CN117624559A - 一类双噻吩氮杂异靛蓝聚合物及其制备方法与应用 - Google Patents

一类双噻吩氮杂异靛蓝聚合物及其制备方法与应用 Download PDF

Info

Publication number
CN117624559A
CN117624559A CN202311494190.2A CN202311494190A CN117624559A CN 117624559 A CN117624559 A CN 117624559A CN 202311494190 A CN202311494190 A CN 202311494190A CN 117624559 A CN117624559 A CN 117624559A
Authority
CN
China
Prior art keywords
formula
polymer
aza
specifically
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311494190.2A
Other languages
English (en)
Inventor
于贵
韦旭扬
车前
张卫锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN202311494190.2A priority Critical patent/CN117624559A/zh
Publication of CN117624559A publication Critical patent/CN117624559A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1428Side-chains containing oxygen containing acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3327Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkene-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一类双噻吩氮杂异靛蓝聚合物及其制备方法与其在场效应晶体管中的应用。式(Ⅰ)所示。该类双噻吩氮杂异靛蓝聚合物的原料获取简单,合成产率较高,且适合大批量制备;该类双噻吩氮杂异靛蓝聚合物具有优异的热稳定性,强的近红外吸收,与电极匹配的带隙,好的成膜性,可通过溶液加工方法制备有机场效应晶体管器件;以该类双噻吩氮杂异靛蓝聚合物为活性层材料制备的有机场效应晶体管具有较好的空穴传输性能,最高空穴迁移率可达到4.59cm2V‑1s‑1,具有广阔的发展前景。

Description

一类双噻吩氮杂异靛蓝聚合物及其制备方法与应用
技术领域
本发明属于有机半导体材料技术领域,具体涉及一类双噻吩氮杂异靛蓝聚合物及其制备方法与其在场效应晶体管中的应用。
背景技术
有机场效应晶体管(Organic Field-Effect Transistors,简称OFETs)是一类新型电子器件,其与传统的无机场效应晶体管的主要区别在于OFETs采用了有机半导体材料作为活性层。与硅基等半导体材料相比,有机半导体材料具有如下优点,1)其基础骨架为C-H结构,可通过对骨架分子结构的调控与修饰来调节材料的光电性能,以满足不同的器件需求;2)有机半导体材料具有本征柔性的优点,优异的可拉伸性、可弯折性使其在柔性可穿戴设备、柔性显示器件等领域有广泛的应用前景;3)有机材料的溶解性较好,因此可通过溶液加工的方法进行大面积制备,如印刷、喷墨打印、棒涂等,加工工艺及制造成本相较于无机材料大幅下降。因此,基于有机半导体材料的OFETs备受国内外科研机构与高科技企业的关注,是近些年来有机电子学领域的研究重点与热点之一。
OFETs器件包括源漏电极、介电层、有机活性层和栅电极等组成部分。根据有机半导体材料与器件结构或工艺的不同,OFETs的器件性能会随之变化。OFETs的几个重要性能参数为迁移率(μ)、开关比(Ion/Ioff)和阈值电压(VT)。其中OFETs的迁移率越高则器件的响应速度越快,功耗越小,开关比越高则表明器件具有更好的数字逻辑功能以及更高的设备可靠性与稳定性,阈值电压越低则器件会有更高的响应速度和更好的兼容性。有机半导体材料又可分为有机小分子和聚合物两种半导体材料,其中聚合物半导体材料具有更高的溶解性以及更好的成膜性,更适用于大面积溶液制备。此外,通过调控聚合物的骨架结构也可实现更紧密的分子堆积,从而有利于构筑高性能的OFETs。
随着越来越多研究者的加入,聚合物基OFETs在实验室中已经取得了巨大的研究成果,这预示着其在未来电子器件市场,尤其是柔性电子器件市场中的巨大潜力和机遇。然而,为了满足实际应用,其在高性能、稳定性等方面仍面临着许多挑战。为了解决上述问题,还需要不断地开发新的聚合物半导体材料以及对器件结构和制造工艺进行优化,此外对聚合物半导体的理论研究也应该更加深入。因此继续开发新型聚合物材料具有十分重要的理论意义和经济价值,它不但能够促进本领域的快速发展,推动其实现商业化应用,也有助于我们发展具有自主知识产权的科研成果,为我们占领新兴科技高地提供机遇。
发明内容
本发明的目的是提供一类双噻吩氮杂异靛蓝聚合物及其制备方法与其在场效应晶体管中的应用。本发明的聚合物具有好的热稳定性,宽的近红外吸收,合适的前线轨道能级,所制备的OFETs具有优异的空穴传输性能。
本发明所提供的双噻吩氮杂异靛蓝聚合物,其结构通式如式(Ⅰ)所示:
式(Ⅰ)中,R1和R2各自独立地选自C5-C80(如C10-C60、C20-C50、C20-C30)的直链或支链烷基中的任意一种;Π1和Π2各自独立地选自下述结构中任意一种:
式(1)-式(13)中的*表示连接位点;
式(Ⅰ)中n表示聚合度,为5-1000。
更具体的,式(Ⅰ)中,R1和R2分别为2-癸基十四烷基和4-癸基十四烷基,Π1为式(1)、式(2)或式(8),Π2为式(8)。
本发明还提供了上述式(Ⅰ)所示聚合物的合成方法,包括如下步骤:
(1a)在惰性气氛中,将式(Ⅱ)所示化合物在钯催化剂和氧化剂的作用下进行自偶联反应,得到式(Ⅲ)所示化合物;
(2a)在惰性气氛中,将式(Ⅲ)所示化合物与式(Ⅴ)所示化合物进行羟醛缩合反应,得到式(Ⅵ)所示化合物;
(3a)在惰性气氛中,将式(Ⅵ)所示化合物与式(Ⅹ)所示化合物在钯催化剂作用下反应,即可得到式(Ⅰ)所示聚合物,其中,Π1为式(1),Π2为式(8);
或,
(1b)在惰性气氛中,将式(Ⅱ)所示化合物与溴代试剂反应,得到式(Ⅳ)所示化合物;
(2b)在惰性气氛中,将式(Ⅳ)所示化合物与式(Ⅶ)所示化合物经过钯催化剂催化的偶联反应,得到式(Ⅷ)所示化合物;
(3b)在惰性气氛中,将式(Ⅷ)所示化合物与式(Ⅴ)所示化合物进行羟醛缩合反应,得到式(Ⅸ)所示化合物;
(4b)在惰性气氛中,将式(Ⅸ)所示化合物与式(Ⅹ)所示化合物在钯催化剂作用下反应,即可得到式(Ⅰ)所示聚合物,其中,Π1为式(2),Π2为式(8);
(1c)在惰性气氛中,将式(Ⅳ)所示化合物与式(Ⅹ)所示化合物经过钯催化剂催化的偶联反应,得到式(Ⅺ)所示化合物;
(2c)在惰性气氛中,将式(Ⅺ)所示化合物与式(Ⅴ)所示化合物经过羟醛缩合反应,得到式(Ⅻ)所示化合物;
(3c)在惰性气氛中,将式(Ⅻ)所示化合物与式(Ⅹ)所示化合物在钯催化剂作用下反应,即可得到式(Ⅰ)所示聚合物,其中,Π1为式(8),Π2为式(8)。
其中,
上述制备方法步骤(1a)中,所述钯催化剂可为三(二亚苄基丙酮)二钯,醋酸钯,[1,1′-双(二苯基膦)二茂铁]二氯化钯中的一种,具体可为醋酸钯,
所述氧化剂具体可为氟化银,
所述催化剂和氧化剂与化合物(Ⅱ)的投料比分别可为0.03-0.2倍和0.5-3倍,具体可分别为0.1倍和2倍;
所述反应在有机溶剂中进行,所述有机溶剂可为二甲基亚砜,N,N-二甲基甲酰胺,甲苯,1,4-二氧六环中的一种或混合使用,具体可为二甲基亚砜和1,4-二氧六环以1:1体积比搭配;
所述自偶联反应的温度可为60-120℃,具体可为90℃;时间可为12-48小时,具体可为24小时。
上述制备方法步骤(2a)中,式(Ⅲ)所示化合物与式(Ⅴ)所示化合物的投料比可为1:2-1:3,具体可为1:2.2;
所述羟醛缩合反应在催化剂存在下进行,所述催化剂可为对甲苯磺酸,与化合物(Ⅲ)的投料比可为0.1:1-1:1,具体可为0.5:1。
所述羟醛缩合反应在溶剂中进行,所述溶剂可为甲苯,三氯甲烷,1,4-二氧六环中的一种,具体可为甲苯。
所述羟醛缩合反应的温度可为60-120℃,具体可为100℃;时间可为3-24小时,具体可为12小时。
上述制备方法步骤(3a)中,式(Ⅵ)所示化合物与式(Ⅹ)所示化合物的投料比为1:1;
所述钯催化剂可为四(三苯基膦)钯,三(二亚苄基丙酮)二钯/三(邻甲苯基)膦,三(二亚苄基丙酮)二钯/三苯基膦中的一种,具体可为三(二亚苄基丙酮)二钯/三(邻甲苯基)膦,其与化合物(Ⅹ)的投料比分别为0.01:1-0.05:1和0.05:1-0.50:1,具体可为0.03:1和0.24:1。
所述反应在溶剂中进行,所述溶剂可为甲苯,氯苯,二氯苯,具体可为氯苯。
所述反应的温度可为80-150℃,具体可为120℃;时间可为0.05-48小时,具体可为0.1小时。
上述制备方法步骤(1b)中,所述溴代试剂可为N-溴代丁二酰亚胺,投料比可为化合物(Ⅱ)的1-5倍,具体可为2.5倍;
所述反应在溶剂中进行,所述溶剂可为三氯甲烷,N,N-二甲基甲酰胺,冰乙酸中的一种,具体可为N,N-二甲基甲酰胺。
所述反应的温度可为0-50℃,具体可为25℃;时间可为12-72小时,具体可为48小时。
上述制备方法步骤(2b)中,式(Ⅳ)所示化合物与式(Ⅶ)所示化合物的投料比可为2:1-3:1,具体可为2:1;
所述钯催化剂可为四(三苯基膦)钯,三(二亚苄基丙酮)二钯/三(邻甲苯基)膦,三(二亚苄基丙酮)二钯/三苯基膦中的一种,具体可为四(三苯基膦)钯,与式(Ⅶ)所示化合物的投料比可为0.03:1-0.1:1,具体可为0.05:1。
所述偶联反应在溶剂中进行,所述溶剂可为甲苯,三氯甲烷,1,4-二氧六环中的一种,具体可为甲苯。
所述偶联反应的温度可为80-120℃,具体可为110℃;时间可为6-24小时,具体可为12小时。
上述制备方法步骤(3b)中,式(Ⅷ)所示化合物与式(Ⅴ)所示化合物的投料比可为1:2-1:3,具体可为1:2.2;
所述羟醛缩合反应在催化剂存在下进行,所述催化剂可为对甲苯磺酸,与式(Ⅷ)所示化合物的投料比可为0.1:1-1:1,具体可为0.5:1。
所述羟醛缩合反应的溶剂可为甲苯,三氯甲烷,1,4-二氧六环中的一种,具体可为甲苯。
所述羟醛缩合反应的温度可为60-120℃,具体可为110℃;时间可为3-24小时,具体可为12小时。
上述制备方法步骤(4b)中,式(Ⅸ)所示化合物与式(Ⅹ)所示化合物的投料比为1:1;
钯催化剂可为四(三苯基膦)钯,三(二亚苄基丙酮)二钯/三(邻甲苯基)膦,三(二亚苄基丙酮)二钯/三苯基膦中的一种,具体可为三(二亚苄基丙酮)二钯/三(邻甲苯基)膦,其与化合物(Ⅹ)的投料比分别为0.01:1-0.05:1和0.05:1-0.50:1,具体可为0.03:1和0.24:1。
所述反应的溶剂可为甲苯,氯苯,二氯苯,具体可为氯苯。
所述反应的温度可为80-150℃,具体可为120℃;时间可为0.05-48小时,具体可为0.1小时。
上述制备方法中,步骤(1c)中,式(Ⅳ)所示化合物与式(Ⅹ)所示化合物的投料比可为2:1-3:1,具体可为2:1;
所述钯催化剂可为四(三苯基膦)钯,三(二亚苄基丙酮)二钯/三(邻甲苯基)膦,三(二亚苄基丙酮)二钯/三苯基膦中的一种,具体可为四(三苯基膦)钯,与式(Ⅹ)所示化合物的投料比可为0.03:1-0.1:1,具体可为0.05:1。
所述偶联反应在溶剂中进行,所述溶剂可为甲苯,三氯甲烷,1,4-二氧六环中的一种,具体可为甲苯。
所述偶联反应的温度可为80-120℃,具体可为110℃;时间可为6-24小时,具体可为12小时。
上述制备方法中,步骤(2c)中式(Ⅺ)所示化合物与式(Ⅴ)所示化合物的投料比可为1:2-1:3,具体可为1:2.2;
所述羟醛缩合反应在催化剂存在下进行,所述催化剂具体可为对甲苯磺酸,与(Ⅺ)所示化合物Ⅲ)的投料比可为0.1:1-1:1,具体可为0.5:1。
所述羟醛缩合反应在溶剂中进行,所述溶剂可为甲苯,三氯甲烷,1,4-二氧六环中的一种,具体可为甲苯。
所述羟醛缩合反应的温度可为60-120℃,具体可为110℃;时间可为3-24小时,具体可为12小时。
上述制备方法步骤(3c)中,式(Ⅻ)所示化合物与式(Ⅹ)所示化合物的投料比为1:1;
所述钯催化剂可为四(三苯基膦)钯,三(二亚苄基丙酮)二钯/三(邻甲苯基)膦,三(二亚苄基丙酮)二钯/三苯基膦中的一种,具体可为三(二亚苄基丙酮)二钯/三(邻甲苯基)膦,其与化合物(Ⅹ)的投料比分别为0.01:1-0.05:1和0.05:1-0.50:1,具体可为0.03:1和0.24:1。
所述反应在溶剂中进行,所述溶剂可为甲苯,氯苯,二氯苯,具体可为氯苯。
所述反应的温度可为80-150℃,具体可为120℃;时间可为0.05-48小时,具体可为0.1小时。
上述反应中,所述中间化合物的烷基链R1和R2为与化合物(Ⅰ)保持一致。
上述反应中惰性气氛可为氩气,氮气,具体可为氩气气氛。
本发明的再一个目的是提供一种有机场效应晶体管。
本发明所提供的有机场效应晶体管,其有机半导体活性层由式(Ⅰ)所示双噻吩氮杂异靛蓝聚合物制成。
上述有机场效应晶体管中,所述有机半导体活性层的制备方法为溶液旋涂式(Ⅰ)所示双噻吩氮杂异靛蓝聚合物,并进行退火处理。
所述旋涂溶液中溶剂可为氯苯,二氯苯,四氢化萘,氯萘中的一种,具体可为二氯苯;退火温度可为100-200℃,具体可为150℃;退火时间可为5-60分钟,具体可为10分钟;
所制备的聚合物薄膜厚度可为10-100nm,具体可为50nm。
本发明具有如下优点:
1、该类双噻吩氮杂异靛蓝聚合物的原料获取简单,合成产率较高,且适合大批量制备;
2、该类双噻吩氮杂异靛蓝聚合物具有优异的热稳定性,强的近红外吸收,与电极匹配的带隙,好的成膜性,可通过溶液加工方法制备有机场效应晶体管器件;
3、以该类双噻吩氮杂异靛蓝聚合物为活性层材料制备的有机场效应晶体管具有较好的空穴传输性能,最高空穴迁移率可达到4.59cm2 V-1s-1,具有广阔的发展前景。
附图说明
图1为本发明式(Ⅰ)所示双噻吩氮杂异靛蓝聚合物的合成路线图。
图2为本发明实施例1、2、3所述新型双噻吩氮杂异靛蓝聚合物的合成路线图。
图3为本发明实施例1、2、3所述新型双噻吩氮杂异靛蓝聚合物的热重分析及差示扫描量热曲线。
图4为本发明实施例1、2、3所述新型双噻吩氮杂异靛蓝聚合物在溶液态和薄膜态下的紫外-可见光-近红外吸收光谱。
图5为本发明实施例1、2、3所述新型双噻吩氮杂异靛蓝聚合物的紫外光电子能谱和反光电子能谱。
图6为本发明所构筑的有机场效应晶体管结构示意图。
图7为基于本发明的代表性聚合物P1、P2、P3所制备的有机场效应晶体管的转移和输出曲线。
具体实施方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中所用反应物1,3分别参照文献Chem.Commun.2012,48,3939–3941和Macromolecules 2018,51,7093–7103合成,其余反应物、催化剂、溶剂均从商业途径获得。
实施例1、聚合物P1合成(式(Ⅰ)中R1和R2分别为2-癸基十四烷基和4-癸基十四烷基,Π1为单键,Π2为噻吩乙烯噻吩)(其合成路线如图2所示)
1)归属式Ⅲ的化合物2的合成
向100毫升双颈圆底烧瓶中添加1(2.8克,5.7毫摩尔)、AgF(1.53克,12.0毫摩尔)、醋酸钯(129毫克,0.57毫摩尔)、30毫升二甲基亚砜和30毫升1,4-二氧六环,将反应体系在氩气氛下于90℃搅拌24小时。冷却至室温后,将混合物倒入水中并用二氯甲烷萃取。收集有机相,减压除去溶剂。将残余物通过硅胶柱色谱纯化,用二氯甲烷作为洗脱剂,得到目标产物1.17克,产率42%。
结构表征数据如下:
质谱:HRMS(m/z):[M+H]+:977.7204。
氢谱:1H NMR(300MHz,CDCl3)δ(ppm)6.94(s,1H),3.57(d,J=7.2Hz,2H),1.90-1.73(m,1H),1.42-1.15(m,40H),0.87(t,J=6.5,6H)。
碳谱:13C NMR(75MHz,CDCl3)δ(ppm)172.48、164.97、160.86、151.79、111.76、110.95、46.82、37.21、32.08、32.06、31.50、30.10、29.84、29.80、29.77、29.73、29.51、29.49、26.46、22.84、14.26。
2)归属式Ⅵ的化合物M1的合成
向100毫升的二颈圆底烧瓶中添加2(980毫克,1.0毫摩尔)、3(1.21克,2.2毫摩尔)、对甲苯磺酸(87毫克,0.50毫摩尔)和60毫升甲苯。将反应体系在氩气氛下回流过夜。冷却至室温后,用二氯甲烷萃取混合物。收集有机相,减压除去溶剂。将残余物通过硅胶柱色谱纯化,用石油/二氯甲烷(v/v=2:1)作为洗脱剂,得到目标产物1.24克,产率61%。
结构表征数据如下:
质谱:HRMS(m/z):[M+H]+:2038.3663。
氢谱:1H NMR(400MHz,CDCl3)δ(ppm)8.91(d,J=8.1Hz,1H),7.07(d,J=8.2Hz,1H),7.00(s,1H),3.91(t,J=7.4Hz,2H),3.66(d,J=7.6Hz,2H),2.01-1.88(m,1H),1.84-1.70(m,2H),1.46-1.12(m,79H),0.92-0.77(m,12H)。
碳谱:13C NMR(101MHz,CDCl3)δ(ppm)170.17,168.72,156.51,154.93,147.99,141.67,136.80,129.41,121.86,118.70,116.91,114.39,108.02,46.93,40.17,37.38,37.14,33.77,32.10,31.52,31.05,30.33,30.28,29.90,29.87,29.84,29.80,29.54,29.52,26.87,26.48,25.20,22.85,14.25。
3)归属式Ⅰ的化合物P1的合成
向25毫升史莱克烧瓶中添加单体M1(204毫克,0.10毫摩尔)、7(51.8毫克,0.10毫摩尔)、三(二亚苄基丙酮)二钯(2.80毫克)、三(邻甲苯基)膦(7.32毫克)和5毫升氯苯。将反应体系脱气并充入氩气3次后,在120℃搅拌10分钟。待冷却至室温后,将反应混合物倒入含有5毫升盐酸(6毫摩尔每毫升水溶液)的200毫升甲醇中并搅拌3小时。将沉淀的产物在甲醇、丙酮、己烷、二氯甲烷、氯仿和氯苯中进行索氏提取,收集氯苯组分,减压浓缩,在甲醇中沉淀,过滤,然后真空干燥,得到目标产物172毫克,产率82%。
结构表征数据如下:
分子量:HT-GPC:Mn=160.1kDa,
元素分析:C134H214N6O4S4,计算值:C 76.59,H 10.26,N 4.00;探测值:C 75.88,H10.03,N,3.93。
由上得知该化合物结构正确,为聚合物P1。
实施例2、聚合物P2合成(式(Ⅰ)中R1和R2分别为2-癸基十四烷基和4-癸基十四烷基,Π1为双键,Π2为噻吩乙烯噻吩)(其合成路线如图2所示)
1)归属式Ⅳ的化合物4的合成
在氩气氛下,将化合物1(9.7克,19.8毫摩尔)溶解在50毫升N,N-二甲基甲酰胺中,分两次加入N-溴代丁二酰亚胺(共8.8克,49.5毫摩尔)。在室温下反应2天。反应结束后用乙酸乙酯萃取。收集有机相,减压除去溶剂。将残余物通过硅胶柱色谱纯化,用石油醚/乙酸乙酯(v/v=25:1)作为洗脱剂,得到目标产物4.7克,产率42%。
结构表征数据如下:
质谱:HRMS(m/z):[M+H]+:568.2817。
氢谱:1H NMR(300MHz,CDCl3)δ(ppm)6.81(s,1H),3.49(d,J=7.3Hz,2H),1.73(s,1H),1.40-1.13(m,40H),0.88(t,J=6.5Hz,6H)。
碳谱:13C NMR(101MHz,CDCl3)δ(ppm)171.36、164.49、160.77、135.17、116.90、111.33、46.70、37.16、32.03、32.02、31.49、30.03、29.79、29。76、29.73、29.72、29.66、29.46、29.43、26.44、22.79、14.20。
2)归属式Ⅷ的化合物6的合成
向100毫升的双颈圆底烧瓶中加入4(2.29克,4.0毫摩尔),(E)-1,2-双(三丁基甲锡烷基)乙烯(1.21克,2.0毫摩尔),四(三苯基膦)钯(116毫克,0.10毫摩尔)和60毫升甲苯。将反应体系在氩气气氛下回流过夜。冷却至室温后,将氟化钾水溶液加入到体系中并搅拌1小时。然后用二氯甲烷萃取,减压除去有机溶剂后,将残余物通过硅胶柱色谱纯化,用二氯甲烷作为洗脱剂,得到目标产物1.50克,产率75%。
结构表征数据如下:
质谱:HRMS(m/z):[M+H]+:1003.7360。
氢谱:1H NMR(300MHz,CDCl3)δ(ppm)7.31(s,1H),6.82(s,1H),3.54(d,J=7.3Hz,2H),1.86-1.69(m,1H),1.40-1.14(m,40H),0.87(t,J=7.5Hz,6H)。
碳谱:13C NMR(75MHz,CDCl3)δ(ppm)172.51,165.07,161.36,157.68,125.58,112.52,110.80,46.71,37.21,32.06,31.51,30.11,29.83,29.79,29.76,29.72,29.50,29.49,26.50,22.83,14.26。
3)归属式Ⅸ的化合物M2的合成
向100毫升的二颈圆底烧瓶中添加6(1.0克,1.0毫摩尔),3(1.21克,2.2毫摩尔)、对甲苯磺酸(87毫克,0.50毫摩尔)和60毫升甲苯。将反应体系在氩气氛下回流过夜。冷却至室温后,用二氯甲烷萃取混合物。收集有机相,减压除去溶剂。将残余物通过硅胶柱色谱纯化,用石油/二氯甲烷(v/v=2:1)作为洗脱剂,得到目标产物1.10克,产率53%。
结构表征数据如下:
质谱:HRMS(m/z):[M+H]+:2064.3810。
氢谱:1H NMR(400MHz,CDCl3)δ(ppm)9.01(d,J=8.2Hz,1H),7.28(s,1H),7.11(d,J=8.2Hz,1H),6.66(s,1H),3.90(t,J=7.2Hz,2H),3.63(d,J=7.0Hz,2H),1.91-1.81(m,1H),1.80-1.70(m,2H),1.44-1.14(m,79H),0.92-0.81(m,12H)。
碳谱:13C NMR(101MHz,CDCl3)δ(ppm)170.42,168.63,156.54,154.60,153.03,141.45,136.81,129.66,124.33,121.72,118.57,116.53,114.59,110.53,46.36,40.06,37.47,37.31,33.73,32.09,31.79,30.95,30.31,30.17,29.89,29.83,29.75,29.53,29.51,26.84,26.69,25.13,22.84,14.26。
4)归属式Ⅰ的化合物P2的合成
向25毫升史莱克烧瓶中添加单体M2(207毫克,0.10毫摩尔)、7(51.8毫克,0.10毫摩尔)、三(二亚苄基丙酮)二钯(2.80毫克)、三(邻甲苯基)膦(7.32毫克)和5毫升氯苯。将反应体系脱气并充入氩气3次后,在120℃搅拌10分钟。待冷却至室温后,将反应混合物倒入含有5毫升盐酸(6毫摩尔每毫升水溶液)的200毫升甲醇中并搅拌3小时。将沉淀的产物在甲醇、丙酮、己烷、二氯甲烷、氯仿和氯苯中进行索氏提取,收集氯苯组分,减压浓缩,在甲醇中沉淀,过滤,然后真空干燥,得到目标产物190毫克,产率89%。
结构表征数据如下:
分子量:HT-GPC:Mn=188.4kDa,
元素分析:C136H216N6O4S4,计算值:C 76.78,H 10.23,N 3.95;探测值:C 76.75,H10.05,N,4.00。
由上得知该化合物结构正确,为聚合物P2。
实施例3、聚合物P3合成(式(Ⅰ)中R1和R2分别为2-癸基十四烷基和4-癸基十四烷基,Π1和Π2均为噻吩乙烯噻吩)(其合成路线如图2所示)
1)归属式Ⅺ的化合物8的合成
向250毫升的双颈圆底烧瓶中加入4(2.29克,4.0毫摩尔),(E)-1,2-双(三丁基甲锡烷基)乙烯(1.04克,2.0毫摩尔),四(三苯基膦)钯(116毫克,0.10毫摩尔)和100毫升甲苯。将反应体系在氩气气氛下回流过夜。冷却至室温后,将氟化钾水溶液加入到体系中并搅拌1小时。然后用二氯甲烷萃取,减压除去有机溶剂后,将残余物通过硅胶柱色谱纯化,用二氯甲烷作为洗脱剂,得到目标产物1.90克,产率81%。
结构表征数据如下:
质谱:HRMS(m/z):[M+H]+:1167.7129。
氢谱:1H NMR(300MHz,CDCl3)δ(ppm)7.38(d,J=3.8Hz,1H),7.09(d,J=4.3Hz,1H),7.07(s,1H),6.76(s,1H),3.55(d,J=7.3Hz,2H),1.89-1.74(m,1H),1.42-1.14(m,40H),0.87(t,J=6.5Hz,6H)。
碳谱:13C NMR(75MHz,CDCl3)δ(ppm)171.78,165.63,162.04,155.41,145.36,135.04,128.84,128.38,122.85,108.61,108.41,46.57,32.07,31.50,30.11,29.85,29.82,29.79,29.77,29.51,26.49,22.84,14.27。
2)归属式Ⅻ的化合物M3的合成
向100毫升的二颈圆底烧瓶中添加8(1.17克,1.0毫摩尔),3(1.21克,2.2毫摩尔)、对甲苯磺酸(87毫克,0.50毫摩尔)和60毫升甲苯。将反应体系在氩气氛下回流过夜。冷却至室温后,用二氯甲烷萃取混合物。收集有机相,减压除去溶剂。将残余物通过硅胶柱色谱纯化,用石油/二氯甲烷(v/v=2:1)作为洗脱剂,得到目标产物1.25克,产率56%。
结构表征数据如下:
质谱:HRMS(m/z):[M+H]+:2228.3565。
氢谱:1H NMR(400MHz,CDCl3)δ(ppm)8.84(d,J=8.1Hz,1H),7.28(d,J=3.9Hz,1H),7.02(d,J=8.1Hz,1H),6.94(d,J=3.9Hz,1H),6.87(s,1H),6.60(s,1H),3.90(t,J=7.3Hz,2H),3.61(d,J=7.2Hz,2H),1.90-1.72(m,3H),1.44-1.16(m,79H),0.92-0.81(m,12H)。
碳谱:13C NMR(101MHz,CDCl3)δ(ppm)170.36,168.72,156.27,154.80,148.60,143.92,141.03,137.01,136.43,129.67,128.49,126.16,122.03,121.57,117.46,114.57,107.11,46.37,40.07,37.36,33.78,32.10,31.70,31.04,30.35,30.19,29.91,29.88,29.84,29.53,26.88,26.61,25.23,22.85,14.26。
3)归属式Ⅰ的化合物P3的合成
向25毫升史莱克烧瓶中添加单体M3(223毫克,0.10毫摩尔)、7(51.8毫克,0.10毫摩尔)、三(二亚苄基丙酮)二钯(2.80毫克)、三(邻甲苯基)膦(7.32毫克)和5毫升氯苯。将反应体系脱气并充入氩气3次后,在120℃搅拌10分钟。待冷却至室温后,将反应混合物倒入含有5毫升盐酸(6毫摩尔每毫升水溶液)的200毫升甲醇中并搅拌3小时。将沉淀的产物在甲醇、丙酮、己烷、二氯甲烷、氯仿、氯苯和二氯苯中进行索氏提取,收集二氯苯组分,减压浓缩,在甲醇中沉淀,过滤,然后真空干燥,得到目标产物212毫克,产率93%。
结构表征数据如下:
分子量:HT-GPC:Mn=135.1kDa,
元素分析:C144H220N6O4S6,计算值:C 75.47,H 9.68,N 3.67;探测值:C 74.96,H9.50,N,3.59。
由上得知该化合物结构正确,为聚合物P3。
实施例4、聚合物P1-P3的热学性能
图3为实施例1、2、3制备的聚合物P1、P2、P3的热重曲线和差示扫描量热曲线。
由图3可知,聚合物P1、P2、P3的5%热损失温度均超过400℃,且在20到350℃之间没有明显的相转变,说明该类聚合物具有很好的热学稳定性。
实施例5、聚合物P1-P3的光学性能
图4为实施例1、2、3制备的聚合物P1、P2、P3的溶液态和薄膜态紫外-可见-近红外吸收光谱。
由图4可知,该类聚合物在可见光-近红外区有宽且强的吸收,说明了聚合物分子中存在强的分子内电荷转移现象。从聚合物溶液态到薄膜态的吸收光谱中,0-0吸收峰和0-1吸收峰的相对强度逐渐减弱,表明这类聚合物的聚集态以H型聚集为主。
实施例6、聚合物P1-P3的前线轨道能级
图5为实施例1、2、3制备的聚合物P1、P2、P3的紫外光电子能谱和反光电子能谱。
由图5可知,该类聚合物具有相似的前线轨道能级,P1、P2、P3的HOMO和LUMO能级分别为-4.92/-3.63,-5.02/3.67和-4.94/-3.58eV。它们的HOMO能级和金电极的功函数十分匹配,意味着该类聚合物材料会是较好的空穴传输材料。
实施例7、聚合物P1-P3的场效应晶体管制备与性能
图6为所制备的有机场效应晶体管器件结构示意图。其制备方法为:在聚对苯二甲酸乙二醇酯(PMMA)衬底上图案化蒸镀金作为源漏电极,然后旋涂聚合物溶液(溶剂为邻二氯苯)并退火(退火温度140℃,退火时间30min)以得到活性层(厚度30nm),随后将全氟(1-丁烯基乙烯基醚)聚合物(CYTOP)溶液旋涂在聚合物薄膜上,再蒸镀一层铝并在形成氧化铝(AlOx)薄膜,接下来旋涂聚乙烯醇(PVA)溶液组成混合介电层(CYTOP/AlOx/PVA,电容为6.5nF/cm2),最后再图案化蒸镀一层铝作为栅电极。器件的沟道长、宽分别为80、8500微米。
图7为基于聚合物P1-P3所制备的场效应晶体管的转移和输出曲线,由图可知它们均表现出明显的空穴传输特性。其饱和区载流子迁移率可根据如下方程计算:
IDS=(W/2L)Ciμ(VG–VT)2
其中IDS为漏极电流,μ为载流子迁移率,VG为栅极电压,VT为阈值电压,W为沟道宽度,L为沟道长度,Ci为绝缘体电容。
分别以聚合物P1、P2、P3制备了10个以上有机场效应晶体管器件,它们的最大和平均性能如表1所示:
表1基于聚合物P1-P3的有机场效应晶体管性能
所有的实验结果表明,本发明提供的式Ⅰ所示的双噻吩氮杂异靛蓝聚合物是一类优良的半导体材料。本发明并不局限于所报道的P1-P3三种聚合物材料,通过改变桥连单元Π1,给体单元Π2,侧链R1和R2的结构,可以得到系列新型双噻吩氮杂异靛蓝衍生聚合物,且本发明所给出的合成路线简单易行,产率较高,适用于大批量制备。这对于进一步开发高性能的有机半导体材料具有重要指导意义。
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。

Claims (8)

1.式(Ⅰ)所示双噻吩氮杂异靛蓝聚合物:
式(Ⅰ)中,R1和R2各自独立地选自C5-C80的直链或支链烷基中的任意一种;
Π1和Π2各自独立地选自下述结构中任意一种:
式(1)-式(13)中的*表示连接位点;
式(Ⅰ)中n表示聚合度,为5-1000。
2.根据权利要求1所述的式(Ⅰ)所示双噻吩氮杂异靛蓝聚合物,其特征在于,R1和R2各自独立地选自C10-C60的直链或支链烷基中的任意一种。
3.根据权利要求1所述的式(Ⅰ)所示双噻吩氮杂异靛蓝聚合物,其特征在于,R1和R2分别为2-癸基十四烷基和4-癸基十四烷基;Π1为式(1)、式(2)或式(8);Π2为式(8)。
4.权利要求1-3中任一项所述的式(Ⅰ)所示双噻吩氮杂异靛蓝聚合物作为有机半导体材料的应用。
5.一种有机场效应晶体管,其特征在于,所述有机场效应晶体管的有机半导体活性层由权利要求1-3中任一项所述的式(Ⅰ)所示双噻吩氮杂异靛蓝聚合物制成。
6.根据权利要求5所述的有机场效应晶体管,其特征在于,所述有机半导体活性层的制备方法为溶液旋涂式(Ⅰ)所示双噻吩氮杂异靛蓝聚合物,并进行退火处理。
7.根据权利要求6所述的有机场效应晶体管,其特征在于,所述旋涂溶液中溶剂为氯苯,二氯苯,四氢化萘,氯萘中的一种;退火温度为100-200℃;退火时间为5-60分钟。
8.根据权利要求6所述的有机场效应晶体管,其特征在于,所制备的聚合物薄膜厚度为10-100nm。
CN202311494190.2A 2023-11-10 2023-11-10 一类双噻吩氮杂异靛蓝聚合物及其制备方法与应用 Pending CN117624559A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311494190.2A CN117624559A (zh) 2023-11-10 2023-11-10 一类双噻吩氮杂异靛蓝聚合物及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311494190.2A CN117624559A (zh) 2023-11-10 2023-11-10 一类双噻吩氮杂异靛蓝聚合物及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN117624559A true CN117624559A (zh) 2024-03-01

Family

ID=90036860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311494190.2A Pending CN117624559A (zh) 2023-11-10 2023-11-10 一类双噻吩氮杂异靛蓝聚合物及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN117624559A (zh)

Similar Documents

Publication Publication Date Title
KR101535696B1 (ko) 릴렌-(π-억셉터) 공중합체로부터 제조된 반도체 재료
JP5523351B2 (ja) ペリレン半導体並びにその製造方法及び使用
EP2683718B1 (en) Thiocyanato substituted naphthalene diimide compounds and their use as n-type semiconductors
US8022214B2 (en) Organic semiconductor materials and precursors thereof
CN108546267B (zh) 一种端基含环烷基链的有机共轭小分子材料及其制备方法与在太阳能电池中的应用
CN109096342B (zh) 一种吡咯并吡咯二酮类环状共轭化合物及其制备方法与应用
CN112608309B (zh) 一种含芴环基团的非稠环有机小分子材料及其制备方法和应用
Nho et al. Carbazole and rhodanine based donor molecule with improved processability for high performance organic photovoltaics
CN106795318B (zh) 分子半导体和聚合物半导体及相关器件
Zhang et al. Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells
EP2686322B1 (en) Tetraazaperopyrene compounds and their use as n-type semiconductors
Fu et al. Synthesis and characterization of new electron-withdrawing moiety thieno [2, 3-c] pyrrole-4, 6-dione-based molecules for small molecule solar cells
KR101059783B1 (ko) 플러렌 유도체를 함유한 유기박막트랜지스터
CN113831289B (zh) 酰亚胺化芴酮衍生物及其中间体、制备方法和应用
EP2407494A1 (en) Polymer, organic thin film comprising the polymer, and organic thin-film element including same
JP2013237813A (ja) π電子共役重合体及びそれを用いた有機半導体デバイス
CN117624559A (zh) 一类双噻吩氮杂异靛蓝聚合物及其制备方法与应用
KR101043627B1 (ko) 플러렌 유도체를 함유한 유기태양전지 소자
CN110498793B (zh) 基于罗丹宁的小分子光伏体相材料及其应用
CN114349771A (zh) 一种六苯并蔻基非富勒烯受体材料及其制备和应用
KR20140083969A (ko) 비벤조〔b〕푸란 화합물, 광전 변환 재료 및 광전 변환 소자
US10344028B2 (en) Organic semiconductor compound, production method thereof, and organic electronic device using the same
Lu et al. Synthesis, characterization and photovoltaic application of N, N′-bisfluorenyl substituted perylene bisimide
CN115028627B (zh) 四氰基取代双缩苊醌酰亚胺有机材料及其制备方法与应用
EP2521195A1 (en) Tetraazaperopyrene compounds and their use as n-type semiconductors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination