CN117699815A - 一种强化沸石碳捕集与吸附除湿性能的后处理改性方法 - Google Patents

一种强化沸石碳捕集与吸附除湿性能的后处理改性方法 Download PDF

Info

Publication number
CN117699815A
CN117699815A CN202311732307.6A CN202311732307A CN117699815A CN 117699815 A CN117699815 A CN 117699815A CN 202311732307 A CN202311732307 A CN 202311732307A CN 117699815 A CN117699815 A CN 117699815A
Authority
CN
China
Prior art keywords
molecular sieve
adsorption
zeolite
post
modification method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311732307.6A
Other languages
English (en)
Inventor
郄志鹏
张新翰
王文贺
陆轩鹏
董乐
胡明慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202311732307.6A priority Critical patent/CN117699815A/zh
Publication of CN117699815A publication Critical patent/CN117699815A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,该方法将分子筛置于过渡金属/碱金属羧酸盐与无机酸不同比例混合溶液,或过渡金属/碱金属无机盐与有机羧酸不同比例混合溶液中进行一步处理,以实现对分子筛孔道、骨架极性和配位阳离子的协同调控,进而强化其对CO2和水蒸气等吸附质的吸附性能。本发明所得分子筛硅铝比在10‑40之间可调,金属负载量在0.1%‑7%之间可调,所得沸石分子筛相比于原始样品对水蒸气、烟气浓度二氧化碳(15vol%)和室内空气浓度二氧化碳(1000‑5000ppm)吸附容量提高20%‑40%不等。本方法步骤少、操作简单、产率高,有望实现工业规模化放大生产与应用。

Description

一种强化沸石碳捕集与吸附除湿性能的后处理改性方法
技术领域
本发明涉及分子筛技术领域,具体涉及一种分子筛吸附剂的后处理改性方法及其在吸附除湿和碳捕集领域中的应用。
背景技术
二氧化碳是一种温室气体,它能够吸收地球的红外辐射,引起近地面大气温度的增高,从而导致气温升高。从大气中捕集二氧化碳,对缓解温室效应有重要的作用。此外,从大气中捕集的二氧化碳也可以作为气肥或制冷剂等进行重利用。
室内环境除湿是制冷行业的重要发展技术之一,吸附法是最常用的除湿方法之一,其核心在于高性能固体吸附剂材料的开发。
沸石分子筛是一种具有分子筛作用的晶态硅铝酸盐,具有高比表面积、可调节的疏水和亲水性、良好的离子交换能力和强酸性,可以在苛刻的水热和化学条件下保持良好的稳定性,因此被广泛应用在气体吸附分离等领域。MOR分子筛是一种具有丝光沸石(Mordenite)拓扑结构的分子筛,它的孔道结构由十二元环和八元环组成,具有较高的酸性和稳定性。其孔道大小略大于二氧化碳分子直径0.33nm和水分子0.28nm,使其在吸附二氧化碳和吸附除湿方面具有优势。
相较于液体吸收法,固体吸附剂材料的吸附能耗低于吸收法。固体吸附剂材料具有安全性和环境友好性,而吸收法使用的胺类溶液可能会产生有毒的副产物,对环境和人体健康造成威胁。固体吸附剂材料具有多样性和可调控性,可以通过改变材料的组成、结构和功能化来优化其对二氧化碳和水蒸气的吸附性能,而吸收法使用的溶液的有稳定性较差、易于渗漏等缺点。
特拉华大学的Pham等考察了碱金属交换的SSZ-13分子筛的二氧化碳/甲烷吸附分离能力,发现所有的分子筛都对二氧化碳表现出更强的亲和力,其中Li-SSZ-13的吸附容量和选择性更高,这是由于Li+的电场强度更高。ArefiPour等比较了斜发沸石和Na-X分子筛分离二氧化碳/甲烷的能力,发现Na-X上二氧化碳的吸附热更高,吸附力更强。在穿透实验中,二氧化碳在Na-X分子筛上穿透时间更长,是更有前景的二氧化碳分离材料。研究表明,上述强化可归结于金属阳离子与二氧化碳分子间的阳离子-四极矩相互作用,强化了低浓度二氧化碳在分子筛中的吸附能力。
此外,普遍认为,具有较大微孔孔容和相对较强的骨架极性的分子筛,可实现对水蒸气的高效吸附捕集。因此,面向上述结构需求,需要开发分子筛高效、简便的后处理方法,以强化其对二氧化碳和水蒸气的吸附,甚至有望实现在室内环境中碳减排和吸附除湿协同。
发明内容
本发明的目的是提供一种在一步内实现对分子筛孔道、骨架极性和配位阳离子的协同调控,进而强化其对CO2和水蒸气等吸附质的吸附性能的改性方法。
为了实现上述目的,本发明提供一种MOR分子筛的改性方法,所述方法包括以下步骤:
(1)预处理分子筛,采用煅烧的方式去除分子筛内部残留的模板剂和杂质;
(2)将6mol/L的盐酸与乙二胺四乙酸铁钠和MOR分子筛混合,得到混合料;
(3)将所述混合料置于反应釜中进行水热反应,然后进行洗涤、烘干和焙烧;
所述浓盐酸、MOR分子筛和乙二胺四乙酸铁钠的摩尔比为1:0.004:0.0008
优选地,在步骤(2)中,所述搅拌混合的时间为3h。
优选地,在步骤(3)中,水热反应的条件包括:温度为100℃,时间为3h。
本发明第二方面提供上述方法制备的改性MOR分子筛。1)改性MOR分子筛相比于原始的分子筛具有更高的硅铝比,整体稳定性更佳;2)改性后MOR分子筛内部的骨架外铝(非骨架铝,如游离在骨架外的5、6配位铝)结构减少,使得原有的孔隙结构堵塞得以疏通1;3)在分子筛的骨架电荷由碱金属/过渡金属阳离子补偿,为水、二氧化碳等具有偶极矩、四极矩分子的吸附提供了吸附位点。
本发明第三方面提供上述改性MOR分子筛在二氧化碳和水蒸气吸附领域中的应用。在应用层面的优势在于:1)改性MOR分子筛内碱金属/过渡金属阳离子为二氧化碳和水蒸气提供了更为丰富的吸附位点,有助于强化水分子-极性位点和二氧化碳分子四极矩-碱金属位点间的相互作用,提高对水蒸气和二氧化碳的饱和吸附容量;2)由前所述,改性MOR分子筛内孔隙的骨架外铝被去除,孔隙通达性更为优秀,因此,有利于二氧化碳和水分子在其中的扩散与赋存,从宏观上,强化了吸附容量和吸附动力学。
本发明提供了一种对环境友好的MOR分子筛的合成方法,制备过程在一步内实现对分子筛孔道、骨架极性和配位阳离子的协同调控,所述方法操作简单,制备的改性MOR分子筛为介孔结构,在二氧化碳吸附等领域具有良好的应用前景。
附图说明
图1是乙二胺四乙酸铁钠改性MOR分子筛的XRD图谱;图1-1是乙二胺四乙酸铁钠改性MOR分子筛的固体核磁共振谱图。
图2是乙二胺四乙酸铁钠改性MOR分子筛对二氧化碳的吸附等温线图。
图3是乙二胺四乙酸铁钠改性MOR分子筛对水的吸附等温线图。
图4是氯化铁改性MOR分子筛对二氧化碳的吸附等温线图。
图5是氯化铁改性MOR分子筛对水的吸附等温线图。
图6是硅铝比为12的原始MOR分子筛的XRD图谱。图6-1是硅铝比为12的原始MOR分子筛的固体核磁共振谱图。
图7是硅铝比为12的原始MOR分子筛对二氧化碳的吸附等温线图。
图8是硅铝比为12的原始MOR分子筛对水的吸附等温线图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
实施例1:乙二胺四乙酸铁钠+盐酸改性MOR分子筛结构表征及其对CO2和H2O吸附性能
本发明的发明人在研究过程中意外发现,在MOR分子筛的改性过程中,通过加入乙二酸四乙酸铁钠,可以在酸性的条件下一步即可完成MOR分子筛的孔道结构改善和在孔道内部引入铁离子。基于此,完成了本发明。
本发明一方面提供一种锆硅CHA分子筛的制备方法,所述方法包括以下步骤:
(1)预处理分子筛,采用煅烧的方式去除分子筛内部残留的模板剂和杂质;
(2)将6mol/L的盐酸与乙二胺四乙酸铁钠和MOR分子筛混合,得到混合料;
(3)将所述混合料置于反应釜中进行水热反应,然后进行洗涤、烘干和焙烧;
所述浓盐酸、MOR分子筛和乙二胺四乙酸铁钠的摩尔比为1:0.004:0.0008。
本发明所述的方法,采用一步改性的方法制备了铁离子改性MOR分子筛,与传统的改性方法相比,所需的时间、物料更少。改性的MOR分子筛具有介孔结构,孔道内有丰富的铁离子,在吸附二氧化碳和水方面表现出众。
实施例2:氯化铁改性MOR分子筛结构表征及其对CO2和H2O吸附性能
使用氯化铁改性MOR分子筛:
(1)预处理分子筛,采用煅烧的方式去除分子筛内部残留的模板剂和杂质;
(2)将6mol/L的盐酸与氯化铁和MOR分子筛混合,得到混合料;
(3)将所述混合料置于反应釜中进行水热反应,然后进行洗涤、烘干和焙烧;
所述浓盐酸、MOR分子筛和氯化铁摩尔比为1:0.004:0.0008。
实施例3:原始MOR分子筛结构及其对CO2和H2O吸附性能。
使用硅铝比为12的原始MOR分子筛。
A)图1是乙二胺四乙酸铁钠改性MOR分子筛的XRD图谱;相比于图6是硅铝比为12的原始MOR分子筛的XRD图谱,该图谱展现出了如下特征:1)峰强度下降;2)XRD特征峰右移。其原因为,1)乙二胺四乙酸的螯合作用,导致MOR分子筛内部分骨架铝被脱除,使得硅铝比有一定程度提高,这也是吸附剂稳定性得以强化的原因;2)铁的原子半径小于铝,引入分子筛后整体晶格系数减小,导致X射线衍射的特征峰向右偏移。上述事实均证明了,分子筛骨架结构被成功优化,且金属原子被成功引入。
B)图1-1是乙二胺四乙酸铁钠改性MOR分子筛的27Al固体核磁共振图谱;相比于图6-1硅铝比为12的原始MOR分子筛的27Al固体核磁共振图谱,该图谱展现出了如下特征:位于化学位移0ppm处的6配位铝,即分子筛骨架外铝的重要组成部分,相对强度明显降低,这说明6配位骨架外铝的份额在上述改性后显著减少,减少了对分子筛孔道内吸附空间的堵塞。
C)图2是乙二胺四乙酸铁钠改性MOR分子筛对二氧化碳的吸附容量-时间曲线图,相比于图4氯化铁改性MOR分子筛对二氧化碳的吸附容量-时间曲线图可以看出,两者在15%体积分数下的CO2饱和吸附容量接近,均为58mg/g。然而乙二胺四乙酸铁钠改性MOR分子筛展现出了更快的吸附动力学,在初始1分钟时即可达到45mg/g,而氯化铁改性MOR分子筛分子筛仅可达到25mg/g,证实了其快速吸附的效果。与图7硅铝比为12的原始MOR分子筛对二氧化碳的吸附容量-时间曲线相比,乙二胺四乙酸铁钠改性MOR分子筛在15%体积分数下的CO2饱和吸附容量显著更高(58mg/g>47mg/g),且初始1分钟内的快速吸附容量更大(45mg/g>23mg/g),证实了改性后的动力学优异效果。
D)图3是乙二胺四乙酸铁钠改性MOR分子筛对水的吸附容量-时间曲线图,相比于图4氯化铁改性MOR分子筛对水的吸附容量-时间曲线图可以看出,前者对15%相对湿度水蒸气的饱和吸附容量更高,为93mg/g,而氯化铁改性MOR分子筛分子筛仅可达到83mg/g。与图8硅铝比为12的原始MOR分子筛对水的吸附容量-时间曲线相比,乙二胺四乙酸铁钠改性MOR分子筛对水的饱和吸附容量显著更高。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (9)

1.一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,其特征在于,包括如下步骤:
1)对沸石分子筛进行预处理:采用煅烧去除沸石分子筛内部残留的模板剂和杂质;
2)配置一定质量分数的溶液;采用超声处理使溶液充分分散并溶解;所述溶液为过渡金属/碱金属羧酸盐溶液,或配置过渡金属/碱金属无机盐溶液;所述过渡金属/碱金属羧酸盐溶液浓度范围为0.1mol/L-1mol/L,过渡金属/碱金属无机盐溶液浓度范围为0.5mol/L-2mol/L;
3)于步骤2)所述溶液中逐滴加入无机酸或有机羧酸酸化至pH值为1-4的混合溶液,并加热混合溶液至50-150℃;
4)于步骤3)中的混合溶液中加入将步骤1)中一定质量的沸石分子筛,遵循的液固比例为:每10mL步骤3)中的混合溶液中加入0.2-1g沸石分子筛,并不断搅拌,持续加热2-10小时,获得悬浊液;
5)将步骤4)所获得悬浊液中的固体、液体进行分离,并采用去离子水对分离得到的固体进行多次水洗,直至水洗液的pH值为中性,获得沸石分子筛固体;对所得沸石分子筛固体于50-110℃下持续干燥10-24小时;
6)对干燥后的沸石分子筛固体于350-600℃下进行煅烧,煅烧气氛为空气;完成沸石分子筛的改性;
7)对改性后的沸石分子筛采用重量法吸附仪即质量传感器,或容量法吸附仪即压力传感器进行测试;吸附质选取体积浓度为0.04-30%的CO2,或相对湿度为10-100%的水蒸气,吸附温度为室温-100℃。
2.如权利要求1所述的一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,其特征在于,所述过渡金属/碱金属羧酸盐溶液为草酸铁、草酸锰、草酸钠、草酸锂、草酸钾,或柠檬酸铁、柠檬酸钠、柠檬酸钾,或乙二胺四乙酸钠铁、乙二胺四乙酸钠、乙二胺四乙酸钾,或二乙烯三胺五乙酸钠;所述过渡金属/碱金属的无机盐包括氯化铁、氯化锰、氯化钠、氯化钾,或硝酸铁、硝酸锰、硝酸钠硝酸钾,或硫酸铁、硫酸亚铁、硫酸钾、硫酸钠。
3.如权利要求1所述的一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,其特征在于,所述无机酸或有机羧酸为草酸、柠檬酸、乙二胺四乙酸、酒石酸、盐酸、稀硝酸或稀硫酸。
4.如权利要求1所述的一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,其特征在于,所述步骤4)中混合溶液的加热方法包括水浴/油浴加热、微波场辅助加热、平板加热或热风加热。
5.如权利要求1所述的一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,其特征在于,所述步骤5)中,固体、液体进行分离的沸石分子筛种类为丝光沸石MOR、Y型、Beta型、MFI型,硅铝比为5-15。
6.如权利要求1所述的一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,其特征在于,所述固体、液体分离方法为自然静置分离、高速离心分离或负压抽滤分离;所述高速离心分离的转速为3000-12000rpm。
7.如权利要求1所述的一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,其特征在于,步骤5)中干燥的装置为热风干燥箱、自然对流干燥或平板加热干燥。
8.如权利要求1所述的一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,其特征在于,步骤6)中煅烧的装置为马弗炉或管式炉。
9.如权利要求1所述的一种强化沸石碳捕集与吸附除湿性能的后处理改性方法,其特征在于,所述重量法吸附仪每次实验放置吸附剂质量为10-100mg,气体流量为20-500mL/min,重量法传感器天平精度为0.001mg;所述容量法吸附仪的空腔体积为1-50cm3,其内部吸附质分压由电控阀精准调控。
CN202311732307.6A 2023-12-16 2023-12-16 一种强化沸石碳捕集与吸附除湿性能的后处理改性方法 Pending CN117699815A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311732307.6A CN117699815A (zh) 2023-12-16 2023-12-16 一种强化沸石碳捕集与吸附除湿性能的后处理改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311732307.6A CN117699815A (zh) 2023-12-16 2023-12-16 一种强化沸石碳捕集与吸附除湿性能的后处理改性方法

Publications (1)

Publication Number Publication Date
CN117699815A true CN117699815A (zh) 2024-03-15

Family

ID=90160203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311732307.6A Pending CN117699815A (zh) 2023-12-16 2023-12-16 一种强化沸石碳捕集与吸附除湿性能的后处理改性方法

Country Status (1)

Country Link
CN (1) CN117699815A (zh)

Similar Documents

Publication Publication Date Title
Yang et al. CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions
CN102784624B (zh) 一种炭包覆磁性吸附材料的制备方法及其用途
Wang et al. Functionalized metal–organic framework as a new platform for efficient and selective removal of cadmium (II) from aqueous solution
JP4904417B2 (ja) ベータ型ゼオライト及びその製造方法
CN103084144A (zh) 一种用于吸附挥发性有机污染物的硅藻土基多孔复合材料及其制备方法
CN110876923B (zh) 一种吸附剂及其制备方法和应用
MX2008011634A (es) Seleccion de intercambio de cation en ets-4 para controlar la resistencia de absorcion y el diametro de poro efectivo.
Kussainova et al. Structural investigation of raw clinoptilolite over the Pb2+ adsorption process from phosphoric acid
CN116440858A (zh) 具有高外表面积的沸石吸附剂及其用途
Wang et al. Mesoporous hollow silicon spheres modified with manganese ion sieve: Preparation and its application for adsorption of lithium and rubidium ions
KR20110121288A (ko) 이산화탄소 흡수용 아민-제올라이트 복합체 및 이의 제조방법
AU2017367216B2 (en) Zeolite adsorbent material, method of preparation and use for non-cryogenic separation of industrial gases
Wang et al. Effect of extra-framework cation in ion-exchanged ZSM-5 from rice husk ash on CO2 adsorption
KR20180051455A (ko) Merlinoite 제올라이트를 이용한 이산화탄소의 선택적 분리 방법
Cui et al. Regulating the particle sizes of NaA molecular sieves toward enhanced heavy metal ion adsorption
CN110451520A (zh) 一种磁性分子筛/秸秆炭复合材料及其制备方法和应用
CN117699815A (zh) 一种强化沸石碳捕集与吸附除湿性能的后处理改性方法
Wei et al. Synthesis and characterization of MCM-49/MCM-41 composite molecular sieve: an effective adsorbent for chromate from water
WO2000040332A1 (en) Lithium-based zeolites containing silver and copper and use thereof for selective adsorption
CN116477637B (zh) 一种过渡金属原子预占位-二次水热同晶取代的分子筛及其制备方法和应用
KR20170137999A (ko) Merlinoite 제올라이트를 이용한 이산화탄소의 선택적 분리 방법
TWI729647B (zh) 用於非低溫氣體分離之沸石聚集材料、製備方法及用途
CN109422275B (zh) 一种快速水热合成h-lta型分子筛及其制备方法及其应用
JPH1095611A (ja) ガス吸着用ゼオライトおよびその製法ならびにこれを用いたガス吸着分離方法
Yulianti et al. Removal of Cu and Pb from Wastewater Using Modified Natural Zeolite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination