸可操作地连接到异源启动子。
在又另一方面,本文提供了鉴定NLR 04基因的等位基因变体的方法,其中所述等位基因变体与增加的对炭疽茎腐病的耐受性相关联,所述方法包括以下步骤:(a).获得植物群体,其中所述植物表现出不同水平的炭疽茎腐病抗性;(b).评估针对编码包含SEQ IDNO:30的蛋白质的多核苷酸序列的等位基因变异,或在调节编码所述蛋白质的多核苷酸的表达的基因组区域中的等位基因变异;(c).将等位基因变异与增加的炭疽茎腐病抗性相关联;以及(d).鉴定与增加的炭疽茎腐病抗性相关联的等位基因变体。
在另一方面,本文提供了引入NLR 04基因的等位基因变体的方法,所述方法包括在内源NLR 04基因中引入突变,使得所述等位基因变体包含编码与SEQ ID NO:30具有至少90%同一性的蛋白质的多核苷酸序列并且所述等位基因变体与增加的炭疽茎腐病抗性相关联,其中使用锌指核酸酶、转录激活因子样效应核酸酶(TALEN)、CRISPR/Cas系统或大范围核酸酶引入所述突变。
本文还提供了重组DNA构建体,所述重组DNA构建体包含与至少一个调节序列可操作地连接的多核苷酸,其中所述多核苷酸包含核酸序列,所述核酸序列编码与SEQ ID NO:30具有至少90%、95%、96%、97%、98%、99%、100%序列同一性的氨基酸序列,并且其中所述等位基因变体与增加的炭疽茎腐病抗性相关联。例如,调节序列可以是在植物细胞中有功能的启动子。进一步提供了包含前述重组DNA构建体的转基因植物、植物细胞或其种子。
序列表简述
序列表说明
具体实施方式
如本文所用,单数形式“一个/种(a/an)”以及“所述/这些(the)”包括复数个指示物,除非上下文中另有明确指明。因此,例如,提及“细胞”包括多个这样的细胞,并且提及“蛋白质”包括提及一种或多种蛋白及其等同物,等等。本文所用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常所理解相同的含义,除非另有明确说明。
R基因的NBS-LRR(“NLR”)组是迄今为止发现的最大类的R基因。在拟南芥(Arabidopsis thaliana)中,预计基因组中会存在超过150种NLR基因(Meyers,等人,(2003),Plant Cell[植物细胞],15:809-834;Monosi,等人,(2004),Theoretical andApplied Genetics[理论与应用遗传学],109:1434-1447),而在水稻中,已经预测了大约500种NLR基因(Monosi,(2004)同上)。R基因的NBS-LRR类由两个亚类组成。1类NLR基因在其N’末端含有TIR-Toll/自介素-1样结构域;迄今为止仅在双子叶植物中发现了它们(Meyers,(2003)同上;Monosi,(2004)同上)。NBS-LRR的第二类在其N末端含有卷曲螺旋结构域或(nt)结构域(Bai,等人(2002)Genome Research[基因组研究],12:1871-1884;Monosi,(2004)同上;Pan,等人,(2000),Journal of Molecular Evolution[分子进化杂志],50:203-213)。在双子叶植物和单子叶植物物种中都发现了2类NBS-LRR。(Bai,(2002)同上;Meyers,(2003)同上;Monosi,(2004)同上;Pan,(2000)同上)。
基因的NBS结构域似乎在植物防御机制的信号传导中起作用(van der Biezen,等人,(1998),Current Biology[当代生物学]:CB,8:R226-R227)。LRR区域似乎是与病原体AVR产物相互作用的区域(Michelmore,等人,(1998),Genome Res.[基因组研究],8:1113-1130;Meyers,(2003)同上)。与NB-ARC(NBS)结构域相比,该LRR区域承受着更大的选择压力以多样化(Michelmore,(1998)同上;Meyers,(2003)同上;Palomino,等人,(2002),GenomeResearch[基因组研究],12:1305-1315)。LRR结构域也可以发现于其他背景中;这些20-29个残基的基序在许多蛋白质中串联排列,这些蛋白质具有多种功能,例如激素-受体相互作用、酶抑制、细胞粘附和细胞运输。最近的许多研究表明,LRR蛋白参与了哺乳动物的早期发育、神经发育、细胞极化、基因表达的调节和细胞凋亡信号传导。当等位基因是影响性状表达的DNA序列或等位基因的一部分或与其连锁时,该等位基因与该性状“相关”。等位基因的存在是性状将如何表达的指标。
如本文所用,“疾病抗性”或“对疾病具有抗性”是指与对照植物相比显示出对疾病的增加的抗性的植物。疾病抗性可以表现为更少和/或更小的病变、增加的植物健康、增加的产量、增加的根质量、增加的植物活力、更少或没有褪色、增加的生长、减少的坏死面积或减少的枯萎。在一些实施例中,等位基因可以显示抗一种或多种疾病。
具有疾病抗性的植物与对照植物相比可具有5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95或100%的增加的抗性。在一些实施例中,植物在疾病存在下与对照植物相比可具有5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95或100%增加的植物健康。在一些实施例中,一种植物,其包含
如本文所用,术语“染色体区间”是指存在于植物单一染色体上的基因组DNA的连续线性跨度。位于单条染色体区间上的遗传元件或基因是物理连锁的。染色体区间的大小没有特别的限制。在一些方面,位于单条染色体区间内的遗传元件是遗传连锁的,通常具有例如小于或等于20cM,或者可替代地,小于或等于10cM的遗传重组距离。也就是说,单条染色体区间内的两个遗传元件以小于或等于20%或10%的频率进行重组。
在本申请中,短语“紧密连锁”是指两个连锁的基因座之间的重组以等于或小于约10%(即,在遗传图谱上分隔不超过10cM)的频率发生。换言之,该紧密连锁的基因座有至少90%的机会发生共分离。当标记基因座显示与所需的性状(例如,对ANTROT的抗性)发生共分离(连锁)的显著概率时,该标记基因座对于本公开的主题是特别有用的。紧密连锁的基因座(例如标记基因座和第二基因座)可以显示10%或更低、优选约9%或更低、还更优选约8%或更低、又更优选约7%或更低、还更优选约6%或更低、又更优选约5%或更低、还更优选约4%或更低、又更优选约3%或更低、以及还更优选约2%或更低的基因座间重组频率。在非常优选的实施例中,相关基因座显示约1%或更低,例如约0.75%或更低、更优选约0.5%或更低、或又更优选约0.25%或更低的重组频率。定位于相同染色体并且具有使得两个基因座之间的重组以小于10%(例如,约9%、8%、7%、6%、5%、4%、3%、2%、1%、0.75%、0.5%、0.25%或更少)的频率发生的距离的两个基因座也被认为是彼此“邻近的”。在某些情况下,两个不同的标记可以具有相同的遗传图谱坐标。在这种情况下,两个标记彼此非常邻近,以至于二者之间的重组以不可检测的这样的低频发生。
术语“杂交的”或“杂交”是指有性杂交,并且涉及通过授粉将两种单倍体配子融合以产生二倍体子代(例如细胞、种子或植物)。该术语涵盖一株植物被另一株植物授粉和自交(或自体授粉,例如当花粉和胚珠来自同一植物时)二者。
“良种系”是针对优良农艺性状表现的育种而产生的任何品系。
“外来品种”、“热带品系”或“外来种质”是衍生自不属于可利用的优良品系或种质品种的植物的品种。在两个植物或种质品种之间杂交的情况下,外来种质的后代与它杂交的优良种质不是密切相关的。最普遍的是,外来种质不是衍生自任何已知的优良品系,而是被选择用来将新的遗传元件(通常是新的等位基因)引入育种程序中。
“有利的等位基因”是特定基因座的等位基因(标记、QTL、基因等),该等位基因赋予或有助于农学上所需的表型(例如疾病抗性),并且允许鉴定具有该农学上所需表型的植物。标记的有利等位基因是与有利表型分离的标记等位基因。
“遗传标记”是在群体中多态的核酸,并且该遗传标记的等位基因可以通过一种或多种分析方法(例如RFLP、AFLP、同工酶、SNP、SSR等)来检测和区分。该术语还指与用作探针的基因组序列(例如核酸)互补的核酸序列。可以通过本领域中公认的方法检测对应于群体成员之间的遗传多态性的标记。这些方法包括,例如基于PCR的序列特异性扩增方法、限制性片段长度多态性检测(RFLP)、同功酶标记检测、通过等位基因特异性杂交(ASH)进行的多核苷酸多态性检测、植物基因组的扩增可变序列检测、自主序列复制检测、简单重复序列检测(SSR)、单核苷酸多态性检测(SNP)、或扩增片段长度多态性检测(AFLP)。已知公认的方法也用于检测表达的序列标签(EST)和衍生自EST序列的SSR标记,以及随机扩增多态性DNA(RAPD)。
“种质”是指遗传物质,其属于或来自于个体(例如,植株)、个体的组(例如,植物品系、品种或家族)或者衍生自品系、品种、物种或培养物的克隆,或者更概括地,某一物种或多个物种的全部个体(例如,玉蜀黍种质集合(maize germplasm collection)或Andean种质集合(Andean germplasm collection))。种质可以是生物体、细胞的一部分,或者可以与生物体或细胞分离。一般而言,种质提供了具有特定分子构成的遗传物质,该特定分子构成为生物体或细胞培养物的一些或全部遗传特性提供了物理基础。如本文所用,种质包括由此可以生长出新植物的细胞、种子或组织,或者可以培养成完整植物的植物部分,例如叶、茎、花粉或细胞。
“单倍型”是个体在多个遗传基因座处的基因型,即等位基因的组合。典型地,由单倍型描述的遗传基因座在物理和遗传上是连锁的,即在同一染色体区段上。
术语“异质性”用于指示群组内的个体在一个或多个特定基因座处的基因型不同。
材料的杂种优势应答或“杂种优势”可以通过当与其他不相似或不相关的群组杂交时超过亲本(或高亲本(high parent))的平均值的表现来定义。
“杂种优势组”包含一组当与来自不同的杂种优势组的基因型杂交时表现良好的基因型(Hallauer等人(1998)Com breeding[玉米育种],第463-564页.在G.F.Sprague和J.W.Dudley(编辑)Corn and corn improvement[玉米和玉米的改良]中)。近交系分为杂种优势组,并根据几个标准(如谱系、基于分子标记的关联和杂交体组合中的表现)进一步细分为杂种优势组中的家族(Smith等人(1990)Theor.Appl.Gen.[理论与应用遗传学]80:833-840)。在美国,两个应用最广泛的杂种优势组称为“爱荷华刚性茎秆合成群(IowaStiff Stalk Synthetic)”(本文中也称为“刚性茎杆”)和“兰卡斯特(Lancaster)”或“兰卡斯特修尔作物(Lancaster Sure Crop)”(有时称为NSS或非刚性茎杆)。
有些杂种优势组具备成为母本所需的性状,并且另一些具备成为父本所需的性状。例如,在玉蜀黍中,来自称为BSSS(爱荷华刚性茎秆合成群体)的群体释放的公开近交系的产量结果导致这些近交系及其衍生物成为中部玉米带中的雌性库。BSSS近交系已经与其他近交系(例如,SD 105和玉蜀黍阿曼巴(Maiz Amargo))杂交,而这个材料的一般组已经以刚性茎秆合成(Stiff Stalk Synthetics,SSS)闻名,即使并非所有的近交系都衍生自原始的BSSS群体(Mikel and Dudley(2006)Crop Sci[作物科学]:46:1193-1205)。默认情况下,所有与SSS近交系良好结合的其他近交系被分配到雄性库,因缺乏更好的名称而被命名为NSS,即非刚性茎秆。这个群组包括几个主要的杂种优势组,例如兰卡斯特修尔作物(Lancaster Surecrop)、艾顿(Iodent)和利明玉米(Leaming Corn)。
术语“同质性”表示群组的成员在一个或多个特定基因座处具有相同的基因型。
术语“杂交体”是指在至少两个遗传上不同的亲本的杂交之间获得的子代。
术语“近交系”是指已经进行育种以获得遗传同质性的品系。
术语“插入缺失(indel)”是指插入或缺失,其中一个品系可以称为相对于第二品系具有插入的核苷酸或DNA碎片,或该第二品系可以称为相对于该第一品系具有缺失的核苷酸或DNA碎片。
术语“渗入”是指遗传基因座的期望等位基因从一种遗传背景传递到另一种遗传背景的现象。例如,可以经由相同物种的两个亲本之间的有性杂交将指定基因座处的所需等位基因的渗入传递给至少一个子代,其中这些亲本中的至少一个在其基因组内具有该所需的等位基因。可替代地,例如等位基因的传递可以通过两个供体基因组之间的重组而发生,例如在融合原生质体中,其中至少其中一个供体原生质体在其基因组中具有所希望的等位基因。所需的等位基因可以,例如通过与表型相关联的标记,在QTL、转基因等处进行检测。包含所需等位基因的后代可以反复与具有所需遗传背景的品系回交并选择所需等位基因,以产生固定在选择的遗传背景中的等位基因。
当“渗入”重复两次或更多次时,该方法通常被称为“回交”。
“品系”或“品种”是一组具有相同亲本的个体,其通常在一定程度上是近交的,并且在大多数基因座处通常是纯合和同质的(同基因的或接近同基因的)。“亚系”是指遗传上不同于起源于相同祖先的其他类似近交系亚群的近交系亚群。
如本文所用,术语“连锁”用于描述一种标记基因座与另一种标记基因座或一些其他基因座的相关联程度。分子标记与影响表型的基因座之间的连锁关系以“概率”或“调整的概率”表示。连锁可以表示为所需的限制或范围。例如,在一些实施例中,当任何标记与任何其他标记在单次减数分裂图谱(基于已经进行一轮减数分裂的群体(例如像,F2)的遗传图谱;IBM2图谱由多次减数分裂组成)上分隔小于50、40、30、25、20或15个图距单位(或cM)时,这些标记是连锁的(遗传上或物理上)。在一些方面,限定加括号的连锁范围是有利的,例如,在10cM和20cM之间、在10cM和30cM之间、或在10cM和40cM之间。标记与第二基因座的连锁越紧密,标记对第二基因座的指示效果越好。因此,“紧密连锁的基因座”,例如标记基因座和第二基因座显示10%或更低、优选约9%或更低、还更优选约8%或更低、又更优选约7%或更低、还更优选约6%或更低、又更优选约5%或更低、还更优选约4%或更低、又更优选约3%或更低、以及还更优选约2%或更低的基因座间重组频率。在非常优选的实施例中,相关基因座显示约1%或更低,例如约0.75%或更低、更优选约0.5%或更低、或又更优选约0.25%或更低的重组频率。定位于相同染色体并且具有使得两个基因座之间的重组以小于10%(例如,约9%、8%、7%、6%、5%、4%、3%、2%、1%、0.75%、0.5%、0.25%或更少)的频率发生的距离的两个基因座也被认为是彼此“邻近”。因为一个cM是显示1%的重组频率的两个标记之间的距离,因此任何标记与紧密相邻(例如,以等于或小于10cM的距离)的任何其他标记紧密连锁(遗传上和物理上)。在相同染色体上的两个紧密连锁的标记可相互定位为9、8、7、6、5、4、3、2、1、0.75、0.5或0.25cM或更近。
术语“连锁不平衡”是指遗传基因座或性状(或两者)的非随机分离。在任一情况下,连锁不平衡意味着相关的基因座沿着一段染色体在物理上足够接近,以便它们以高于随机(即非随机)的频率一起分离。显示连锁不平衡的标记被认为是连锁的。连锁的基因座有超过50%的机会(例如约51%至约100%的机会)发生共分离。换句话说,共分离的两个标记具有小于50%(并且根据定义,在相同连锁群上分隔小于50cM)的重组频率。如本文所用,连锁可以存在于两个标记之间,或可替代地,标记和影响表型的基因座之间。标记基因座可以与性状“相关联”(连锁)。标记基因座和影响表型性状的基因座的连锁程度例如通过该分子标记与该表型共分离的统计学概率(例如,F统计或LOD评分)进行测量。
连锁不平衡最常见地用量度r2评估,该量度r2使用以下文献中的公式计算:Hill,W.G.和Robertson,A,Theor.Appl.Genet.[理论与应用遗传学]38:226-231(1968)。当r2=1时,两个标记基因座间存在完全的LD,意味着这些标记还未进行重组分离并且具有相同的等位基因频率。r2值依赖于所使用的群体。r2值大于1/3显示了用于定位的足够强的LD(Ardlie等人,Nature Reviews Genetics[遗传学自然评论]3:299-309(2002))。因此,当成对标记基因座间的r2值大于或等于0.33、0.4、0.5、0.6、0.7、0.8、0.9、或1.0时,等位基因处于连锁不平衡。
如本文所用,“连锁平衡”描述其中两个标记独立地分离的情况,即,在子代中随机分配。显示连锁平衡的标记被认为是不连锁的(无论它们是否位于相同染色体上)。
“基因座”是在染色体上的位置,例如,核苷酸、基因、序列或标记所处的位置。
“优势对数(LOD)值”或“LOD评分”(Risch,Science[科学]255:803-804(1992))用于遗传区间定位以描述两个标记基因座之间的连锁程度。两个标记间LOD评分为三指示连锁概率比无连锁的概率高1000倍,而LOD评分为二指示连锁概率比无连锁的概率高100倍。大于或等于二的LOD评分可以用于检测连锁。LOD评分还可以用于在“数量性状基因座”定位中显示标记基因座和数量性状之间的关联强度。在这一情况下,LOD评分大小取决于该标记基因座与影响该数量性状的基因座之间的紧密度,以及该数量性状效应的大小。
术语“植物”包括整个植株、植物细胞、植物原生质体、可从其中再生植株的植物细胞或组织培养物、植物愈伤组织、植物丛生物和植物中的完整植物细胞或植物部分,如种子、花、子叶、叶、茎、芽、根、根尖等。如本文所用,“经修饰的植物”意指由于人为干预而具有遗传变化的任何植物。经修饰的植物可具有通过植物转化、基因组编辑或常规植物育种引入的遗传变化。
“标记”是发现遗传或物理图谱上的位置或发现标记与性状基因座(影响性状的基因座)之间的连锁的方式。标记所检测的位置可通过检测多态性等位基因及其遗传定位而获知,或通过对已经进行物理标测的序列进行杂交、序列匹配或扩增而获知。标记可以是DNA标记(检测DNA多态性)、蛋白质(检测编码的多肽的变异)或简单遗传的表型(诸如“腊质”表型)。可从基因组核苷酸序列或从表达的核苷酸序列(例如,从剪接的RNA或cDNA)开发DNA标记。根据DNA标记技术,该标记可由侧接于该基因座的互补性引物和/或与该基因座处的多态性等位基因杂交的互补性探针组成。DNA标记或遗传标记还可用于描述该染色体自身上的基因、DNA序列或核苷酸(而非用于检测该基因或DNA序列的组分),并且其通常在该DNA标记与人遗传学中的特定性状相关联时使用(例如乳腺癌标记)。术语标记基因座是该标记所检测的基因座(基因、序列或核苷酸)。
标记可由其所检测的多态性的类型以及用于检测该多态性的标记技术所定义。标记类型包括但不限于:限制性片段长度多态性检测(RFLP)、同功酶标记检测、随机扩增的多态性DNA(RAPD)、扩增片段长度多态性检测(AFLP)、简单重复序列检测(SSR)、植物基因组的扩增可变序列检测、自主序列复制检测、或单核苷酸多态性检测(SNP)。SNP可通过,例如,通过DNA测序、基于PCR的序列特异性扩增方法、通过等位基因特异性杂交(ASH)进行的多核苷酸多态性检测、动态等位基因特异性杂交(DASH)、分子信标、微阵列杂交、寡核苷酸连接酶分析、Flap核酸内切酶、5’核酸内切酶、引物延伸、单链构象多态性(SSCP)或温度梯度凝胶电泳(TGGE)进行检测。DNA测序(诸如焦磷酸测序技术)具有能够检测组成单倍型的一系列连锁SNP等位基因的优点。单倍型倾向于比SNP更具信息性(检测更高水平的多态性)。
“标记等位基因”,可替代地“标记基因座的等位基因”可以指群体中标记基因座处发现的多个多态性核苷酸序列中之一。
“标记辅助选择”(MAS)是基于标记基因型选择个体植物的方法。
“标记辅助反向选择”是借以使用标记基因型鉴定将不被选择的植物的方法,使得这些植物从育种程序或种植中去除。
“标记单倍型”是指标记基因座处的等位基因的组合。
“标记基因座”是物种基因组中的特定染色体定位,在该定位处可发现特异标记。标记基因座可用于追踪第二连锁基因座(例如影响表型性状表达的连锁基因座)的存在。例如,标记基因座能够用于监控在遗传上或物理上连锁的基因座处的等位基因的分离。
如上所述,当鉴定连锁基因座时,术语“分子标记”可以用于指遗传标记,或其用作参照点的编码产物(例如,蛋白质)。标记能够衍生自基因组核苷酸序列或衍生自表达的核苷酸序列(例如衍生自剪接的RNA、cDNA等),或衍生自编码的多肽。该术语也指与标记序列互补或与其侧接的核酸序列,如用作探针或能够扩增该标记序列的引物对的核酸。“分子标记探针”是可以用于鉴定标记基因座存在与否的核酸序列或分子,例如与标记基因座序列互补的核酸探针。可替代地,在某些方面,标记探针是指能够区别存在于标记基因座处的特定等位基因的任何类型(即基因型)的探针。当核酸在溶液中特异性杂交时,它们是“互补的”。当位于插入缺失区域,例如本文所述的非共线区域时,本文所述标记中的一些也称为杂交标记。这是因为,根据定义,该插入区域是关于无该插入的植物的多态性。因此,该标记仅需要指示该插入缺失区域是否存在。任何合适的标记检测技术都可以用于鉴定这样的杂交标记,例如在本文提供的实例中使用SNP技术。
当等位基因与性状连锁时,以及当等位基因的存在是所需性状或性状形式将不出现在包含该等位基因的植物中的指示时,该等位基因与该性状“负”相关。
术语“表型”、“表型性状”或“性状”可以指基因或基因系列的可观测表达。表型对于肉眼、或通过任何其他评估方式(例如称重、计数、测量(长度、宽度、角度等)、显微法、生化分析或机电测定)可以是可观测的。在某些情况下,表型直接受控于单个基因或遗传基因座,即,“单基因性状”或“简单遗传性状”。在缺少大水平环境变化的情况下,单基因性状可以在群体中分离,以给出“质量”或“离散”分布,即,该表型归于离散的类别。在其他情况下,表型是多种基因的结果并且可以被认为是“多基因性状”或“复杂性状”。多基因性状在群体中分离以给出“数量”或“连续”分布,即,该表型不能分离成离散的类别。单基因性状和多基因性状均可受到其表达所处的环境的影响,但是多基因性状倾向于具有更大的环境组分。
基因组的“物理图谱”是显示染色体DNA上可鉴定的标志(包括基因、标记等)的线性顺序的图谱。然而,与遗传图谱相比,标志间的距离是绝对的(例如以碱基对或者分离的和重叠的连续基因片段测量)并且不基于基因重组(该基因重组可在不同的群体中有所变化)。
“多态性”是群体内两个或更多个个体之间的DNA中的变异。多态性在群体中优选地具有至少1%的频率。有用的多态性可以包括单核苷酸多态性(SNP)、简单重复序列(SSR)、或插入/缺失多态性(本文中也称为“插入缺失”)。
“生产标记”或“生产SNP标记”是已经为高通量目的而开发的标记。生产SNP标记被开发用于检测特异性多态性,并且被设计与多种化学反应和平台一起使用。
术语“数量性状基因座”或“QTL”是指在至少一种遗传背景下(例如在至少一个育种群体中),与数量表型性状的差异表达关联的DNA区域。QTL的区域涵盖或紧密地连锁于影响所考虑的性状的一个或多个基因。
“参考序列”或“共有序列”是用作序列比对基础的定义的序列。通过对在该基因座处的多个品系进行测序,在序列比对程序(例如Sequencher)中比对这些核苷酸序列并且然后获得该比对的最通用核苷酸序列来获得标记的参考序列。见于这些个体序列中的多态性标注于该共有序列中。参考序列通常并非任何个体DNA序列的精确复制,而是代表可用序列的混合并且用于设计针对该序列内的多态性的引物和探针。
标记的“不利等位基因”是与该不利植物表型分离的标记等位基因,因此提供了鉴定能从育种程序或种植中移除的植物的益处。
术语“产量”指具有商业价值的特定植物产品每单位面积的生产力。产量受遗传和环境因素二者的影响。“农学”、“农艺性状”、和“农艺性状表现”是指给定植物品种的性状(以及潜在遗传元件),这些性状在生长期过程中有助于产量。个体农艺性状包括出苗活力、营养势、胁迫耐受性、疾病抗性或耐受性、除草剂抗性、发生分枝、开花、种子形成、种子大小、种子密度、抗倒伏性、脱粒性等。因此产量是所有农艺性状的最终顶点。
本文提供了显示与疾病抗性性状的统计学上显著的共分离的标记基因座,该性状赋予对一种或多种特定疾病广泛的抗性。这些基因座或另外的连锁基因座以及抗性基因的检测可以作为育种程序的一部分用于标记辅助选择中,以产生对一种或多种疾病具有抗性的植物。
遗传定位
已经认识到,在相当一些情况下可在生物体的基因组中定位与特定表型(例如疾病抗性)相关联的特定遗传基因座。植物育种人员可以有利地使用分子标记通过检测标记等位基因来鉴定所需的个体,这些标记等位基因显示与所需表型共分离的统计学上显著的概率,表现为连锁不平衡。通过鉴定与目的性状共分离的分子标记或分子标记簇,植物育种人员能够通过选择合适的分子标记等位基因(称为标记辅助选择或MAS的方法)来迅速选择所需表型。
多种方法可用于检测与目的性状(例如疾病抗性性状)共分离的分子标记或分子标记簇。这些方法的基本理念是检测具有显著不同平均表型的可替代的基因型(或等位基因)的标记。因此,比较标记基因座之间的可替代的基因型(或等位基因)之间的差异大小或该差异的显著性水平。推断性状基因位于最靠近具有最大相关性的基因型差异的一个或多个标记的位置。这样两种用于检测目的性状基因座的方法是:1)基于群体的关联分析(即关联定位)和2)传统的连锁分析。
关联定位
了解基因组中连锁不平衡(LD)的程度和模式是开发有效的、用以鉴定和绘制数量性状基因座(QTL)的关联方法的先决条件。连锁不平衡(LD)是指个体集合中等位基因的非随机关联。当在连锁的基因座处的等位基因中观察到LD时,LD被测量为跨越染色体的特定区域的LD衰减。LD的范围反映了该区域的重组历史。基因组中LD衰减的平均速率可以帮助预测进行全基因组关联研究所需的标记的数量和密度,并提供可预期的分辨率的估计值。
关联或LD定位旨在鉴定显著的基因型-表型关联。它已作为在异交如下物种中用于精细定位的强大工具而被开发利用:人类(Corder等人(1994)“Protective effect ofapolipoprotein-E type-2 allele for late-onset Alzheimer-disease[载脂蛋白E2型等位基因对迟发型阿尔茨海默病的保护作用],”Nat Genet[自然遗传学]7:180-184;Hastbacka等人(1992)“Linkage disequilibrium mapping in isolated founderpopulations:diastrophic dysplasia in Finland[在孤立的建立者群体中的连锁不平衡定位:芬兰的畸型发育不良],”Nat Genet[自然遗传学]2:204-211;Kerem等人(1989)“Identification of the cystic fibrosis gene:genetic analysis[鉴定囊性纤维化基因:遗传分析],”Science[科学]245:1073-1080)和玉蜀黍(Remington等人,(2001)“Structure of linkage disequilibrium and phenotype associations in the maizegenome[玉蜀黍基因组中连锁不平衡和表型关联的结构],”Proc Natl Acad Sci USA[美国科学院院报]98:11479-11484;Thornsberry等人(2001)“Dwarf8 polymorphismsassociate with variation in flowering time[矮秆8多态性与开花时间的变化相关联],”Nat Genet[自然遗传学]28:286-289;由Flint-Garcia等人综述(2003)“Structureof linkage disequilibrium in plants[植物中连锁不平衡的结构],”Annu Rev PlantBiol.[植物生物学年评]54:357-374),其中杂合子之间的重组频繁并导致LD的快速衰减。在近交物种中,纯合基因型之间的重组不是遗传学上可检测的,LD的程度更大(即,较大的连锁标记块一起遗传)并且这大大提高了关联定位的检测能力(Wall和Pritchard,(2003)“Haplotype blocks and linkage disequilibrium in the human genome[人类基因组中的单倍型阻断和连锁不平衡]”,Nat Rev Genet[自然遗传学综述]4:587-597)。
群体的重组和突变历史是交配习惯以及群体的有效大小和年龄的函数。较大的群体大小为检测重组提供了增强的可能性,而较老的群体通常与较高水平的多态性相关,这两者都促进可观察到的LD衰退速率的显著增加。另一方面,较小的有效群体大小,例如那些已经经历了最近遗传瓶颈的群体,倾向于表现出较慢的LD衰退速率,导致更广泛的单倍型保守性(Flint-Garcia等人,(2003)“Structure of linkage disequilibrium in plants[植物连锁不平衡的结构]”,Annu Rev Plant Biol.[植物生物学年评]54:357-374)。
优良育种品系为关联分析提供了宝贵的起点。关联分析在该分析中使用定量表型评分(例如,对于每个品系,疾病耐受性等级从一至九)(而不是在分析的组间等位基因分布类型中只考虑耐受性与抗性等位基因频率分布)。多年来通过育种程序收集的详细表型性能数据的可用性和大量优良品系的环境为遗传标记关联定位分析提供了有价值的数据集。这为研究和应用之间的无缝整合铺平了道路,并利用了历史积累的数据集。然而,了解多态性与重组之间的关系对于开发用于从这些资源中有效提取最大信息的适当策略是有用的。
这种类型的关联分析既不产生也不需要任何图谱数据,而是独立于图谱位置。这种分析将植物的表型评分与不同基因座处的基因型进行比较。随后,使用先前确定的这些标记的图谱定位,可以任选地使用任何合适的图谱(例如,复合图谱)来帮助观察经鉴定的QTL标记和/或QTL标记簇的分布。
传统的连锁分析基于相同的原理;然而,LD通过从少量建立者创建群体而生成。选择创建者以最大化结构化群体内的多态性水平,并且评估多态性位点与给定表型的共分离水平。已经使用大量统计学方法来鉴定显著的标记-性状关联。一种这样的方法是区间定位方法(Lander和Botstein,Genetics[遗传学]121:185-199(1989),其中针对控制目的性状的基因位于该位置的概率来测试沿遗传图谱(比如说以1cM的区间)的许多位置中的每一个位置。基因型/表型数据用于计算每个测试位置的LOD评分(概率比率的对数)。当LOD评分大于阈值时,存在控制目的性状的基因位于遗传图谱上的该定位处的显著证据(将位于两个特定标记基因座之间)。
本文提供了如通过传统的连锁分析和全基因组关联分析确定的、显示与疾病抗性性状的统计学上显著的共分离的标记基因座。这些基因座或另外的连锁的基因座的检测可以用于标记辅助育种程序,以产生具有疾病抗性的植物。
标记辅助育种程序中的活动可以包括但不限于:根据历史基因型和农艺性状关联在新的育种群体中选择以鉴定哪个群体具有最高的有利核酸序列频率、在育种群体中的子代中选择有利的核酸序列、基于子代性能的预测在亲本品系中进行选择、以及根据有利的核酸序列的存在在种质改良活动中推进品系。
染色体区间
提供了与疾病抗性性状相关联的染色体区间。多种方法可用于鉴定染色体区间。这样的染色体区间的边界扩展到涵盖将与控制目的性状的一个或多个基因连锁的标记。换句话说,扩展染色体区间,这样使得位于区间内的任何标记(包括限定区间的边界的末端标记)可以用作疾病抗性性状的标记。
相反地,例如如果非常接近的两个标记显示与期望表型性状共分离,则有时分不清楚是否那些标记中的每一个鉴定相同基因或两个不同的基因或多个基因。无论如何,关于在特定物理/基因组区间内有多少个基因的知识对于制定或实践哪个在本公开中呈现是不必要的。
染色体区间也可以由与疾病抗性基因连锁的标记(与其表现出连锁不平衡)所限定,并且r2是关联性研究的上下文中连锁不平衡(LD)的常见量度。如果目的区间中的7号染色体标记基因座与另一个紧密相邻的7号染色体标记基因座之间的LD的r2值大于1/3(Ardlie等人,Nature Reviews Genetics[遗传学自然评论]3:299-309(2002)),则这两个基因座彼此连锁不平衡。
标记和连锁关系
连锁的常见量度是性状共分离的频率。这可以以共分离百分比(重组频率)表示,或以厘摩(cM)表示。cM是遗传重组频率的量度单位。一个cM等于有1%的机会,一个遗传基因座处的性状会由于单代中的杂交而与另一个基因座处的性状分离(意味着这些性状总共有99%的机会发生分离)。由于染色体距离与性状之间的杂交事件的频率大致成正比,因此存在与重组频率相关联的近似物理距离。
标记基因座本身是性状,并且在分离期间能够通过跟踪该标记基因座、根据标准连锁分析对其进行评估。因此,一个cM等于有1%的机会,一个标记基因座会由于单代中的杂交而与另一个基因座分离。
标记距离控制目的性状的基因越近,则该标记作为该所需性状的指示越有效和有利。紧密连锁的基因座显示约10%或更低、优选约9%或更低、还更优选约8%或更低、又更优选约7%或更低、还更优选约6%或更低、又更优选约5%或更低、还更优选约4%或更低、又更优选约3%或更低、以及还更优选约2%或更低的基因座间杂交频率。在非常优选的实施例中,相关基因座(例如本文公开的针对炭疽茎腐病抗性的标记和基因座)显示约1%或更低、例如约0.75%或更低、更优选地约0.5%或更低、或又更优选地约0.25%或更低的重组频率。因此,标记距离本文公开的炭疽茎腐病抗性基因约10cM、9cM、8cM、7cM、6cM、5cM、4cM、3cM、2cM、1cM、0.75cM、0.5cM或0.25cM或更小。换言之,定位于相同染色体并且具有使得两个基因座之间的重组以小于10%(例如,约9%、8%、7%、6%、5%、4%、3%、2%、1%、0.75%、0.5%、0.25%或更少)的频率发生的距离的两个基因座被认为是彼此“邻近的”。
尽管特定的标记等位基因可以与疾病抗性性状共分离,重要的是注意该标记基因座不一定引起该疾病抗性表型的表达。例如,该标记多核苷酸序列是产生疾病抗性表型的基因的一部分(例如,是基因可读框的一部分)不是必需条件。特异标记等位基因与疾病抗性性状之间的关联性,是由于在该等位基因所起源的祖先品系中,该标记等位基因和该等位基因之间的初始“偶联”相连锁。最后通过反复重组,该标记和遗传基因座之间的杂交事件能够改变这种取向。由于这个原因,有利的标记等位基因可以根据存在于具有疾病抗性的亲本中的用于创建分离群体的连锁相发生改变。这不改变可以使用标记来监测表型分离的事实。它仅仅改变在给定分离群体中哪个标记等位基因被认为是有利的。
本文提出的方法包括检测植物中与疾病抗性相关联的一个或多个标记等位基因的存在,并且然后鉴定和/或选择在那些标记基因座处具有有利等位基因的植物。标记已经在本文中被鉴定为与疾病抗性性状相关联,并且因此可以用于预测植物中的疾病抗性。50cM、40cM、30cM、20cM、15cM、10cM、9cM、8cM、7cM、6cM、5cM、4cM、3cM、2cM、1cM、0.75cM、0.5cM或0.25cM内的任何标记(基于单个减数分裂的遗传图谱)也可以用于预测植物的疾病抗性。
标记辅助选择
分子标记可以用于多种植物育种应用(例如,参见Staub等人(1996)Hortscience[园艺科学]31:729-741;Tanksley(1983)Plant Molecular Biology Reporter.[植物分子生物学导报]1:3-8)。受关注的主要领域之一是使用标记辅助选择(MAS)增加回交和基因渗入的效率。展示出与影响所需表型性状的基因座连锁的分子标记为在植物群体中选择性状提供了有用工具。在表型难以测定的情况下尤其如此。由于DNA标记测定比田间表型分析更省力并且占用的物理空间更小,可测定更大的群体,增加了发现具有从供体品系移动至受体品系的靶区段的重组体的概率。连锁越紧密,标记越有用,这是因为重组不太可能发生于该标记和引起该性状的基因之间,该重组可导致假阳性。由于需要双重组事件,侧接标记减少了假阳性选择发生的概率。理想情况是基因本身具有标记,使得标记和基因之间的重组不能发生。在一些实施例中,本文公开的方法在疾病抗性基因中产生标记,其中通过从保守结构域的聚类或聚类分析推断基因组位置来鉴定该基因。
当基因通过MAS渗入时,不仅引入了基因而且引入了侧接区域(Gepts.(2002).Crop Sci[作物科学];42:1780-1790)。这称为“连锁累赘”。在供体植物与受体植物极不相关的情况下,这些侧接区域携带可以编码农艺学上不需要的性状的另外的基因。即便与优良品系回交多个周期后,连锁累赘也可能导致产量下降或其他负面农艺学特征。这有时也称为“产量累赘”。侧接区域的大小可以通过另外的回交而减小,虽然这并不总是成功的,因为育种人员不能控制该区域或重组断点的大小(Young等人,(1998)Genetics[遗传学]120:579-585)。在经典育种中,通常只是偶然地,选择了有助于减小供体区段大小的重组(Tanksley等人(1989).Biotechnology[生物技术]7:257-264)。即使在20次此类型的回交后,可以预期找到相当大的仍然与该基因连锁的供体染色体碎片被选择。然而如果使用标记的话,就可能选取那些在目的基因附近经历了重组的稀有个体。在150株回交植物中,有95%的机会,至少一株植物将经历该基因的1cM(基于单次减数分裂图距)内的杂交。标记使得能够明确鉴定这些个体。使用300株植物的一次另外的回交,在该基因另一侧的1cM单次减数分裂图距内有95%的杂交概率,从而产生在基于单次减数分裂图距的小于2cM的靶基因附近的区段。这用标记可以在两代中实现,而不用标记时则需要平均100代(参见Tanksley等人,同上)。当基因的确切定位已知时,围绕该基因的侧接标记可用于在不同的群体大小中对重组进行选择。例如,在更小的群体中,预期重组可以进一步远离该基因,因此需要更远端的侧接标记来检测该重组。
实施MAS的主要组成是:(i)限定在其中标记-性状关联性将被测定的群体,其可以是分离群体、或随机的或结构化的群体;(ii)监测多态性标记相对于该性状的分离或关联性,并使用统计学方法确定连锁或关联性;(iii)基于统计学分析的结果限定一组所需标记,以及(iv)使用和/或外推该信息至当前的育种种质组中,以使得能够作出基于标记的选择决定。本公开中描述的标记,以及其他标记类型,例如SSR和FLP,可以用于标记辅助选择方案中。
SSR可以被定义为长度6bp或更小的串联重复DNA的相对较短序列(Tautz(1989)Nucleic Acid Research[核酸研究]17:6463-6471;Wang等人(1994)Theoretical andApplied Genetics[理论和应用遗传学],88:1-6)。多态性由于重复单元数目的变化而产生,这可能是由于DNA复制过程中的滑移引起的(Levinson和Gutman(1987)Mol Biol Evol[分子生物学与进化]4:203-221)。重复长度的变化可以通过设计PCR引物至保守的非重复侧接区域来检测(Weber和May(1989)Am J Hum Genet.[美国人类遗传学]44:388-396)。因为SSR是多等位基因的、共显性的、可再生的、并适合于高通量自动化,所以非常适合定位和MAS(Rafalski等人(1996)Generating and using DNA markers in plants.[在植物中生成和使用DNA标记]在:Non-mammalian genomic analysis:a practical guide.[非哺乳动物基因组分析:实用指南]Academic press.[学术出版社]第75-135页中)。
可以产生各种类型的SSR标记,并且可以通过扩增产物的凝胶电泳获得SSR谱。标记基因型的评分基于扩增片段的大小。
也可以生成各种类型的FLP标记。最常见地,使用扩增引物来生成片段长度多态性。除了通过引物扩增的区域通常不是高度重复的区域之外,这样的FLP标记在许多方面与SSR标记相似。通常由于插入或缺失,扩增区域或扩增子在种质间仍具有足够的可变性,使得由扩增引物产生的片段能够在多态性个体中被区分,并且已知这样的插入缺失常常发生于玉蜀黍中(Bhattramakki等人(2002).Plant Mol Biol[植物分子生物学]48,539-547;Rafalski(2002b),同上)。
SNP标记检测单碱基对核苷酸取代。在所有分子标记类型中,SNP是最丰富的,因此具有提供最高遗传图谱分辨率的潜力(Bhattramakki等人,2002 Plant MolecularBiology[植物分子生物学]48:539-547)。由于SNP不需要大量的DNA并且测定的自动化可以是直接的,所以可以以所谓的“超高通量”方式,以甚至比SSR更高的通量水平测定SNP。SNP也有可能成为相对低成本的系统。这三个因素一起使得将SNP用于MAS中具有高度的吸引力。可利用如下几种方法用于SNP基因分型,包括但不限于:杂交、引物延伸、寡核苷酸连接、核酸酶切割、微测序和编码球(coded sphere)。如下文献中已经对这些方法进行了综述:Gut(2001)Hum Mutat[人类基因突变]17第475-492页;Shi(2001)Clin Chem[临床化学]47,第164-172页;Kwok(2000)Pharmacogenomics[药物基因组学]1,第95-100页;以及Bhattramakki和Rafalski(2001)Discovery and application of single nucleotidepolymorphism markers in plants.[单核苷酸多态性标记在植物中的发现与应用]在:R.J.Henry,编辑,Plant Genotyping:The DNA Fingerprinting of Plants,CABIPublishing,Wallingford.[植物基因分型:植物的DNA指纹识别,CABI出版社,瓦林福德]中。广泛的可商购的技术利用这些和其他方法来检测SNP,这些可商购的技术包括:Masscode.TM.(凯杰公司(Qiagen))、(第三波技术公司(Third WaveTechnologies))和Invader/> (应用生物系统公司(AppliedBiosystems))、/>(应用生物系统公司)以及/>(依诺米那公司(Illumina))。
可以使用序列内或跨连锁序列的许多SNP来描述任何特定基因型的单倍型(Ching等人(2002),BMC Genet.[BMC遗传学]3:19 pp Gupta等人2001,Rafalski(2002b),PlantScience[植物科学]162:329-333)。单倍型可以比单个SNP更具信息性,并且可以更详细地描述任何特定的基因型。例如,单一的SNP可能是具有疾病抗性的特定品系或品种的等位基因“T”,但在用于轮回亲本的育种群体中也可能出现等位基因“T”。在这种情况下,单倍型(例如连锁的SNP标记处的等位基因的组合)可能更具信息性。一旦将唯一单倍型分配给供体染色体区域,该单倍型可以用于该群体或其任何亚群中以确定个体是否具有特定的基因。使用自动化高通量标记检测平台使得该方法高效且有效。
本文提出的许多标记可以容易地用作单核苷酸多态性(SNP)标记以选择NLR 04。利用PCR,将引物用于扩增代表目的群体多样性的个体(优选近交系)的DNA区段。将PCR产物直接在一个或两个方向上测序。将得到的序列进行比对并鉴定多态性。多态性不限于单核苷酸多态性(SNP),而且包括插入缺失、CAPS、SSR和VNTR(可变数量的串联重复序列)。特别地,针对本文所述的精细图谱信息,人们可易于使用本文提供的信息来获得在通过本文公开的引物扩增的区域内的另外的多态性SNP(和其他标记)。所描述的图谱区域内的标记可以与BAC或其他基因组文库杂交,或者与基因组序列进行电子比对,以在与所述标记相同的大致定位中找到新的序列。
除上述的SSR、FLP和SNP外,其他类型的分子标记也被广泛使用,包括但不限于:表达的序列标签(EST)、衍生自EST序列的SSR标记、随机扩增的多态性DNA(RAPD)和其他基于核酸的标记。
同工酶谱和连锁形态特征在某些情况下也可以间接用作标记。尽管它们不直接检测DNA差异,但它们往往受到特定遗传差异的影响。然而,检测DNA变异的标记比同工酶或形态学标记多得多且更多态(Tanksley(1983)Plant Molecular Biology Reporter:[植物分子生物学导报]1:3-8)。
序列比对或重叠群还可以用于发现本文所列特异标记的上游或下游的序列。然后使用接近于本文所述的标记的这些新序列来发现和开发功能上等效的标记。例如,对不同的物理和/或遗传图谱进行比对以定位未在本公开中描述但位于相似区域内的等效标记。这些图谱可能在物种内,或者甚至跨越进行遗传上或物理上比对的其他物种。
一般而言,MAS使用多态性标记,这些标记已被鉴定为具有与ANTROT疾病抗性性状等性状共分离的显著可能性。推测这样的标记在图谱上位于给予植物疾病抗性表型的一个或多个基因附近,并被认为是所需性状或标记的指示。测试植物中标记中所需的等位基因的存在,并且预期在一个或多个基因座处含有所需基因型的植物将所需基因型连同所需表型一起转移至其子代。因此,可以通过检测一个或多个标记等位基因来选择具有ANTROT疾病抗性的植物,并且此外,还可以选择衍生自这些植物的子代植物。因此,获得在给定染色体区域中含有所需基因型(即与疾病抗性相关联的基因型)的植物,并且然后与另一植物杂交。然后使用一种或多种标记对这样的杂交的子代进行基因型评估,并且然后将在给定染色体区域中具有相同基因型的子代植物选择为具有疾病抗性。
本领域技术人员会预期在本文公开的方法鉴定的染色体标记中的及其附近的标记基因座处可能存在另外的多态性位点,其中一个或多个多态性位点与该单倍型中的多态性位点中的一个或多个处的等位基因处于连锁不平衡(LD),并且因此可以用于标记辅助选择程序中以渗入目的基因等位基因或目的基因组片段。如果这些位点中的一个处的等位基因的存在倾向于预测同一染色体上其他位点处的等位基因存在,则认为不同多态性位点处的两个特定等位基因处于LD(Stevens,Mol.Diag.[分子诊断]4:309-17(1999))。该标记基因座可以位于疾病抗性性状QTL的5cM、2cM、或1cM内(在基于单次减数分裂的遗传图谱上)。
本领域技术人员将理解等位基因频率(进而单倍型频率)可因种质库不同而不同。由于成熟度差异、杂种优势分组、地理分布等原因,种质库存在差异。因此,某些种质库中的SNP和其他多态性可能不具有信息性。
植物组合物
通过上述方法中的任何一种鉴定、修饰和/或选择的植物也是令人感兴趣的。
蛋白质及其变体和片段
本公开涵盖了NLR 04多肽。如本文所用,“NLR 04多肽”和“NLR 04蛋白”可互换地使用,是指具有ANTROT抗性活性的一种或多种多肽,并且与SEQ ID NO:30的NLR 04多肽充分同一。考虑了多种NLR 04多肽。
如本文所用的“充分相同”是指具有至少约70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大序列同一性的氨基酸序列。在一些实施例中,序列同一性针对多肽的全长序列。在本文中与序列同一性百分比一起使用时,术语“约”意指+/- 1.0%。
本文所用的“重组蛋白”是指不再处于其天然环境中(例如处于体外或重组细菌或植物宿主细胞中)的蛋白质;从多核苷酸表达的蛋白质,该多核苷酸已从其天然版本进行编辑;或由相对于天然序列在不同基因组位置的多核苷酸表达的蛋白质。
如本文所用,“基本上不含细胞材料”是指包括具有小于约30%、20%、10%或5%(以干重计)的非靶蛋白(在本文中也称为“污染蛋白”)的蛋白制剂的多肽。
“片段”或“生物活性部分”包括多肽片段或多核苷酸片段,其包含分别与NLR 04多肽或多核苷酸充分同一的序列,并且当在植物中表达时表现出疾病抗性。
如本文所用,“变体”是指具有与亲本氨基酸序列具有至少约50%、55%、60%、65%、70%、75%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大同一性的氨基酸序列的蛋白质或多肽。
在一些实施例中,NLR 04多肽包含与SEQ ID NO:30的氨基酸序列的全长或片段具有至少约40%、45%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大同一性的氨基酸序列。
用于这样的操作的方法是本领域通常已知的。例如,可以通过DNA中的突变来制备NLR 04多肽的氨基酸序列变体。这也可以通过若干种诱变形式中的一种来完成,像例如位点特异性双链断裂技术,和/或定向进化。在一些方面,在该氨基酸序列中所编码的改变将基本上不影响该蛋白质的功能。这样的变体将具有所需活性。然而,应当理解,可以通过对本公开的组合物使用这样的技术来改善NLR 04多肽赋予疾病抗性的能力。
核酸分子及其变体和片段
提供了包含编码NLR 04多肽或其生物活性部分的核酸序列的分离或重组的核酸分子,以及足以用作杂交探针以鉴定编码具有序列同源性区域的蛋白质的核酸分子的核酸分子。如本文所用,术语“核酸分子”是指DNA分子(例如,重组DNA、cDNA、基因组DNA、质粒DNA、线粒体DNA)和RNA分子(例如,mRNA)以及使用核苷酸类似物而产生的DNA或RNA的类似物。核酸分子可以是单链的或双链的,但优选地是双链的DNA。
本文所用的“分离的”核酸分子(或DNA)是指不再处于其天然环境中(例如处于体外)的核酸序列(或DNA)。本文所用的“重组的”核酸分子(或DNA)是指在重组细菌或植物宿主细胞中的核酸序列(或DNA);该核酸序列已从其天然序列进行编辑;或该核酸序列位于与天然序列不同的位置。在一些实施例中,“分离的”或“重组的”核酸不含有在衍生该核酸的生物体基因组DNA中天然地位于该核酸侧接的序列(即,位于该核酸的5′和3′端的序列)(优选编码蛋白质的序列)。出于本公开的目的,“分离的”或“重组的”当用于指核酸分子时排除分离的染色体。例如,在不同实施例中,编码NLR 04多肽的重组核酸分子可以包含小于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核酸序列,这些核酸序列天然地位于衍生出该核酸的细胞的基因组DNA中的核酸分子的侧翼。
在一些实施例中,与天然或基因组核酸序列相比,编码NLR 04多肽的分离的核酸分子在核酸序列中具有一个或多个变化。在一些实施例中,天然或基因组核酸序列的改变包括但不限于:由于遗传密码的简并性造成的核酸序列改变;与天然或基因组序列相比,由于氨基酸取代、插入、缺失和/或添加造成的核酸序列的改变;一个或多个内含子的去除;一个或多个上游或下游调节区的缺失;和与基因组核酸序列相关的5′和/或3′非翻译区的缺失。在一些实施例中,编码NLR 04多肽的核酸分子是非基因组序列。
考虑了编码NLR 04多肽或相关蛋白质的多种多核苷酸。当可操作地连接到合适的启动子、转录终止和/或聚腺苷酸化序列上时,这样的多核苷酸可用于在宿主细胞中生产NLR 04多肽。这样的多核苷酸还可用作用于分离编码NLR 04多肽或相关蛋白质的同源或基本上同源的多核苷酸的探针。
在一些实施例中,编码NLR 04多肽的核酸分子是具有所示序列的多核苷酸、及其变体、片段和互补序列。本文所用的“互补序列”是指与给定核酸序列充分互补的核酸序列,使得其可以与该给定核酸序列杂交从而形成稳定的双链体。本文所用的“多核苷酸序列变体”是指除遗传密码的简并性之外编码相同多肽的核酸序列。
在一些实施例中,编码NLR 04多肽的核酸分子是非基因组核酸序列。如本文所用,“非基因组核酸序列”或“非基因组核酸分子”或“非基因组多核苷酸”是指与天然或基因组核酸序列相比,在该核酸序列上具有一个或多个改变的核酸分子。在一些实施例中,天然或基因组核酸分子的改变包括但不限于:由于遗传密码的简并性造成的核酸序列改变;用于在植物中表达的核酸序列的优化;与天然或基因组序列相比,引入至少一个氨基酸取代、插入、缺失和/或添加的核酸序列的改变;去除与该基因组核酸序列相关的一个或多个内含子;插入一个或多个异源内含子;缺失与该基因组核酸序列相关的一个或多个上游或下游调节区;插入一个或多个异源上游或下游调节区;缺失与该基因组核酸序列相关的5′和/或3′非翻译区;插入异源5′和/或3′非翻译区;和聚腺苷酸化位点的修饰。在一些实施例中,非基因组核酸分子是合成的核酸序列。
在一些实施例中,编码本文公开的NLR 04多肽的核酸分子是具有如下核苷酸序列的非基因组多核苷酸,该核苷酸序列与SEQ ID NO:30的核酸序列具有至少50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大同一性。
作为编码NLR 04多肽的这些核酸序列的片段的核酸分子也涵盖在实施例中。如本文所用,“片段”是指编码NLR 04多肽的核酸序列的一部分。核酸序列的片段可以编码NLR04多肽的生物活性部分,或者它可以是可以使用下文公开的方法用作杂交探针或PCR引物的片段。作为编码NLR 04多肽的核酸序列的片段的核酸分子包含至少约150、180、210、240、270、300、330、360、400、450或500个连续核苷酸或高至存在于编码由本文公开方法鉴定的NLR 04多肽的全长核酸序列中的核苷酸数目,这取决于预期用途。本文所用的“连续核苷酸”是指彼此紧邻的核苷酸残基。实施例的核酸序列的片段将编码保留NLR 04多肽的生物活性并因此保留疾病抗性的蛋白质片段。本文所用的“保留疾病抗性”是指具有SEQ ID NO:30中所示全长NLR 04多肽的至少约10%、至少约30%、至少约50%、至少约70%、80%、90%、95%或更高的疾病抗性的多肽。
相对于参考序列(主题序列),“序列同一性百分比(%)”被确定为在比对序列并引入空位(如果需要)以实现最大百分比序列同一性后,并且不考虑作为序列同一性的一部分的任何氨基酸保守取代,候选序列(查询序列)中与参考序列中的相应氨基酸残基或核苷酸相同的氨基酸残基或核苷酸的百分比。用于确定序列同一性百分比目的而进行的比对能以各种方式实现,例如,使用公共可用的计算机软件,例如BLAST、BLAST-2。本领域的技术人员可以确定用于比对序列的适当参数,包括在进行比较的序列的全长度上实现最大比对所需的任何算法。两个序列之间的同一性百分比是序列共有的相同位置的数目的函数(例如,查询序列的同一性百分比=查询序列和主题序列之间的相同位置的数目/查询序列的位置总数×100)。
在一些实施例中,NLR 04多核苷酸编码包含与贯穿SEQ ID NO:30的氨基酸序列的整个长度具有至少约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大同一性的氨基酸序列的NLR 04多肽。在一些实施例中,NLR 04多核苷酸包含基因组序列,该基因组序列包括内含子、调节元件、和非翻译区。
这些实施例还涵盖编码NLR 04多肽变体的核酸分子。编码NLR04多肽的核酸序列的“变体”包括编码由本文公开的方法鉴定的NLR 04多肽但是由于遗传密码的简并性而存在保守差异的那些序列以及如上所述的充分同一的那些序列。可以通过使用熟知的分子生物学技术鉴定天然存在的等位基因变体,如聚合酶链式反应(PCR)和如下文概述的杂交技术。变体核酸序列还包括经合成衍生的核酸序列,这些核酸序列已经例如通过使用定点诱变而产生,但是仍然编码本文公开的NLR 04多肽。
本领域技术人员将进一步理解,可以通过核酸序列的突变来引入变化,从而导致在编码NLR 04多肽的氨基酸序列中的变化,而不改变这些蛋白质的生物活性。因此,变体核酸分子可以通过以下方式产生:将一个或多个核苷酸取代、添加和/或缺失引入本文公开的相应的核酸序列中,这样使得将一个或多个氨基酸取代、添加或缺失引入所编码的蛋白质中。通过标准技术可以引入突变,如定点诱变和PCR介导的诱变。这样的变体核酸序列也被本公开所涵盖。
可替代地,可以通过沿编码序列的全部或部分随机引入突变(如通过饱和诱变)来制备变体核酸序列,并且可以筛选所得突变体赋予活性以鉴定保留活性的突变体的能力。在诱变之后,所编码的蛋白质可以进行重组表达,并且该蛋白质的活性可以使用标准的测定技术来确定。
本公开的多核苷酸及其片段任选用作各种重组和递归(recursive)重组反应的底物,除了例如Ausubel、Berger和Sambrook所述的标准克隆方法之外,即,以产生具有所需特性的另外的多肽同源物及其片段。各种这样的反应是已知的。用于生产本文列出的任何核酸的变体的方法(这些方法包括将这样的多核苷酸与第二(或更多)多核苷酸递归重组,从而形成变体多核苷酸文库)也是本公开的实施例,所产生的文库、包含这些文库的细胞和通过这样的方法产生的任何重组多核苷酸也是如此。另外,这样的方法任选地包括基于活性从这样的文库中选择变体多核苷酸,正如其中这样的递归重组在体外或体内进行。
各种多样性产生方案(包括核酸递归重组方案)是可获得的。这些程序可以单独和/或组合使用以产生核酸或核酸集合的一种或多种变体,以及所编码蛋白质的变体。单独地或整体地,这些程序提供了产生多样化核酸和核酸集合(包括例如核酸文库)的稳健且广泛适用的方式,这些方式可用于,例如,具有新的和/或改善的特征的核酸、蛋白质、途径、细胞和/或生物体的工程化或快速进化。
虽然为清除起见,在随后的讨论过程中作出了区分和分类,但是应当理解,这些技术通常不是相互排斥的。实际上,各种方法可以单独使用或组合、平行或串联使用,以便取得不同的序列变体。
本文所述的任何多样性产生程序的结果可以是一种或多种核酸的产生,其可以选择或筛选具有或赋予所需特性的核酸或编码具有或者赋予所需特性的蛋白质的核酸。通过本文的或技术人员以其他方式可用的一种或多种方法进行多样化之后,可以针对所需的活性或特性(例如,在所需的pH下的这样的活性等)选择所产生的任何核酸。这可以包括通过本领域任何测定来鉴定可以例如以自动化或可自动化形式检测的任何活性。各种相关(或甚至不相关)的特性可以由执业者酌情串联或平行评估。
实施例的核苷酸序列也可用于从不同来源中分离相应的序列。以这种方式,可以使用如PCR、杂交等方法来鉴定这样的序列(基于其与由本文公开的方法鉴定的序列的序列同源性)。实施例涵盖基于与本文所示全部序列或其片段的序列同一性选择的序列。这样的序列包括作为这些序列的直向同源物的序列。术语“直向同源物”是指衍生自共同祖先基因并且由于物种形成而在不同物种中发现的基因。当其核苷酸序列和/或其编码的蛋白序列共有如本文其他地方所定义的基本同一性时,在不同物种中发现的基因被认为是直向同源物。
在PCR方法中,可以设计寡核苷酸引物用于PCR反应,以从由任何目的生物体提取的cDNA或基因组DNA扩增相应的DNA序列。用于设计PCR引物以及PCR克隆的方法公开于以下文献中:Sambrook,等人,(1989)Molecular Cloning:A Laboratory Manual[分子克隆:实验室手册](第2版,Cold Spring Harbor Laboratory Press[冷泉港实验室出版社],Plainview[普莱恩维尤],纽约),以下为“Sambrook”。还参见,Innis,等人编辑(1990)PCRProtocols:A Guide to Methods and Applications[PCR方案:方法与应用指南](Academic Press[学术出版社],纽约);Innis和Gelfand编辑(1995)PCR Strategies[PCR策略](Academic Press[学术出版社],纽约);以及Innis和Gelfand编辑(1999)PCRMethods Manual[PCR方法手册](Academic Press[学术出版社],纽约)。已知的PCR方法包括但不限于:使用成对引物、巢式引物、单特异性引物、简并引物、基因特异性引物、载体特异性引物、部分错配引物等的方法。
在杂交方法中,全部或部分核酸序列可用于筛选cDNA或基因组文库。用于构建这样的cDNA和基因组文库的方法公开于Sambrook和Russell,(2001),同上。所谓的杂交探针可以是基因组DNA片段、cDNA片段、RNA片段或其他寡核苷酸,并且可以用一个可检测基团(如32P或任何其他可检测的标记,如其他放射性同位素、荧光化合物、酶或酶辅因子)进行标记。用于杂交的探针可以通过标记基于本文公开的编码已知的多肽的核酸序列的合成的寡核苷酸来制备。可以另外使用简并引物,这些简并引物是基于在核酸序列或所编码的氨基酸序列中的保守核苷酸或氨基酸残基而设计的。探针典型地包含以下核酸序列的区域,该核酸序列的区域在严格条件下与编码多肽或其片段或变体的核酸序列的至少约12个、至少约25个、至少约50、75、100、125、150、175或200个连续核苷酸进行杂交。用于制备用于杂交的探针的方法和严格条件公开于Sambrook和Russell,(2001),同上中。
核苷酸构建体、表达盒和载体
本文使用术语“核苷酸构建体”并不旨在将实施例限制为包含DNA的核苷酸构建体。本领域普通技术人员将认识到,核苷酸构建体,特别是由核糖核苷酸构成的多核苷酸和寡核苷酸以及核糖核苷酸和脱氧核糖核苷酸的组合也可用于本文公开的方法中。实施例的核苷酸构建体、核酸和核苷酸序列另外涵盖这样的构建体、分子和序列的所有互补形式。此外,实施例的核苷酸构建体、核苷酸分子和核苷酸序列涵盖能用于实施例的转化植物方法的所有核苷酸构建体、分子和序列,包括但不限于由脱氧核糖核苷酸、核糖核苷酸及其组合所构成的那些。这样的脱氧核糖核苷酸和核糖核苷酸既包括天然存在的分子也包括合成的类似物。实施例的核苷酸构建体、核酸和核苷酸序列还涵盖核苷酸构建体的所有形式,这些形式包括但不限于单链形式、双链形式、发夹、茎环结构等。
另外的实施例涉及经转化的生物体,如选自以下的生物体:植物细胞、细菌、酵母、杆状病毒、原生动物、线虫和藻的生物体。转化的生物体包含实施例的DNA分子、包含DNA分子的表达盒或包含表达盒的载体,它可以稳定地并入所转化生物体的基因组。
在DNA构建体中提供实施例的序列,用于在目的生物体中表达。构建体将包括可操作地连接到实施例的序列的5′和3′的调节序列。如本文所用,术语“可操作地连接”是指启动子和/或调节序列与第二序列之间的功能性连锁,其中该启动子和/或调节序列启动、介导和/或影响相应于该第二序列的DNA序列的转录。通常,可操作地连接意味着所连接的核酸序列是连续的,并且在必要时在相同阅读框中连接两个蛋白质编码区域。构建体可以另外含有待共转化进生物体的至少一个另外的基因。可替代地,可以在多个DNA构建体上提供一个或多个另外的基因。
提供的这样的DNA构建体具有用于插入本公开的多肽基因序列的多个限制性位点,该多肽基因序列将位于调节区的转录调节之下。DNA构建体可以另外包含选择性标记基因。
一般来说,DNA构建体在5′至3′的转录方向上将包括:转录和翻译起始区(即启动子)、实施例的DNA序列、以及在作为宿主的生物体中有功能的转录和翻译终止区(即终止区)。转录起始区域(即,启动子)对于实施例的宿主生物体和/或序列,可以是天然的、类似的、外源的或异源的。此外,启动子或调节序列可以是天然序列,或可替代地,是合成序列。如本文所用,术语“外源”表示在引入启动子的天然生物体中没有发现启动子。如本文所用,关于序列的术语“异源”意指序列源于外来物种,或者,如果源于相同物种的话,则是通过蓄意人为干预从其在组合物和/或基因组基因座中的天然形式进行实质性修饰得到的序列。如本文所用,嵌合基因包含与转录起始区可操作地连接的编码序列,该转录起始区对于该编码序列是异源的。当该启动子是天然(native或natural)序列时,可操作地连接的序列的表达从野生型表达变化,这导致表型的改变。
在一些实施例中,DNA构建体包含编码实施例的NLR 04多肽的多核苷酸。在一些实施例中,DNA构建体包含多核苷酸,该多核苷酸编码包含实施例的NLR 04多肽的融合蛋白。
在一些实施例中,DNA构建体还可以包括转录增强子序列。如本文所用,术语“增强子”是指可以刺激启动子活性的DNA序列,并且可以是插入以增强启动子的水平或组织特异性的启动子的先天元件或异源元件。也可以使用各种增强子,这些增强子例如包括在植物中具有基因表达增强特性的内含子(美国专利申请公开号2009/0144863)、泛素内含子(即,玉蜀黍泛素内含子1(参见,例如,NCBI序列S94464))、ω增强子或ω主要增强子(Gallie,等人,(1989)Molecular Biology of RNA[RNA的分子生物学],编辑:Cech(Liss公司,纽约)237-256和Gallie,等人,(1987)Gene[基因]60:217-25)、CaMV 35S增强子(参见,例如,Benfey,等人,(1990)EMBO J.[欧洲分子生物学学会杂志]9:1685-96)和美国专利号7,803,992的增强子。以上转录增强子的列表并不意指是限制性的。任何适当转录增强子都可用于实施例中。
终止区对于转录起始区可以是天然的,对于可操作地连接的目的DNA序列可以是天然的,对于植物宿主可以是天然的,或者可以衍生自另一种来源(即,对于启动子、目的序列、植物宿主或其任何组合是外源的或异源的)。
方便的终止区可获自根癌农杆菌(A.tumefaciens)的Ti质粒,如章鱼碱合酶和胭脂碱合酶终止区。还参见Guerineau等人,(1991)Mol.Gen.Genet.[分子遗传学和普通遗传学]262:141-144;Proudfoot,(1991)Cell[细胞]64:671-674;Sanfacon等人,(1991)GenesDev.[基因与发育]5:141-149;Mogen,等人,(1990)Plant Cell[植物细胞]2:1261-1272;Munroe等人,(1990)Gene[基因]91:151-158;Ballas等人,(1989)Nucleic Acids Res.[核酸研究]17:7891-7903以及Joshi等人,(1987)Nucleic Acid Res.[核酸研究]15:9627-9639。
适当时可以优化核酸以增加在宿主生物体中的表达。因此,在宿主生物体是植物的情况下,合成核酸可以使用植物偏好性密码子来合成以改善表达。有关宿主偏好性使用的讨论,参见,例如Campbell和Gowri,(1990)Plant Physiol.[植物生理学]92:1-11。例如,虽然实施例的核酸序列在单子叶和双子叶植物物种中均可以表达,但是可以修饰序列,以考虑单子叶或双子叶植物的特定偏好和GC含量偏好,因为这些偏好已经表现出了差异(Murray等人(1989)Nucleic Acids Res.[核酸研究]17:477-498)。因而,特定氨基酸的植物偏好性可以衍生自植物的已知基因序列。
已知有另外的序列修饰能增强细胞宿主中的基因表达。这些包括消除以下序列:编码假聚腺苷酸化信号的序列、编码外显子-内含子剪接位点信号的序列、编码转座子样重复序列的序列和得到充分表征的、可能不利于基因表达的其他序列。可以将序列的GC含量调整至给定细胞宿主的平均水平,如通过参考在该宿主细胞中表达的已知基因而计算的。如本文所用,术语“宿主细胞”是指包含载体并支持表达载体的复制和/或表达的细胞。宿主细胞可以是原核细胞如大肠杆菌,或真核细胞如酵母、昆虫、两栖类或哺乳动物细胞、或单子叶或双子叶植物细胞。单子叶宿主细胞的实例是玉蜀黍宿主细胞。当可能时,对序列进行修饰以避免出现预测的发夹二级mRNA结构。
在制备表达盒时,可以操作各种DNA片段,以提供处于适当方向以及合适时,处于适当阅读框中的DNA序列。为此,可采用衔接子(adapter)或接头以连接DNA片段,或可以涉及其他操作以提供方便的限制性位点、去除多余的DNA、去除限制性位点等。出于这个目的,可以涉及体外诱变、引物修复、限制性酶切(restriction)、退火、再取代(例如转换和颠换)。
许多启动子可用于实施这些实施例。可基于所需结果,选择启动子。核酸可与组成型、组织偏好性、诱导型或其他启动子组合用于在宿主生物体中的表达。
植物转化
这些实施例的方法涉及将多肽或多核苷酸引入植物。如本文所用,“引入”意指将该多核苷酸或多肽呈送给该植物,以这样的方式使得该序列进入该植物细胞的内部。这些实施例的方法不取决于用于将一个或多个多核苷酸或一个或多个多肽引入植物中的特定方法,只要该多核苷酸或多肽进入该植物的至少一个细胞的内部即可。将一种或多种多核苷酸或一种或多种多肽引入植物的方法包括但不限于稳定转化法、瞬时转化法和病毒介导法。
如本文所用,“稳定转化”意指引入植物中的核苷酸构建体整合到该植物的基因组中,并且能够被其子代遗传。如本文所用,“瞬时转化”意指将多核苷酸引入该植物中并且不整合到该植物的基因组中,或者将多肽引入植物中。如本文所用,“植物”是指整株植物、植物器官(例如叶、茎、根等)、种子、植物细胞、繁殖体、及其胚胎和子代。植物细胞可以是分化的或未分化的(例如愈伤组织、悬浮培养细胞、原生质体、叶子细胞、根细胞、韧皮部细胞和花粉)。
转化方案以及将核苷酸序列引入植物中的方案,可根据要靶向转化的植物或者植物细胞的类型(即单子叶植物或者双子叶植物)而变化。将核苷酸序列引入到植物细胞中并随后插入到植物基因组中的合适方法包括显微注射(Crossway等人,(1986)Biotechniques[生物技术]4:320-334)、电穿孔(Riggs等人,(1986)Proc.Natl.Acad.Sci.USA[美国科学院院报]83:5602-5606)、农杆菌介导的转化(美国专利号5,563,055和5,981,840)、直接基因转移(Paszkowski等人,(1984)EMBO J[欧洲分子生物学学会杂志]3:2717-2722)以及弹道粒子加速(参见,例如美国专利号4,945,050;5,879,918;5,886,244和5,932,782;Tomes,等人,(1995)在Plant Cell,Tissue,and Organ Culture:Fundamental Methods[植物细胞、组织和器官培养:基本方法]中,Gamborg和Phillips编辑(Springer-Verlag,Berlin[德国柏林施普林格出版公司]);和McCabe等人,(1988)Biotechnology[生物技术]6:923-926);以及Lecl转化法(WO 00/28058)。对于马铃薯转化,参见Tu等人,(1998)Plant MolecularBiology[植物分子生物学]37:829-838和Chong等人,(2000)Transgenic Research[转基因研究]9:71-78。可以在以下文献中找到另外的转化方法:Weissinger等人,(1988)Ann.Rev.Genet.[遗传学年鉴]22:421-477;Sanford等人,(1987)Particulate Scienceand Technology[微粒科学与技术]5:27-37(洋葱);Christou等人,(1988)Plant Physiol.[植物生理学]87:671-674(大豆);McCabe等人,(1988)Bio/Technology[生物/技术]6:923-926(大豆);Finer和McMullen,(1991)In Vitro Cell Dev.Biol.[体外细胞生物学和发育生物学]27P:175-182(大豆);Singh等人,(1998)Theor.Appl.Genet.[理论与应用遗传学]96:319-324(大豆);Datta等人,(1990)Biotechnology[生物技术]8:736-740(水稻);Klein等人,(1988)Proc.Natl.Acad.Sci.USA[美国科学院院报]85:4305-4309(玉蜀黍);Klein等人,(1988)Biotechnology[生物技术]6:559-563(玉蜀黍);美国专利号5,240,855;5,322,783和5,324,646;Klein等人,(1988)Plant Physiol.[植物生理学]91:440-444(玉蜀黍);Fromm等人,(1990)Biotechnology[生物技术]8:833-839(玉蜀黍);Hooykaas-VanSlogteren等人,(1984)Nature[自然](伦敦)311:763-764;美国专利号5,736,369(谷类);Bytebier等人,(1987)Proc.Natl.Acad.Sci.USA[美国科学院院报]84:5345-5349(百合科(Liliaceae));De Wet等人,(1985)The Experimental Manipulation of Ovule Tissues[胚珠组织的实验操作],Chapman等人编辑(Longman[朗文出版社],纽约),第197-209页(花粉);Kaeppler等人,(1990)Plant Cell Reports[植物细胞报告]9:415-418和Kaeppler等人,(1992)Theor.Appl.Genet.[理论与应用遗传学]84:560-566(晶须介导的转化);D′Halluin等人,(1992)Plant Cell[植物细胞]4:1495-1505(电穿孔);Li等人,(1993)PlantCell Reports[植物细胞报告],12:250-255以及Christou和Ford,(1995)Annals ofBotany[植物学年报]75:407-413(水稻);Osjoda等人,(1996)Nature Biotechnology[自然生物技术]14:745-750(经由根癌农杆菌的玉蜀黍)。
将基因组编辑技术引入植物的方法
在一些实施例中,可以使用基因组编辑技术将多核苷酸组合物引入植物的基因组中,或者可以使用基因组编辑技术编辑植物基因组中先前引入的多核苷酸。例如,可以通过使用双链断裂技术(如TALEN、大范围核酸酶、锌指核酸酶、CRISPR-Cas等)将所鉴定的多核苷酸引入植物基因组中需要的位置上。例如,为了位点特异性插入的目的,可以使用CRISPR-Cas系统将所鉴定的多核苷酸引入基因组中需要的位置上。植物基因组中需要的位置可以是任何对于插入来说需要的靶位点,如适于育种的基因组区域,或者可以是位于具有现有的目的性状的基因组窗口中的靶位点。现有的目的性状可能是内源性状或先前引入的性状。
在一些实施例中,在已在基因组中鉴定NLR 04的情况下,可以使用基因组编辑技术来改变或修饰多核苷酸序列。可以引入NLR 04等位基因多核苷酸中的位点特异性修饰包括使用用于引入位点特异性修饰的任何方法产生的修饰,该方法包括但不限于通过使用基因修复寡核苷酸(例如美国公开2013/0019349),或通过使用双链断裂技术,如TALEN、大范围核酸酶、锌指核酸酶、CRISPR-Cas等。这样的技术可用于通过在引入的多核苷酸内的核苷酸的插入、缺失或取代来修饰先前引入的多核苷酸。可替代地,可以使用双链断裂技术向引入的多核苷酸中添加另外的核苷酸序列。可以添加的另外的序列包括另外的表达元件(如增强子序列和启动子序列)。在另一实施例中,基因组编辑技术可用于在植物的基因组内将另外的疾病抗性蛋白定位在NLR 04组合物附近,以产生疾病抗性蛋白的分子堆叠物。
“改变的靶位点”、“改变的靶序列”、“修饰的靶位点”和“修饰的靶序列”在本文中可互换地使用,并且意指如本文公开的靶序列,当与未改变的靶序列相比时,该靶序列包含至少一个改变。这样的“改变”包括,例如:(i)至少一个核苷酸的替代、(ii)至少一个核苷酸的缺失、(iii)至少一个核苷酸的插入、或(iv)(i)-(iii)的任何组合。
实例
提供下列实例以说明但不限制所要求保护的主题。应当理解,本文所述实例和实施例仅用于说明目的,并且本领域的技术人员将认识到在不脱离本公开精神或所附权利要求范围的情况下可改变多种试剂或参数。
对比实例
创建具有增加的炭疽茎腐病抗性的群体
由真菌病原体禾生炭疽菌引起的炭疽茎腐病(ANTROT)是破坏性的玉蜀黍茎病害,会导致持续且显著的产量损失。(Mueller等人,Plant Health Progress[植物健康进展]2020,238-247)。如美国专利公开号US2016-0355840A1中所述,近交系INBRED A和INBRED B之间的F1衍生的DH定位群体用于鉴定与炭疽茎腐病抗性相关联的QTL。与近交系INBRED B相比,近交系INBRED A对ANTROT具有抗性。用于创建该F1DH群体的亲本本身评分对于INBRED A和INBRED B分别为1.5和9.9的ANTSUM评分。定位群体表现出不同程度的抗性。在针对NSS杂种优势组特异的768个SNP阵列上对群体进行基因分型。表型ANTINODES、ANTGR75、ANTSUM和ANTROT是在这些群体的田间实验中收集的。表型ANTINODES代表表现出褪色(表明被病原体感染)的节间数量,并且包括被接种的节间。评分范围为1至5,其中1对应于抗性,且5对应于易感性。表型ANTGR75代表表现出褪色大于75%的节间数量。评分范围为1至5,其中1对应于抗性,且5对应于易感性。表型ANTSUM是ANTINODES和ANTGR75表型的总和,其中评分范围为1(抗性)到10(易感性)。ANTSUM是下面数据表中报告的评分。表型ANTROT是基于茎质量计数或评估的评分,其中评分为1(易感性)至9(抗性)。
将基因型和表型之间的关联掺入QTL定位程序(R-QTL),以鉴定在10号染色体上10-90cM之间对炭疽茎腐病具有抗性的QTL。
针对炭疽茎腐病抗性,测定南美洲QTL在北美洲的效果
将来自F1DH群体的子代送往北美洲育种站,以确定INBRED A近交系(具有在北美洲存在的不同种族的真菌禾生炭疽菌)的抗性功效。使用ANTSUM性状,具有抗性的子代评分高出4.2分(抗性2.3相对于易感性6.5)。
在与测试物INBRED E杂交的相同F1DH群体中再次测量该作用,以确定杂交环境中抗性的作用。
1.5分的差异与群体和标记开发的持续性一致,以缩小抗性QTL区域。根据收集的基因型(来自F1DH材料的SNP调用)和表型,表1使用来自杂交测试的表型提供了在该群体中的作用的详细信息。使用TIBCO Spotfire(v 10.10.3.3)对表型(作为对禾生炭疽菌感染的应答)和基因型进行分析,其采用克鲁斯卡尔-沃利斯(Kruskal-Wallis)方法来比较数字变量和类别变量,以确定表型和基因型之间关联的p值。
表1.杂交表型分析实验中在10号染色体上与炭疽茎腐病抗性相关联的玉蜀黍标记(2012)。呈现的p值代表给定遗传位置的基因型与INBRED A中ANTSUM表型的相关性。物理位置是公共B73基因组(版本5)。
BC3群体是在另外的易感背景下,PH1M6A(US 8,884,128)作为轮回亲本开发的,其中通过标记辅助选择来选择来自INBRED A的抗性基因座。这些群体的子代在NA育种站进行表型分析,并使用Taqman标记生成基因型数据,这些标记针对各个杂交的亲本之间和在10号染色体上目的区域中的多态性进行选择。使用克鲁斯卡尔-沃利斯分析,对于10号染色体上的位置32.9(约4.8MB)处的PZE-110006361,获得了p值为1.00E-030(WO 2016/19629A1),这是基因型和表型之间的强关联,随后将该区域精确到从约18-40cM(1.7-5.6MB)的10号染色体(美国专利公开号US 2016-0355840A1)。
外显子组捕获序列标记开发
利用INBRED A衍生的近等基因系(NIL)本体的外显子组捕获来发现可归因于QTL区域中的基因的SNP,因此在本体DNA是否具有INBRED A基因渗入(NIL QTL阳性本体)或者是否是轮回亲本(RP)背景(NIL QTL阴性本体)方面存在差异。八个不同的本体由四种不同RP背景(PH1M1Y、INBRED C、INBRED D和PH17JT)的NIL组成。对于每个RP背景,都有具有目的区域的本体和不具有目的区域的本体。报告的SNP用于鉴定更多标记,以对QTL进行精细定位。
序列捕获探针用于捕获从基因组外显子区域富集的DNA,然后进行Illumina短读段测序。该数据集的读数用于发现供体和轮回亲本之间的另外的SNP。使用自定义脚本组装原始数据,该脚本根据B73参考调用报告SNP调用。标记是针对所有四个INBRED A阳性本体中与B73参考不同的SNP设计的,而INBRED A阴性本体与B73参考具有相同的调用。
为这些SNP设计了标记,并针对INBRED A和轮回亲本进行了测定。然后针对来自BC3S2群体的重组体筛选亲本之间具有诊断性的标记。该区域的这些另外的标记用于进一步精细定位。
为了进一步精确C10上的目的区域,利用专有软件将56K SNP芯片中的另外的标记设计为KASP标记,利用SNP调用作为具有共同反向序列的竞争性正向引物来设计标记。对群体亲本进行测试,随后用一小组重组体进行测试,产生了定义QTL区域的四个标记(美国专利公开号US 2016-0355840A1)。
另外的表型分析将QTL位置进一步精确至约1.7-4.4MB(表2)。最显著的标记是C01964-1(p值为5.11E-063)和C01957-1(1.12E-62)。INBRED A单倍型显示了显性QTL的影响,因为A和H等位基因具有相似的ANTSUM评分。在C01964-1处,具有供体等位基因(INBREDA)的个体的平均ANTSUM评分为2.6。杂合子的评分为3,并且具有轮回亲本(PH17JT)单倍型的个体的评分为6.2。
表2.在10号染色体上与炭疽茎腐病抗性显著相关联的玉蜀黍标记(2014)。所有显著性和位置如上表所示。
产生了另外的BC4S2群体,并通过标记辅助选择在PH1M6A背景下进一步选择了来自INBRED A的抗性基因座。用证明对在10号染色体区域的这些群体具有诊断性的另外的SNP标记对一组Taqman SNP标记进行基因分型。使用克鲁斯卡尔-沃利斯分析对群体进行表型分析,并确定表型和基因型之间的关联。表3显示2.8-3.5MB之间标记的P值(范围在4.96E-021至1.05E-25之间)。最强的关联是在标记PHM10(约3.4MB)处(4.9E-26)。INBRED A单倍型再次显示了显性QTL的影响,因为A和H等位基因具有相似的ANTSUM评分。在PHM10处,具有供体等位基因(INBRED A)的个体的平均ANTSUM评分为2.2。杂合子的评分为2.4,并且具有轮回亲本(PH1M6A)单倍型的个体的评分为5.6。
表3.与炭疽茎腐病抗性显著相关联的玉蜀黍标记(2021)。所有显著性和位置如上表所示。
使用INBRED A的序列,从PHM12和SBD_INBREDA_109之间区域的5个基因(NLR 01、NLR 02、NLR 03、NLR 04和NLR 05)制备转基因构建体;这些中的两个(NLR 02和NLR 04)优先于2021年进行温室测试,并且全部于2021年进行了田间测试。
实例1.温室测试
对于受控环境测试,在温室种植后21天对植物进行接种。将20ul的500,000个孢子/ml的孢子悬浮液接种在第二伸长节间的叶鞘中。然后将植物在露水室(100%RH)中培育48H,然后转移至温室。接种十天后,根据疾病进展给出视觉评分:抗性(很少或没有可见的叶鞘坏死)、易感性(覆盖叶鞘的坏死组织)或中间。
在温室测试中,每个阳性(具有构建体NLR 04的拷贝)的转基因品系都表现出对炭疽茎腐病的抗性,而没有该构建体的品系(无效)则表现出易感性(表4)。另一个基因(NLR02)显示出可能的功效,其中构建体阳性植物(1或2个拷贝)具有中间评分,且无效植物具有易感性评分。
表4.NLR 04和NLR 02的受控环境测试结果(关键:S-易感性,I-中间,M-缺失,R-抗性。)
/>
/>
实例2.田间测试
对于田间测试,如美国专利号10,161,009所述,在开花后10天通过茎注射将禾生炭疽菌孢子悬浮液接种植物。接种后4周通过以下进行评分:去除穗处的植物顶部,劈开茎,并根据受禾生炭疽菌引起的病变影响的茎面积,使用ANTROT严重程度(ANTINODES、ANTGR75和ANTSUM)的视觉评分。根据表现出褪色的节间数量(ANTINODES)、表现出褪色大于75%的节间数量(ANTGR75)以及这些的总和(ANTSUM)确定严重程度。1-3的评分被认为具有易感性,4-6之间的评分为中间值,并且评分7-10被归类为具有抗性。发现其中一个基因(NLR04)与具有1个拷贝的转基因构建体的植物中的性状抗性明显相关(表5)。另一个基因(NLR02)在温室中显示出可能的功效,但在田间并未显示出功效。
表5.NLR 04跨越4个事件和2个位置的田间测试结果的总结。
/>
序列表
<110> 先锋国际良种公司(Corteva Agriscience)
Deleon, Alyssa
Fengler, Kevin
Jung, Mark
Tabor, Girma
Thatcher, Shawn
Wolters, Petra J
<120> 鉴定、选择和产生炭疽茎腐病抗性作物的方法
<130> 8931-WO-PCT
<150> PCT/US21/46227
<151> 2021-08-17
<160> 30
<170> PatentIn 3.5版
<210> 1
<211> 241
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 1
cgcggacgtg gcgctggcca gggctgggca gcctacgatc gccgtsgcsg gctgcttcgc 60
tggcccsatg ttcaacatgc tggtcggkct rggaaccgcc cttgtggtac agacggcgag 120
ggtgtatccc ggagcttttg tgctcgagtt ccaygttggg atygtcgtcg cgtttgtgtt 180
cctgctcctg agcctgatgg gcaccctgtt ggtggtcacc tgggctaggt ttcgggtgcc 240
c 241
<210> 2
<211> 241
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (21)..(28)
<223> n是a、c、g或t
<400> 2
aattttcttc actgtttgtg nnnnnnnntt actactawtc atctccagaa tataaagggt 60
agttcacatc attaacttat tttggcagtg tgctgtaaac ttcagctctg agaacatacc 120
aaatggtatt ggatttggag ggcagccaca tcatttcgga ctctttttat cagcaaattt 180
tgaccaaggg cactcattta cgtgtagcac atttaccagc cctccccttt ccaagacaaa 240
t 241
<210> 3
<211> 241
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (198)..(204)
<223> n是a、c、g或t
<400> 3
tcataaactt ccagactttg tacactacta gttactataa gcccactaat acccttttgg 60
tcaaacagca ggtaagcact gaagcaaaat tcatcyttga tgccaattat gttatcgtca 120
ttggctgtac ctttggcgct tacctggaat attgttgctc cctggtgttt ccaaatycca 180
gctgctggct tggccwannn nnnnaaacgr aaacctccag gctccagctg ctagctgtca 240
t 241
<210> 4
<211> 241
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (233)..(233)
<223> n是a、c、g或t
<400> 4
accacaaggc catggcagtc atgcaacatg ataatatctt yaaaatcrcg aagactgaaa 60
ygcaagatag taagcwttgt ctcctgttat cactrcccag agaaataatt atgagtaact 120
catttctaat tctgtcacca aatccttgat attcatrggy tgctrgagta ggtgmtattt 180
ggtaccagac agttcagtca tgtttatatt tattttgttc tctgtasatg ttncagagaa 240
a 241
<210> 5
<211> 354
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (1)..(127)
<223> n是a、c、g或t
<400> 5
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 60
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 120
nnnnnnnstt agtgttcgcc atgatcatgg gagaaggttt ctgcttaaca aaggaaaaag 180
ggaaaagaak cttgtattcc catgagtaaa tatcaaactg ctcatggtat ctatgttgtt 240
gggattgctt gtatgtgtgt ayatgttcgt gtgtgtcgtg tgttgatcca cagctactgg 300
tagcaagagc ttctatccct gctgatggaa ttgcgcaatg ccaatgttga catt 354
<210> 6
<211> 374
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 6
agcagatgtc actatggtcg atggycatga caccaaggag cagacactcc cttccacctc 60
tggcatgacc gattcttcga gcggyagcgc ctcaagcgag cctactttca aggggaaccc 120
aggacgtgcc ctcaaagacc gaagcagccc tgcrctgacy gtgaaagcta cctacaatgg 180
cgacaccgtc cggttcaagt ttstgccagc aaggggctgg taccacttgc tggaagagat 240
agcaaagagg ttcaagctga cggctggagc attccagctc aaatacaagg acgatgagga 300
cgagtgggtg atcctggcra acgaygccga cctccaggag tgcatggacg tcctggactc 360
gatcagctca cgca 374
<210> 7
<211> 241
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (76)..(76)
<223> n是a、c、g或t
<220>
<221> 尚未归类的特征
<222> (83)..(83)
<223> n是a、c、g或t
<400> 7
aattgactgc tctaayttct mttgatatta ycccacttgt tttgtcaggt tgacccattc 60
tttgtaccrc agtttnccar agncactgtt tctccataca cttccataca cagttacaaa 120
acataatacg tcagttaact tgaacaaagt ctctattttg taatatgttt cccgattgca 180
ttggtttatg gtaaacagtt cctccaacag cgrctatctg agtcacgtct ggtgatgcag 240
t 241
<210> 8
<211> 241
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 8
cttcacactt ggtaacgcta gcctacatga gaggccaggc ggaggcacag ctgaccatgg 60
acatggatca atccgaaccg agctgcactt gccattttgt gcgcagtgtg agcaccatct 120
tctgcccttc tacggagtag ttcacattgg gtacttggac aaaggaagtg gagaaggcat 180
catcgaccgg tcgcattttc aggcactggt tcrtttctat gggtgcaggc ttcaggtkca 240
a 241
<210> 9
<211> 238
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (47)..(97)
<223> n是a、c、g或t
<400> 9
ggccgagaca tcccagctga gaacagccag cacaattctg acgcagnnnn nnnnnnnnnn 60
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnngca ccagtagaca tccaggcgat 120
agagcatcca catcctggcc tgacgwaaag ttaccgtcag ccaagagcag ccctggtcac 180
tgctcgtccg atmtttgcat tggagctatg gatgtccagc gccggtctgc gtgggggt 238
<210> 10
<211> 121
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 10
ctagctgctt tactaaatgt gcagccttaa catcaatggt tgggagatga tgatctccat 60
aggcttcctg gctgcaacag ggtacgtacg caaccacatc agtttcttat ctttttttaa 120
t 121
<210> 11
<211> 121
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 11
aagagaggct gaagaaatgg tacatggaag agaacagaag gatgcaggcc tcgaggggga 60
atccttgagc cggtccttca accaacttca agcctggcct ttgtgggttg ctgattgaca 120
c 121
<210> 12
<211> 201
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (50)..(50)
<223> n是a、c、g或t
<220>
<221> 尚未归类的特征
<222> (61)..(61)
<223> n是a、c、g或t
<220>
<221> 尚未归类的特征
<222> (151)..(151)
<223> n是a、c、g或t
<220>
<221> 尚未归类的特征
<222> (155)..(155)
<223> n是a、c、g或t
<400> 12
tcaggtatat gattcagcca agttggcaac caggtgttag tcgggctgan tgattcaaat 60
nccatgtgga atcaagacca ctgattcagg caattctata atgcaacttt gaattgattt 120
cgctgttttt accaaaactc tgaagaaatt ntgancggct caggtgatca ggaaacagac 180
agtaaaaatt tcatagatct a 201
<210> 13
<211> 121
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 13
ggcaccagag cgtttgatac tttgatcggt gccagtggaa tccctccact gcccactggt 60
gggcttcgct ccttgtcatg tgtgcaattt gttcacgggc atgctctcag gctgagagcc 120
t 121
<210> 14
<211> 121
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 14
acgctcccat tttcaatgta ttctgtaggt tgtgtgtaaa gagctgttct acagagagtt 60
gccagtaatg gatgactcac ttgctgtaaa gcttcttcca ggatgcacta caatagacga 120
g 121
<210> 15
<211> 401
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (173)..(173)
<223> n是a、c、g或t
<220>
<221> 尚未归类的特征
<222> (212)..(212)
<223> n是a、c、g或t
<220>
<221> 尚未归类的特征
<222> (243)..(243)
<223> n是a、c、g或t
<400> 15
agaccaacag atttgggggg aaaaacaaca ccgcaagaac aaacaaatct cactgccatt 60
ttttagatat taatttaaag agattaagag agaagaaaag aagatgaccc aaacaaacaa 120
actcgagcta gtagacttac ggcagggttc ttcagcaccg ggcagggagg agnccgggag 180
gcggaaggtg ttcagttcac tgattgttag cnagcgaagc caagagcaag agctactccc 240
ctntagattt gattgagatg ggagaggctc aacttttgat tccctcgagc acgtataatg 300
cagctagctg cagctttaat tttctaatgc catgtactcg tttcccaaga gcagatcaaa 360
acagcagaca cgaggccagg agttatttga gtttgtaaca t 401
<210> 16
<211> 401
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 16
ttaggtatct tctcgatttg aggtactttg aaaaattcaa aaataatgaa aatctacaaa 60
tatagtcact ggcacaacag aacgatgcaa accttaacac cgacacaagc caggaaaatg 120
tatatatagt agtgctcaaa acatttgcta tatgtaaaag atgagatgtt tgtggcgact 180
gatcgatgtt accggtcaga taatcggcaa ggctcccttt gcttaggtat tcgaagcaaa 240
acaacctttg gcgcaggtct gcccagacaa atcttccttc gtagggtgcc ctcacatgtt 300
gcgtctcgga tgagtaccct agacatcgga ctatgttcct gtgcttgacc tctatgagac 360
aagcaacctc gctttggaaa ttcgcctcta ggacatcgat c 401
<210> 17
<211> 121
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (15)..(15)
<223> n是a、c、g或t
<400> 17
tagcagcagc gacancgcgg aggtgcacat gtcagcctca agaccgggat ccgctgctgc 60
tgcgtcgtcc tcgtcctcct ctctcagtct cagctgcaac aagcacaacc cgcaggccgc 120
c 121
<210> 18
<211> 121
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (51)..(51)
<223> n是a、c、g或t
<400> 18
ggaccgatga tccaatatta aaatcaagta agcagcgcaa caagtgacca ntgattgtgc 60
accgtgcacc agtatatcta actcgactca tgtttctacg cagctggttt tgtaaataca 120
t 121
<210> 19
<211> 121
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 19
acagcagcaa ttggagctgt ggtggttgcc gggagtggcg atgattgact tctgaacttc 60
attgcatctg ttaatagtgc cagctgccgg ctgttatcac aaggtaaaca caccgacatt 120
c 121
<210> 20
<211> 101
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 20
tgaaagttta gttttgaaat gctgtaaccg aatagagcgg caaagaatat tgggaaggct 60
gctagaacta tagctgacag tggtagcaat tcacgtttga a 101
<210> 21
<211> 121
<212> DNA
<213> 玉蜀黍(Zea Maize)
<220>
<221> 尚未归类的特征
<222> (15)..(15)
<223> n是a、c、g或t
<400> 21
tagcagcagc gacancgcgg aggtgcacat gtcagcctca agaccgggat ccgctgctgc 60
tgcgtcgtcc tcgtcctcct ctctcagtct cagctgcaac aagcacaacc cgcaggccgc 120
c 121
<210> 22
<211> 104
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 22
aattgtgaac cgatgagtat aacttatttt ctccatattc tgaacaaccc attacttaaa 60
cagatttgca tcctactgga gacattgctg gcagaggaat tgag 104
<210> 23
<211> 96
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 23
accagtgtat ggttctcatt cactgtcgct gtccatcatt tcttgtagct agatgtagct 60
agtgctgcct tttcatcctt tgaccactat acgcgc 96
<210> 24
<211> 102
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 24
caaaggggga aatagcagta gagactggag attggtgatc ttacacaagt aaagtaaatc 60
atgggcgcat ggagctggaa tcgacaacaa gctcgaggcc gc 102
<210> 25
<211> 101
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 25
ctaaagcagt cttctctaga gagtgactct gccaaatcat gaaggatatc atgcatgata 60
tagtatgaat aatgtctttt agaaaccaat tggaagaaag a 101
<210> 26
<211> 102
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 26
catttgcaag atccgtcaag acgtcgaagt ggccgaaact gccgctagca atgtcctacg 60
gctagaccca gacgacgcgt cggtttacat tcttctctct aa 102
<210> 27
<211> 2000
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 27
tgagacaggc gcaggcaagg ccatcttcag tgtcccagta tcttcaattg gcaagacatc 60
atctggggtc atctctggcg gcccaactcg aggtcagggc gagacatgca cagaaggcac 120
gatctcaagc ttcccaactc gaatgtgggg cgagacagcc ccagtcatcg tcgtgttcag 180
gagcccaggt agacagtggg gcgagaccgg cgctggaagc ctcgtctcta gcgtcgggca 240
aggctggggc gagacaggcc ttgggagcca tgtctcaagc ggcccagttg gccgaagggg 300
cgagaccgag gcattccagg ccatctcagg cggcccaatc aggttccggg gtgagcccac 360
caacacagac gacgttccaa cagtcctgtc gcaatcaatc cggggactgt ttatcttccc 420
cgtggagatc tgtcccacca taactgtcac ggtagtctct ctgtcttcct ggggctcctt 480
ggaaaccggt gtctcttcaa tgcgcaagga aggcagcgca tctcgatcag gatctctcac 540
cggatatgct gtttccctac ccgaggtcgt tgacggcggt ggaaacacag cccgaggcgc 600
cagggttgca gcgccgcgtc ccaacgacat ctgtgggtcc aggcgaagat gaaccgagcg 660
ccgcaggaac agggacggcg cgggaaacgc cgcccaaggc gccaaagttg ccgcaccgcg 720
tcccgacggc agctgcgagc ccaggcgaag atgaaccggt cgcctctgga acaggggccc 780
gtttgaacga cgagactggg ggtcctggtc ctcgccgccg ccgccatcac catcaggtct 840
cctgccgtac gccggaggtg ggggcggtgg aggccccagg tccgccgcag atagctctga 900
cagggtagcg ctcacactga tcttgtaagt gaggcatctc ttctcaagtg cgtgcaatcc 960
aggctcgacg atgagaaggt ccatatcacg gtgtagtctt ctaggatcaa agcaccaagc 1020
actgacccaa aaggctgagt aatctttctt ttgcaaagta tccggatgca cgtccgaaat 1080
ccagcaagag tctctcaaga tgttttctgc cgtagaacga aaccaagcgt gctctgggat 1140
tcctctaatc tcaacctcca ccataccaga catgatcgtc gaagatgcat gagtaaacct 1200
cgaccagcgc ttgaacttca aactgaaatg aggcccccta tatgccttgc catcattaag 1260
cacccttgag gcagtttctt catcaggtag aatcaagagg aaatcctctg gctggacttg 1320
atgaatctgc atggcttcaa tatggacctc aaaattatgt gcgacttctt ctaacacttc 1380
aactcctagc acctccggcc tagtcccaac aactgttacg aacagggcac ggcggagaaa 1440
tacctcttca cgcgtcatct cagtggtgaa ttccaacaca caagaaggca atgacttctt 1500
gaatatctcc atttgtcctc cagacctcag cgtcgaccta tggacctttc tggaggcgtc 1560
agcagtatca gaggaaaccg gggacataga gcctggacca gcaccagacc ccaacgatcc 1620
tttgccccgt ttcgagcgtc gtcttttctt cttgttgcgt aggcttcttt gagagtcgcc 1680
tgcagcaaac atccttgaag tgtctgcctt cagcgcaggc tccaacggaa acgagatctt 1740
atttgatcta atttctctag aaccttcctt ggaatttcga agaaggacaa cataaacatc 1800
gtaagacttg ttaagatgga gttaattagc actagtcgac caacaacaga caatattttc 1860
cctttccacc cactaactct tttcttaaat ctttttatga tataattcca atcttcatta 1920
ctaagctttc tgtgatgcat tggaataccc agatatttga aaggataatg ccctttatta 1980
catccaaaaa tttcagagta 2000
<210> 28
<211> 5827
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 28
ttccaattct cgttctttag cagcatcata acagaaaagt tggctcttat gaaaatttat 60
tttgagaccc gaaagatgtt caaacgcaca aagtagtaag ccaaaactgc attcaaagga 120
aacgtggagg cttgtttcca cacagccact attacacgga acacaactgt aatcatccag 180
tgccttgttt ttcctcatca gaaggttcct ggtattgagt gtatctctat cattctagaa 240
aagtggaacc aaataggacc gaaagcgcag aggaactgct atgccttaag gactggatgc 300
aaattggaaa tgaaagagat agtttttttt aggattttgg tctgtactgg aagctctcaa 360
tttttatggc cagatgaatt gttggtccaa ctcatgggag atctcgtctt ctacattcat 420
atcaagctca gctcctcttg caacgtacaa ccatgtctaa aaaaattagg ggaggactcc 480
caggaaagct ccaaaagctt tctttgtcag tgtttattca ctcgaactgc ataatttaga 540
gcagtcctaa tccatagact agtctactcc gcttgttcac ctcttgttca cctctctttc 600
catgctgctt cctttcccag ctagcagtag accctcagca gtctacggca ccttcggtct 660
cctcaacata aaaaaacaaa tcatctatca ccagcaatca gcaacaccat ccggtattcc 720
tccgttccct gcccgacgga tctacttccc tccttgctgt gctgtgctgt gcttgttcca 780
gattctactc catacgccct tgatttattt tacttcgtgt aagatctcca atctccactt 840
ttttcgcttg ctgtgttagc tactatttcc cctttgtgtt gctggatctg gcgagaaaga 900
aaaataattg gtttgtgctt cattttttca ttcagattca ttaattttat gtgtctgcag 960
agaaaaaaga aaaaaaaagc ttcttactga atttcatggc cgacttggcg ctcgccggct 1020
taagatgggc agcatcgccg attgtcaacg agcttcttac taaagcttca gcttacctca 1080
gtgtggacat ggtgcgtgag atccaacgac tagaagccac tgtcctgcca cagttcgagc 1140
tggtgattca agcggcccag aagagccccc acaggggcat actggaggca tggctccggc 1200
gtctcaaaga agcctactat gatgccgagg acttgttgga cgagcatgag tacaatgtcc 1260
ttgaagttga aggcaaggcc aagagcggaa aaagtctcct gctgggagag catggaagct 1320
cctccactgc aactactgtc acgaaacctt ttcatgctgc catgagcagg gcgcggaact 1380
tgctacctca aaacagaagg ctaattagca agatgaacga gctcaaagca atcctgacag 1440
aagcccaaca acttcgagat cttcttggtt tgccacatgg caataccgtc gggtggccag 1500
ctgcagcatc taccagtgtt cccacaacca catcacttcc cacttccaag gtttttggtc 1560
gcgacaggga tcgtgatcgt atagtagatt ttcttctcgg caagacaaca actgctgagg 1620
caagctcagc taagtactcg ggtttggcca ttgttggatt gggaggaatg gggaagtcca 1680
ccttagcaca gtatgtctat aatgacaaaa ggatagaaga atgctttgat atcaggatgt 1740
gggtgtgcat ctcacgcaaa cttgatgtgc atcgtcacac aagggagatt atagagtctg 1800
caaaaaaggg agagtgccca cgtgttgata atctcgatac tctccagtgc aaattacgcg 1860
atatactaca agagtcacag aaattcctgc ttgtcttgga tgatgtttgg tttgaaaaat 1920
ctcataatga gacagagtgg gagttattcc ttgctccatt agtctctaaa cagtcaggga 1980
gcaaagtttt ggtgacttct cgaagtgaaa cacttccggc tgctatttgt tgtgaacaag 2040
aacatgtcat tcatttgaaa aacatggatg atactgagtt tttggctctt tttaaacacc 2100
atgctttctc tggagcagaa atgaaagacc aactgttacg cacgaagctg gaagacactg 2160
cagaggagat tgctaaaagg cttggacaat gtcctttggc agcaaaagtt ctgggttctc 2220
gattgtgcag gaaaaaggat attgttgaat ggaaagctgc tctaaagctt ggagatttaa 2280
gtgatccctt cacatctctg ttgtggagtt acgagaagtt agatccacgt ctgcagaggt 2340
gcttcttgta ttgcagcttg tttccaaaag gtcacggata tacacctgaa gagttggttc 2400
acctttgggt ggcagaagga tttgttggtt catgcaattt gagtaggaga acgttagaag 2460
aggttgggat ggattacttc aatgatatgg tctctgtatc tttcttccaa ttggtttctc 2520
aaatgtattg tgattcgtac tatgtcatgc atgatatcct tcatgatttt gcagagtcac 2580
tctctaggga agactgcttt agattagaag atgataatgt gacagaaata ccatgcactg 2640
ttcgacatct atctgttcat gttcaaagta tgcaaaagca taagcaaatt atctgcaagc 2700
tacatcattt acgcactatt atctgcatcg atccgctaat ggatggtcca agtgatattt 2760
ttgatggcat gctacggaac caaagaaaac tgcgtgtatt gtctctgtca ttttacagca 2820
gcagcaagtt gccagaatct attggtgagc tgaagcacct ccggtatttg aacctcatca 2880
ggacgttagt ttctgaattg cctacatcat tatgtactct ctaccactta caattacttt 2940
ggttaaacta catggtggag aatttgcctg acaaactatg caatttaaga aagctacgac 3000
atctaggagc gtactcatgt tacgctcatg atttcgttga tgaaatgcct atttgccaaa 3060
tctcgaatat aggtaagtta acgtccctac aacacattta tgtcttttct gtacagaaga 3120
agcaaggtta tgagttgcga cagttgaagg acttgaatga gcttggtggc agtttaagag 3180
tgaaaaatct tgagaatgtc attggaaagg atgaagccgt agagtcgaag ctatatctga 3240
aaagtcgcct taaagagttg gcacttgagt ggagttccga gaatggaatg gatgcaatgg 3300
atattctaga aggtctgaga ccaccacccc aactgagtaa gctcacaatc gaaggttaca 3360
gatctgatac atatcctggg tggttactag agcgatccta ttttgagaat ttggaaagtt 3420
ttgagcttag taattgcagt ttgctagaag gcctaccacc agatacagag ctccttcgga 3480
attgctctag gttgcgtata aactttgttc caaatttgaa ggaactatct aatcttccag 3540
caggccttac agatttatca attgatcgtt gcccactgct tatgtttatc accaacaatg 3600
agctaggaca gcatgacttg agggaaaata taataatgaa ggcagacgac ctggcatcta 3660
aacttgcatt gatgtgggag gtggattcag gaaaagaagt taggagagta ctgtcgaaag 3720
actgttcatc tctgaagctg ttgatgacat tgatgatgga tgatgatata tcaaagcatc 3780
ttcaaatcat tgaaagtggt ctgaaggaaa gagaagataa agtatggatg aaagaaaaca 3840
tcatcaaggc atggctcttt tgccatgagc agaggataag attcatttat ggaaggacca 3900
tggagatgcc attggttcta ccgtcaggac tctgtgaact ttctctttct tcatgcagta 3960
ttacagatga agctttagct atttgccttg gtggcctcac ttcactgagg aatttaaaat 4020
tgaaatataa tatggcatta actacacttc catcagaaaa ggtgtttgag catttgacaa 4080
agcttgacag gttggttgta ataggttgtt tgtgtctcaa atcactgggg ggcttacgtg 4140
ctgctccatc tctttccttt tttaaaagtt gggattgtcc ttctttagag ctagcacggg 4200
gagcagaact aatgccgttg aaccttgcta gcgttctcag catccttggc tgcattcttg 4260
cagctgattc gttcattaat ggcttgccac atctgaaaca tctttccatt gatgtctgca 4320
gaagctcccc atccttatcg attggccacc tgacctccct tgaatcatta cgtctaaatg 4380
gcctccctga tctttacttt gttgaaggct tgtcttccct gcaccttaag cacctaagtt 4440
tagtagatgt tgcaaacctc actgccaagt gcatctcaca gtttcgtgtc caggaattgc 4500
tcacggttag tagctctgta ttgctcaacc acatgctaat ggctgaaggg tttacagccc 4560
caccaaatct tactctttta gattgcaagg agccgtcagt ttcatttgaa gaacctgcaa 4620
atctctcatc cgtcaagcac ctgaagtttt catgttgcga aacagagtcc ctgcctagaa 4680
atctaaaatc cgtctcaagt ctggagagtc tttctataga acattgcccc aacatagcat 4740
ctttaccaga tctgccgtcc tccctccagc gcataactat attgaattgc cccgtcttga 4800
tgaagaattg ccaagaacct gatggagaaa gctggccaaa gatttcgcac gttcgttgga 4860
agagctttct accaatatcg atctgacttc cttagagttg ccattttgaa ataaatgaga 4920
aggtacaggt tctactaatt catttttcca gcacaattga tgagtttctc aatatttaaa 4980
acatttcatg ttctaaacag gcaccttgac gtcacccctc ttctcttgaa gctccagagt 5040
tcaggctcaa gtcagaagcc aatccgtcgt taatgctgcc gtccccgcgg ttccctgttt 5100
ttgccgcttg tattgctccg ctatttcagt tgctatatca ttcattcctt ggttgtgcac 5160
aattgccaat atgtatttct ctgacagaat gaagtaataa ctgtggctag ggcttttgtt 5220
ttcatgtgca caattgctat atcattcatg tggcaattag tataaatact ccaggcaatg 5280
caatagagaa gatagttcat gttcctgcac ttgtgcttgt ggatggtgtg gcagagaagt 5340
tcaccatgga accagttcca gtaatgtgtg tgctacagtc aaaataagtc ttaattctct 5400
gctacgtaca gtcaaaacgt gtacagtccg agtgtttctg gagattcgtt gttggcggat 5460
gatgagctac atttgtacag tatggattga gctcgaggac ttgttcagct ccttgctcta 5520
ttaccagtta aaaggtgatt gcttgttctc tattaccaat tggattgatt accagtgtgc 5580
ttgctggcgt aagagatgaa aaggccttgt attttagtgc atcaaaactg aaggtttttt 5640
ggtggtatgc tccattctgt tcaatgtcct aaaccctaca cacaaaatgt aaaaccttac 5700
gcgctggttt gcaccatcta taaccaaagt gtatcattca ttgattgcac ggcgcttctg 5760
cagcacctat ctgttgctgc tgctgctgat gaaccgctgt gctgttcaac aacaacgtgt 5820
ccgcgcg 5827
<210> 29
<211> 1000
<212> DNA
<213> 玉蜀黍(Zea Maize)
<400> 29
ggcgtcaaag ctattctgac tgagcaggct accataaaca tcgacatcca tctgttgttg 60
caatgctgat tcagaagtgt tagactatgt gtgtgtgagt gtgtgtgggc cggtaccact 120
gttgggctgc cggcccatta gggttagggt ttcatgtgtc tctatatatt gtagtccacc 180
tctatgcaat atagggagtt cacattccaa catggtatca aaactgggtt aggttttctt 240
cccttcccac tgcagccgcc gggggctctc tcccacccag cagccgccag gtgcagccgt 300
ctcccacctg agccgccgcc gcccccggga gactcctccc tcccggggcg accccttcca 360
ttggcgcggc tgtgcacggg cgcggcccct cgcagctcgg cgcgggcgtg gctgcccagc 420
cttggcgcgg cagcccccag ctccgacggc gcgcggcgcg ggtgcgcgtg gaagcggacg 480
accctcttct ccctggatcc gcgccgccgg tggcggatcc gccagcacct cccatggctg 540
ccgtgctcct acaccgagca ccacaacaac agccagcgca ggggcctccc atggccgtcg 600
agctctctcc acgtcggcgc tccctgacct cctccccatg ggcgcgtccc ctgcaggcga 660
gcagcggctc ccatctccca gcggcctcca tggccgagct cccctggagc aggcgctttc 720
cagccatggc gcgggctcca tttgtctagg gccgccgaag ctcctccagc cgcgccctcc 780
ctgttccatg gcgtccaaag ctccctgtgc tcggcgccct tcttccacct ctgactgctc 840
ctctctccac cgagcgcccc tccccaactc tcctacaccc gaaccccctg tgccgcccag 900
gccgcgcgcc ctgcaagcga ccgagccgct gcccgccgag ccgccccgcg cgcacaccgc 960
gtgatgccgc gcccaggagc cgcgcccagc gcccgcgcgc 1000
<210> 30
<211> 1296
<212> PRT
<213> 玉蜀黍(Zea Maize)
<400> 30
Met Ala Asp Leu Ala Leu Ala Gly Leu Arg Trp Ala Ala Ser Pro Ile
1 5 10 15
Val Asn Glu Leu Leu Thr Lys Ala Ser Ala Tyr Leu Ser Val Asp Met
20 25 30
Val Arg Glu Ile Gln Arg Leu Glu Ala Thr Val Leu Pro Gln Phe Glu
35 40 45
Leu Val Ile Gln Ala Ala Gln Lys Ser Pro His Arg Gly Ile Leu Glu
50 55 60
Ala Trp Leu Arg Arg Leu Lys Glu Ala Tyr Tyr Asp Ala Glu Asp Leu
65 70 75 80
Leu Asp Glu His Glu Tyr Asn Val Leu Glu Val Glu Gly Lys Ala Lys
85 90 95
Ser Gly Lys Ser Leu Leu Leu Gly Glu His Gly Ser Ser Ser Thr Ala
100 105 110
Thr Thr Val Thr Lys Pro Phe His Ala Ala Met Ser Arg Ala Arg Asn
115 120 125
Leu Leu Pro Gln Asn Arg Arg Leu Ile Ser Lys Met Asn Glu Leu Lys
130 135 140
Ala Ile Leu Thr Glu Ala Gln Gln Leu Arg Asp Leu Leu Gly Leu Pro
145 150 155 160
His Gly Asn Thr Val Gly Trp Pro Ala Ala Ala Ser Thr Ser Val Pro
165 170 175
Thr Thr Thr Ser Leu Pro Thr Ser Lys Val Phe Gly Arg Asp Arg Asp
180 185 190
Arg Asp Arg Ile Val Asp Phe Leu Leu Gly Lys Thr Thr Thr Ala Glu
195 200 205
Ala Ser Ser Ala Lys Tyr Ser Gly Leu Ala Ile Val Gly Leu Gly Gly
210 215 220
Met Gly Lys Ser Thr Leu Ala Gln Tyr Val Tyr Asn Asp Lys Arg Ile
225 230 235 240
Glu Glu Cys Phe Asp Ile Arg Met Trp Val Cys Ile Ser Arg Lys Leu
245 250 255
Asp Val His Arg His Thr Arg Glu Ile Ile Glu Ser Ala Lys Lys Gly
260 265 270
Glu Cys Pro Arg Val Asp Asn Leu Asp Thr Leu Gln Cys Lys Leu Arg
275 280 285
Asp Ile Leu Gln Glu Ser Gln Lys Phe Leu Leu Val Leu Asp Asp Val
290 295 300
Trp Phe Glu Lys Ser His Asn Glu Thr Glu Trp Glu Leu Phe Leu Ala
305 310 315 320
Pro Leu Val Ser Lys Gln Ser Gly Ser Lys Val Leu Val Thr Ser Arg
325 330 335
Ser Glu Thr Leu Pro Ala Ala Ile Cys Cys Glu Gln Glu His Val Ile
340 345 350
His Leu Lys Asn Met Asp Asp Thr Glu Phe Leu Ala Leu Phe Lys His
355 360 365
His Ala Phe Ser Gly Ala Glu Met Lys Asp Gln Leu Leu Arg Thr Lys
370 375 380
Leu Glu Asp Thr Ala Glu Glu Ile Ala Lys Arg Leu Gly Gln Cys Pro
385 390 395 400
Leu Ala Ala Lys Val Leu Gly Ser Arg Leu Cys Arg Lys Lys Asp Ile
405 410 415
Val Glu Trp Lys Ala Ala Leu Lys Leu Gly Asp Leu Ser Asp Pro Phe
420 425 430
Thr Ser Leu Leu Trp Ser Tyr Glu Lys Leu Asp Pro Arg Leu Gln Arg
435 440 445
Cys Phe Leu Tyr Cys Ser Leu Phe Pro Lys Gly His Gly Tyr Thr Pro
450 455 460
Glu Glu Leu Val His Leu Trp Val Ala Glu Gly Phe Val Gly Ser Cys
465 470 475 480
Asn Leu Ser Arg Arg Thr Leu Glu Glu Val Gly Met Asp Tyr Phe Asn
485 490 495
Asp Met Val Ser Val Ser Phe Phe Gln Leu Val Ser Gln Met Tyr Cys
500 505 510
Asp Ser Tyr Tyr Val Met His Asp Ile Leu His Asp Phe Ala Glu Ser
515 520 525
Leu Ser Arg Glu Asp Cys Phe Arg Leu Glu Asp Asp Asn Val Thr Glu
530 535 540
Ile Pro Cys Thr Val Arg His Leu Ser Val His Val Gln Ser Met Gln
545 550 555 560
Lys His Lys Gln Ile Ile Cys Lys Leu His His Leu Arg Thr Ile Ile
565 570 575
Cys Ile Asp Pro Leu Met Asp Gly Pro Ser Asp Ile Phe Asp Gly Met
580 585 590
Leu Arg Asn Gln Arg Lys Leu Arg Val Leu Ser Leu Ser Phe Tyr Ser
595 600 605
Ser Ser Lys Leu Pro Glu Ser Ile Gly Glu Leu Lys His Leu Arg Tyr
610 615 620
Leu Asn Leu Ile Arg Thr Leu Val Ser Glu Leu Pro Thr Ser Leu Cys
625 630 635 640
Thr Leu Tyr His Leu Gln Leu Leu Trp Leu Asn Tyr Met Val Glu Asn
645 650 655
Leu Pro Asp Lys Leu Cys Asn Leu Arg Lys Leu Arg His Leu Gly Ala
660 665 670
Tyr Ser Cys Tyr Ala His Asp Phe Val Asp Glu Met Pro Ile Cys Gln
675 680 685
Ile Ser Asn Ile Gly Lys Leu Thr Ser Leu Gln His Ile Tyr Val Phe
690 695 700
Ser Val Gln Lys Lys Gln Gly Tyr Glu Leu Arg Gln Leu Lys Asp Leu
705 710 715 720
Asn Glu Leu Gly Gly Ser Leu Arg Val Lys Asn Leu Glu Asn Val Ile
725 730 735
Gly Lys Asp Glu Ala Val Glu Ser Lys Leu Tyr Leu Lys Ser Arg Leu
740 745 750
Lys Glu Leu Ala Leu Glu Trp Ser Ser Glu Asn Gly Met Asp Ala Met
755 760 765
Asp Ile Leu Glu Gly Leu Arg Pro Pro Pro Gln Leu Ser Lys Leu Thr
770 775 780
Ile Glu Gly Tyr Arg Ser Asp Thr Tyr Pro Gly Trp Leu Leu Glu Arg
785 790 795 800
Ser Tyr Phe Glu Asn Leu Glu Ser Phe Glu Leu Ser Asn Cys Ser Leu
805 810 815
Leu Glu Gly Leu Pro Pro Asp Thr Glu Leu Leu Arg Asn Cys Ser Arg
820 825 830
Leu Arg Ile Asn Phe Val Pro Asn Leu Lys Glu Leu Ser Asn Leu Pro
835 840 845
Ala Gly Leu Thr Asp Leu Ser Ile Asp Arg Cys Pro Leu Leu Met Phe
850 855 860
Ile Thr Asn Asn Glu Leu Gly Gln His Asp Leu Arg Glu Asn Ile Ile
865 870 875 880
Met Lys Ala Asp Asp Leu Ala Ser Lys Leu Ala Leu Met Trp Glu Val
885 890 895
Asp Ser Gly Lys Glu Val Arg Arg Val Leu Ser Lys Asp Cys Ser Ser
900 905 910
Leu Lys Leu Leu Met Thr Leu Met Met Asp Asp Asp Ile Ser Lys His
915 920 925
Leu Gln Ile Ile Glu Ser Gly Leu Lys Glu Arg Glu Asp Lys Val Trp
930 935 940
Met Lys Glu Asn Ile Ile Lys Ala Trp Leu Phe Cys His Glu Gln Arg
945 950 955 960
Ile Arg Phe Ile Tyr Gly Arg Thr Met Glu Met Pro Leu Val Leu Pro
965 970 975
Ser Gly Leu Cys Glu Leu Ser Leu Ser Ser Cys Ser Ile Thr Asp Glu
980 985 990
Ala Leu Ala Ile Cys Leu Gly Gly Leu Thr Ser Leu Arg Asn Leu Lys
995 1000 1005
Leu Lys Tyr Asn Met Ala Leu Thr Thr Leu Pro Ser Glu Lys Val
1010 1015 1020
Phe Glu His Leu Thr Lys Leu Asp Arg Leu Val Val Ile Gly Cys
1025 1030 1035
Leu Cys Leu Lys Ser Leu Gly Gly Leu Arg Ala Ala Pro Ser Leu
1040 1045 1050
Ser Phe Phe Lys Ser Trp Asp Cys Pro Ser Leu Glu Leu Ala Arg
1055 1060 1065
Gly Ala Glu Leu Met Pro Leu Asn Leu Ala Ser Val Leu Ser Ile
1070 1075 1080
Leu Gly Cys Ile Leu Ala Ala Asp Ser Phe Ile Asn Gly Leu Pro
1085 1090 1095
His Leu Lys His Leu Ser Ile Asp Val Cys Arg Ser Ser Pro Ser
1100 1105 1110
Leu Ser Ile Gly His Leu Thr Ser Leu Glu Ser Leu Arg Leu Asn
1115 1120 1125
Gly Leu Pro Asp Leu Tyr Phe Val Glu Gly Leu Ser Ser Leu His
1130 1135 1140
Leu Lys His Leu Ser Leu Val Asp Val Ala Asn Leu Thr Ala Lys
1145 1150 1155
Cys Ile Ser Gln Phe Arg Val Gln Glu Leu Leu Thr Val Ser Ser
1160 1165 1170
Ser Val Leu Leu Asn His Met Leu Met Ala Glu Gly Phe Thr Ala
1175 1180 1185
Pro Pro Asn Leu Thr Leu Leu Asp Cys Lys Glu Pro Ser Val Ser
1190 1195 1200
Phe Glu Glu Pro Ala Asn Leu Ser Ser Val Lys His Leu Lys Phe
1205 1210 1215
Ser Cys Cys Glu Thr Glu Ser Leu Pro Arg Asn Leu Lys Ser Val
1220 1225 1230
Ser Ser Leu Glu Ser Leu Ser Ile Glu His Cys Pro Asn Ile Ala
1235 1240 1245
Ser Leu Pro Asp Leu Pro Ser Ser Leu Gln Arg Ile Thr Ile Leu
1250 1255 1260
Asn Cys Pro Val Leu Met Lys Asn Cys Gln Glu Pro Asp Gly Glu
1265 1270 1275
Ser Trp Pro Lys Ile Ser His Val Arg Trp Lys Ser Phe Leu Pro
1280 1285 1290
Ile Ser Ile
1295

Claims (19)

1.一种获得子代玉蜀黍植物的方法,所述子代玉蜀黍植物包含与炭疽茎腐病抗性相关联的标记等位基因,所述方法包括:
a.提供玉蜀黍植物群体并且从所述玉蜀黍植物群体中的每一个玉蜀黍植物分离核酸;
b.分析所述分离的核酸中的每一种核酸在10号染色体上是否存在与炭疽茎腐病抗性相关联的标记等位基因,其中所述标记等位基因包含:
i.在SEQ ID NO:21的位置61的PHM12处的“C”,
ii.在SEQ ID NO:22的位置56的19705-9处的“T”,
iii.在SEQ ID NO:23的位置51的19707-15处的“A”,
iv.在SEQ ID NO:15的位置201的C01964-1处的“G”,
v.在SEQ ID NO:16的位置201的C01957-1处的“T”,
vi.在SEQ ID NO:24的位置51的SBD_INBREDA 24处的“A”,
vii.在SEQ ID NO:25的位置51的PHM10处的“A”,以及
viii.在SEQ ID NO:26的位置51的SBD_INBREDA 109处的“A”;
c.选择其中检测到所述标记等位基因的一个或多个玉蜀黍植物;
d.将所选择的一个或多个玉蜀黍植物与一个或多个第二玉蜀黍植物杂交以获得包含所述标记等位基因的子代植物。
2.如权利要求1所述的方法,其中所述方法包括分析所述分离的核酸中的每一种核酸是否存在两个或更多个以下标记等位基因的组合:
i.在SEQ ID NO:21的位置61的PHM12处的“C”,
ii.在SEQ ID NO:22的位置56的19705-9处的“T”,
iii.在SEQ ID NO:23的位置51的1 9707-15处的“A”,
iv.在SEQ ID NO:15的位置201的C01964-1处的“G”,
v.在SEQ ID NO:1 6的位置201的C01957-1处的“T”,
vi.在SEQ ID NO:24的位置51的SBD_INBREDA_24处的“A”,
vii.在SEQ ID NO:25的位置51的PHM10处的“A”,或者
viii.在SEQ ID NO:26的位置51的SBD_INBREDA_109处的“A”。
3.如权利要求1所述的方法,其中所述方法包括分析所述核酸中的每一种核酸是否存在以下标记等位基因中的每一个标记等位基因:
i.在SEQ ID NO:21的位置61的PHM12处的“C”,
ii.在SEQ ID NO:22的位置56的19705-9处的“T”,
iii.在SEQ ID NO:23的位置51的19707-15处的“A”,
iv.在SEQ ID NO:1 5的位置201的C01964-1处的“G”,
v.在SEQ ID NO:16的位置201的C01957-1处的“T”,
vi.在SEQ ID NO:24的位置51的SBD_INBREDA_24处的“A”,
vii.在SEQ ID NO:25的位置51的PHM10处的“A”,以及
viii.在SEQ ID NO:26的位置51的SBD_INBREDA_109处的“A”。
4.如权利要求1-3中任一项所述的方法,所述方法进一步包括将所述子代玉蜀黍植物种植在具有禾生炭疽菌(C.graminicola)或处于具有禾生炭疽菌的风险中的田间。
5.一种鉴定具有与增加的炭疽茎腐病抗性相关联的NLR04等位基因的植物的方法,所述方法包括:
a.从玉蜀黍植物、植物细胞、或其种质中获得核酸样品;以及
b.对所述样品进行包含以下的序列的筛选
i.多核苷酸,所述多核苷酸编码:具有SEQ ID NO:30中所示的氨基酸序列的多肽;
ii.多核苷酸,所述多核苷酸包含SEQ ID NO:28中所示的序列;或
iii.(i)或(ii)的5cM内的一个或多个标记等位基因,所述一个或多个标记等位基因与(i)或(ii)连锁并相关联。
6.如权利要求5所述的方法,其中所述方法包括对所述样品进行包含以下的标记等位基因的筛选:
i.在SEQ ID NO:21的位置61的PHM12处的“C”,
ii.在SEQ ID NO:22的位置56的19705-9处的“T”,
iii.在SEQ ID NO:23的位置51的19707-15处的“A”,
iv.在SEQ ID NO:15的位置201的C01964-1处的“G”,
v.在SEQ ID NO:16的位置201的C01957-1处的“T”,
vi.在SEQ ID NO:24的位置51的SBD_INBREDA_24处的“A”,
vii.在SEQ ID NO:25的位置51的PHM10处的“A”,以及
viii.在SEQ ID NO:26的位置51的SBD_INBREDA_109处的“A”。
7.如权利要求5所述的方法,其中所述方法包括筛选所述样品是否存在两个或更多个以下标记等位基因的组合:
i.在SEQ ID NO:21的位置61的PHM12处的“C”,
ii.在SEQ ID NO:22的位置56的19705-9处的“T”,
iii.在SEQ ID NO:23的位置51的19707-15处的“A”,
iv.在SEQ ID NO:15的位置201的C01964-1处的“G”,
v.在SEQ ID NO:16的位置201的C01957-1处的“T”,
vi.在SEQ ID NO:24的位置51的SBD_INBREDA_24处的“A”,
vii.在SEQ ID NO:25的位置51的PHM10处的“A”,或者
viii.在SEQ ID NO:26的位置51的SBD_INBREDA_109处的“A”。
8.如权利要求5所述的方法,其中所述方法包括筛选所述样品是否存在以下标记等位基因中的每一个标记等位基因:
i.在SEQ ID NO:21的位置61的PHM12处的“C”,
ii.在SEQ ID NO:22的位置56的19705-9处的“T”,
iii.在SEQ ID NO:23的位置51的19707-15处的“A”,
iv.在SEQ ID NO:15的位置201的C01964-1处的“G”,
v.在SEQ ID NO:16的位置201的C01957-1处的“T”,
vi.在SEQ ID NO:24的位置51的SBD_INBREDA_24处的“A”,
vii.在SEQ ID NO:25的位置51的PHM10处的“A”,以及
viii.在SEQ ID NO:26的位置51的SBD_INBREDA_109处的“A”。
9.如权利要求5-8中任一项所述的方法,所述方法进一步包括将鉴定为具有所述与增加的炭疽茎腐病抗性相关联的NLR04等位基因的所述玉蜀黍植物种植在具有禾生炭疽菌或处于具有禾生炭疽菌的风险中的田间。
10.一种增加植物中炭疽茎腐病抗性的方法,所述方法包括在植物中表达异源多核苷酸,所述异源多核苷酸编码具有与SEQ ID NO:30的氨基酸序列具有至少90%序列同一性的氨基酸序列的多肽;其中当与不包含所述异源多核苷酸的对照植物相比时,表达所述异源多肽的植物对所述植物中的炭疽茎腐病具有增加的抗性。
11.如权利要求10所述的方法,其中所述异源多核苷酸可操作地连接到异源启动子。
12.一种鉴定NLR 04基因的等位基因变体的方法,其中所述等位基因变体与增加的对炭疽茎腐病的耐受性相关联,所述方法包括以下步骤:
a.获得植物群体,其中所述植物表现出不同水平的炭疽茎腐病抗性;
b.评估针对编码包含SEQ ID NO:30的蛋白质的多核苷酸序列的等位基因变异,或在调节编码所述蛋白质的多核苷酸的表达的基因组区域中的等位基因变异;
c.将等位基因变异与增加的炭疽茎腐病抗性相关联;以及
d.鉴定与增加的炭疽茎腐病抗性相关联的等位基因变体。
13.一种引入NLR 04基因的等位基因变体的方法,所述方法包括在内源NLR 04基因中引入突变,使得所述等位基因变体包含编码与SEQ ID NO:30具有至少90%同一性的蛋白质的多核苷酸序列并且所述等位基因变体与增加的炭疽茎腐病抗性相关联,其中使用锌指核酸酶、转录激活因子样效应核酸酶(TALEN)、CRISPR/Cas系统或大范围核酸酶引入所述突变。
14.一种重组DNA构建体,所述重组DNA构建体包含与至少一个调节序列可操作地连接的多核苷酸,其中所述多核苷酸包含核酸序列,所述核酸序列编码与SEQ ID NO:30具有至少90%序列同一性的氨基酸序列,并且其中所述等位基因变体与增加的炭疽茎腐病抗性相关联。
15.如权利要求14所述的重组DNA构建体,其中所述至少一个调节序列是在植物细胞中有功能的启动子。
16.如权利要求14所述的重组DNA构建体,其中所述多核苷酸包含SEQ ID NO:30的核酸序列。
17.一种转基因植物细胞,所述转基因植物细胞包含如权利要求14所述的重组DNA构建体。
18.一种转基因植物,所述转基因植物包含如权利要求17所述的转基因植物细胞。
19.一种转基因种子,所述转基因种子由如权利要求18所述的转基因植物产生。
CN202280054862.5A 2020-08-18 2022-06-08 鉴定、选择和产生炭疽茎腐病抗性作物的方法 Pending CN117812999A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063067090P 2020-08-18 2020-08-18
US202163154960P 2021-03-01 2021-03-01
USPCT/US2021/046227 2021-08-17
PCT/US2021/046227 WO2022040134A1 (en) 2020-08-18 2021-08-17 Multiple disease resistance genes and genomic stacks thereof
PCT/US2022/072826 WO2023023419A1 (en) 2020-08-18 2022-06-08 Methods of identifying, selecting, and producing anthracnose stalk rot resistant crops

Publications (1)

Publication Number Publication Date
CN117812999A true CN117812999A (zh) 2024-04-02

Family

ID=77726530

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202180057080.2A Pending CN116134143A (zh) 2020-08-18 2021-08-17 多种抗病基因及其基因组堆叠件
CN202280054862.5A Pending CN117812999A (zh) 2020-08-18 2022-06-08 鉴定、选择和产生炭疽茎腐病抗性作物的方法
CN202280054858.9A Pending CN117998982A (zh) 2020-08-18 2022-08-16 用于灰叶斑病抗性的组合物和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202180057080.2A Pending CN116134143A (zh) 2020-08-18 2021-08-17 多种抗病基因及其基因组堆叠件

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202280054858.9A Pending CN117998982A (zh) 2020-08-18 2022-08-16 用于灰叶斑病抗性的组合物和方法

Country Status (7)

Country Link
US (2) US20230295650A1 (zh)
EP (3) EP4200425A1 (zh)
CN (3) CN116134143A (zh)
BR (1) BR112023002885A2 (zh)
CA (3) CA3186862A1 (zh)
MX (1) MX2023001762A (zh)
WO (3) WO2022040134A1 (zh)

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162967A (en) 1994-01-26 2000-12-19 Pioneer Hi-Bred International, Inc. Positional cloning of soybean cyst nematode resistance genes
US7767882B2 (en) 2004-08-06 2010-08-03 Pioneer Hi-Bred International, Inc. Genetic loci associated with Fusarium solani tolerance in soybean
US8367899B2 (en) * 2007-12-31 2013-02-05 E I Du Pont De Neumours And Company Gray leaf spot tolerant maize and methods of production
US9049822B2 (en) 2010-11-05 2015-06-09 Agrigenetics Inc. Soybean markers linked to SCN resistance
BR112013024337A2 (pt) 2011-03-23 2017-09-26 Du Pont locus de traço transgênico complexo em uma planta, planta ou semente, método para produzir em uma planta um locus de traço transgênico complexo e construto de expressão
BR112014003664A2 (pt) 2011-08-16 2017-03-21 Pioneer Hi Bred Int método para detectar uma primeira planta de soja ou germoplasma com tolerância aprimorada a nematódeo de galhas, kit para selecionar pelo menos um aplanta de soja e polinucleotídeo isolado
PT2800811T (pt) 2012-05-25 2017-08-17 Univ California Métodos e composições para modificação de adn alvo dirigida por arn e para modulação dirigida por arn de transcrição
US20130337442A1 (en) 2012-06-15 2013-12-19 Pioneer Hi-Bred International, Inc. Genetic loci associated with soybean cyst nematode resistance and methods of use
CN103805595A (zh) * 2012-11-13 2014-05-21 南京大学 高通量克隆植物抗病基因的方法
KR20150105635A (ko) 2012-12-12 2015-09-17 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작을 위한 crispr-cas 성분 시스템, 방법 및 조성물
GB201223097D0 (en) * 2012-12-20 2013-02-06 Max Planck Gesellschaft Stable transformation of a population and a method of biocontainment using haploinsufficiency and underdominance principles
US9493843B2 (en) 2012-12-20 2016-11-15 Pioneer Hi-Bred International, Inc. Genetic loci associated with Phytophthora tolerance in soybean and methods of use
US20140178866A1 (en) 2012-12-21 2014-06-26 Pioneer Hi-Bred International, Inc. Genetic loci associated with soybean cyst nematode resistance and methods of use
US9464330B2 (en) 2012-12-21 2016-10-11 Pioneer Hi-Bred International, Inc. Genetic loci associated with soybean cyst nematode resistance and methods of use
ZA201401783B (en) 2013-03-12 2015-07-29 Dow Agrosciences Llc Soybean markers linked to phytophthora resistance
WO2014150226A1 (en) 2013-03-15 2014-09-25 Pioneer Hi-Bred International, Inc. Genetic loci associated with frogeye leaf spot resistance and brown stem rot resistance and methods of use
CN105829536A (zh) 2013-08-22 2016-08-03 纳幕尔杜邦公司 用于在不掺入选择性转基因标记的情况下,在植物基因组中产生基因修饰的方法,以及用于这种方法的组合物
EP3065540B1 (en) * 2013-11-04 2021-12-15 Corteva Agriscience LLC Optimal maize loci
WO2016007347A1 (en) 2014-07-11 2016-01-14 E. I. Du Pont De Nemours And Company Compositions and methods for producing plants resistant to glyphosate herbicide
US10513711B2 (en) 2014-08-13 2019-12-24 Dupont Us Holding, Llc Genetic targeting in non-conventional yeast using an RNA-guided endonuclease
RU2017112324A (ru) 2014-09-12 2018-10-15 Пайонир Хай-Бред Интернэшнл, Инк. Создание сайтов сайт-специфической интеграции для сложных локусов признаков в кукурузе и сое, а также способы применения
CA2966731C (en) 2014-11-06 2023-01-31 E. I. Du Pont De Nemours And Company Peptide-mediated delivery of rna-guided endonuclease into cells
MX2017015148A (es) 2015-06-03 2018-08-01 Dow Agrosciences Llc Locus genetico asociado con la podredumbre de raices y tallos por phytophthora en la soya.
US20160355840A1 (en) * 2015-06-03 2016-12-08 E I Du Pont De Nemours And Company Methods of identifying and selecting maize plants with resistance to anthracnose stalk rot
US9894857B2 (en) 2015-07-31 2018-02-20 Pioneer Hi-Bred International, Inc. Loci associated with charcoal rot drought complex tolerance in soybean
US20180258438A1 (en) 2015-11-06 2018-09-13 Pioneer Hi-Bred International, Inc. Generation of complex trait loci in soybean and methods of use
WO2017106447A1 (en) 2015-12-18 2017-06-22 Pioneer Hi-Bred International, Inc. Genetic loci associated with reproductive growth phenotypes in soybean and methods of use
CA3004914A1 (en) 2016-02-05 2017-08-10 Pioneer Hi-Bred International, Inc. Genetic loci associated with brown stem rot resistance in soybean and methods of use
EP3525578A1 (en) * 2016-10-13 2019-08-21 Pioneer Hi-Bred International, Inc. Generating northern leaf blight resistant maize
US20200199609A1 (en) 2017-09-14 2020-06-25 Pioneer Hi-Bred International, Inc. Compositions and methods for stature modification in plants
EP3694992A4 (en) * 2017-10-09 2021-07-07 Pioneer Hi-Bred International, Inc. TYPE I-E CRISPR-CAS SYSTEMS FOR EUKARYOTIC GENOMEEDITATION
WO2019236257A1 (en) 2018-06-06 2019-12-12 Huazhong Agricultural University Methods of identifying, selecting, and producing southern corn rust resistant crops
AU2019398351A1 (en) 2018-12-14 2021-06-03 Pioneer Hi-Bred International, Inc. Novel CRISPR-Cas systems for genome editing
CN111197056B (zh) * 2020-01-09 2022-07-22 中国科学院华南植物园 棉花基因叠加目标系的建立及其应用

Also Published As

Publication number Publication date
BR112023002885A2 (pt) 2023-03-21
WO2023023499A1 (en) 2023-02-23
CN117998982A (zh) 2024-05-07
WO2022040134A1 (en) 2022-02-24
CA3228155A1 (en) 2023-02-23
WO2023023419A1 (en) 2023-02-23
CA3228149A1 (en) 2023-02-23
US20230295650A1 (en) 2023-09-21
EP4387436A1 (en) 2024-06-26
EP4387435A1 (en) 2024-06-26
CN116134143A (zh) 2023-05-16
MX2023001762A (es) 2023-02-22
EP4200425A1 (en) 2023-06-28
CA3186862A1 (en) 2022-02-24
US20220056470A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
CN112351679B (zh) 鉴定、选择和产生南方玉米锈病抗性作物的方法
CN111902547B (zh) 鉴定、选择和产生疾病抗性作物的方法
CN113631722B (zh) 鉴定、选择和生产南方玉米锈病抗性作物的方法
WO2021143587A1 (en) Methods of identifying, selecting, and producing disease resistant crops
US10590490B2 (en) QTLs associated with and methods for identifying whole plant field resistance to Sclerotinia
CN111988988A (zh) 鉴定、选择和产生抗白叶枯病水稻的方法
US20240191249A1 (en) Plant pathogen effector and disease resistance gene identification, compositions, and methods of use
RU2717017C2 (ru) Молекулярные маркеры гена rlm2 резистентности к черной ножке brassica napus и способы их применения
US20210222189A1 (en) Methods of identifying, selecting, and producing southern corn rust resistant crops
US20230151382A1 (en) Plant pathogen effector and disease resistance gene identification, compositions, and methods of use
US20220282338A1 (en) Methods of identifying, selecting, and producing anthracnose stalk rot resistant crops
CN117812999A (zh) 鉴定、选择和产生炭疽茎腐病抗性作物的方法
US11661609B2 (en) Methods of identifying, selecting, and producing disease resistant crops

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication