CN117590661A - 一种全固态电致变色器件及其制备方法和应用 - Google Patents

一种全固态电致变色器件及其制备方法和应用 Download PDF

Info

Publication number
CN117590661A
CN117590661A CN202311532068.XA CN202311532068A CN117590661A CN 117590661 A CN117590661 A CN 117590661A CN 202311532068 A CN202311532068 A CN 202311532068A CN 117590661 A CN117590661 A CN 117590661A
Authority
CN
China
Prior art keywords
layer
power supply
electrochromic
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311532068.XA
Other languages
English (en)
Inventor
国星
赵勇
秦龙飞
赵婉娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Guangmin Intelligent Technology Co ltd
Original Assignee
Suzhou Guangmin Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Guangmin Intelligent Technology Co ltd filed Critical Suzhou Guangmin Intelligent Technology Co ltd
Priority to CN202311532068.XA priority Critical patent/CN117590661A/zh
Publication of CN117590661A publication Critical patent/CN117590661A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本发明涉及一种全固态电致变色器件,其包括依次层叠设置的衬底、下导电层、下绝缘缓冲层、电致变色过渡层、电致变色层、离子传导层、反电极层、上绝缘缓冲层、上导电层,其中,所述下导电层、所述下绝缘缓冲层、所述电致变色过渡层、所述电致变色层、所述离子传导层、所述反电极层、所述上绝缘缓冲层、所述上导电层均是以陶瓷材料作为靶材利用磁控溅射工艺制备而成。本发明利用陶瓷靶材制备各膜层,提高各膜层的抗电迁移性,减少金属原子迁移到电致变色膜层的趋势,提高电致变色器件的耐久性,减少致色离子的不可逆嵌入量和/或盲电荷量,增加循环稳定性,提高器件制备的生产效率。

Description

一种全固态电致变色器件及其制备方法和应用
技术领域
本发明涉及电致变色器件技术领域,尤其涉及一种全固态电致变色器件及其制备方法和应用。
背景技术
电致变色(EC)器件可通过外加电场作用,实现其透过率、吸收率和反射率等光学属性可逆变化,具有较大的光学调制幅度和能耗低的优点,其中,无机全固态电致变色器件具有较宽的电化学稳定“窗口”、更好的氧化稳定性、良好的耐候性和长循环稳定性,在节能建筑、车载系统、消费电子等领域具有巨大的市场应用前景,电致变色门窗被认为是太阳能吸收器,发展无机全固态电致变色器件意义重大。
目前,无机全固态电致变色器件的电致变色膜层主要采用金属靶材进行磁控溅射制备,并实现过渡态的氧化反应制膜。例如,公开号为CN107085339A的专利公开的一种全固态电致变色器件的制备方法,该器件部分膜层采用金属靶材制备。又如公开号为CN104364707A的专利公开的一种电致变色器件,提出EC/CE层的过渡界面充当离子传导层制备无机全固态器件。
但金属靶材溅射产额随靶材原子d壳层电子填满程度增加而变大,所以导致W、Nb、Ti等电致变色过渡金属靶材溅射产额很小,即电致变色金属靶材溅射速度很慢,严重制约着无机全固态电致变色器件的生产效率。且Ni等电致变色过渡金属存在强磁性,靶材厚度受限,溅射难度大,同样制约器件的生产效率。另外,采用金属靶材在溅射过程中,因需要不断通氧气,靶材的表面金属会与氧气反应,易形成氧化物(毒化层),即出现毒化现象,靶材包覆层导电性差,扰乱局部和/或部分区域的电子运动轨迹,导致溅射倾角发生变化,导致局部和/或部分区域溅射速率降低,不利于膜层及器件的均匀性制备。并且,毒化现象导致的低电导率区域会诱发弧光放电等,造成溅射过程中缺陷态增多,造成制膜成品率不断降低。且磁控溅射制备电致变色膜层的氧化反应是快速的轰击并氧化的反应过程,轰击易受到反应气体不均匀的影响,造成制备的薄膜性能降低、薄膜不均匀和制备工艺重复性差。因此,金属靶材溅射过程中易出现结瘤毒化,当毒化层达到一定厚度,靶材表面会无法导电,这使得难以维持用于形成工艺腔室中的等离子体的电场,最终导致无法达到预设厚度。并且,金属靶材常采用直流溅射时,靶面更易中毒。同时,多元合金过渡金属靶材溅射中,各相中原子和/或原子团溅射差额不同,溅射速率差异大,相同溅射气体浓度下,导致溅射靶材的不均匀刻蚀和镀膜成分不均匀性,局部和/或部分区域易出现偏离理想化学计量比膜层,不利于大面积膜层或器件的制备。电致变色(EC)薄膜过渡态氧化反应过程复杂,采用多元合金或单金属靶材制备的化学反应过程控制难度大,难以对薄膜进行成分结构的精准控制,而薄膜及器件的电致变色性能与制备出的膜层成分/结构有直接相关性。
相较于电致变色用金属靶材,陶瓷靶材制备电致变色薄膜,可通过对靶材成分的调节做到对溅射态薄膜成分的精准控制。同时,电致变色用陶瓷靶材在制备过渡态薄膜时速度快,可提高制备速率,加快生产节拍,节省制备成本。例如,制备氧化钨电致变色膜层,用氧化钨陶瓷靶溅射速率是钨金属靶溅射速率的两到三倍,且陶瓷靶材溅射不易产生不可逆的过低价态钨,可提高膜层着色效率等性能。相较金属靶的氧化反应过程,陶瓷制备薄膜不存在过多的氧化反应,减少了对镀膜产线的严苛要求,且制备薄膜具有更好的表面结构,减少膜层及界面中纯金属原子的嵌入量,提高器件的电致变色性能,更利于制备富氧态电致变色薄膜,减少器件缺陷态和漏电流。陶瓷靶制备薄膜具有靶材不易中毒,易大面积镀膜制备、设备要求低且工艺要求低、制备速度快及其成分/结构易于控制等优点,可满足对膜层中化学物质纯度、微观结构、晶粒尺寸、特定元素含量及结构相的精准控制需求,进一步优化和调控薄膜及器件的电致变色性能。
并且,现有利用陶瓷靶采用传统直流磁控溅射制备无机全固态器件,由于其结构各膜层之间的界面结合力不好,导电电极与电致变色膜层及电致变色膜层与离子传导层等膜层匹配性差,且离子长期动力学侵蚀行为导致循环可逆性差,着色效率低,光学记忆效应差,未提出针对陶瓷靶材适合的制备工艺。
发明内容
基于现有技术存在的问题,本发明的目的是提供一种全固态电致变色器件及其制备方法和应用,利用陶瓷靶制备工艺,利用全陶瓷靶制备的无机全固态电致变色器件,具有制备工艺要求简化,加快生产节拍,提高产能及降低生产成本,可实现大规模和大面积制备,器件耐候性及循环稳定优良,制备器件可应用于建筑幕墙、智能家居、智能眼镜和车载的防眩目后视镜系统等领域。
为实现上述目的,本发明采用以下方案实现。
本发明提供的一种全固态电致变色器件,其包括依次层叠设置的衬底、下导电层、下绝缘缓冲层、电致变色过渡层、电致变色层、离子传导层、反电极层、上绝缘缓冲层、上导电层,其中,所述下导电层、所述下绝缘缓冲层、所述电致变色过渡层、所述电致变色层、所述离子传导层、所述反电极层、所述上绝缘缓冲层、所述上导电层均是以陶瓷材料作为靶材利用磁控溅射工艺制备而成。
作为本发明上述方案的进一步改进,下导电层和/或上导电层的陶瓷材料为氧化铟锡、掺杂氟的氧化锡、铟锌氧、铟镓锌氧、硼锌氧、铝锌氧、氧化铟钨中的一种或至少两种;优选地,氧化铟锡包含质量占比0-30%的镐、钛、铝或硅,降低导电膜层的再结晶温度,方阻为1-100Ω;
和/或,下绝缘缓冲层和/或上绝缘缓冲层的陶瓷材料为氧化钽、氧化钛、氧化铝、氧化铌、氧化硅、氧化硅铝、氧化硅磷、氧化锡、氧化锌、氧化钨、氧化钨镍、过氧化的氧化铟锡、铟锌氧、铟镓锌氧、硼锌氧、铝锌氧或掺钨氧化铟;
和/或,电致变色过渡层和/或电致变色层的陶瓷材料为Ⅵ族金属氧化物、Ⅵ族金属化合物、掺杂的Ⅵ族金属氧化物、掺杂的Ⅵ族金属化合物中的至少一种;优选地,所述掺杂的Ⅵ族金属氧化物所掺杂的金属包含钛、锂、铌、镍、铝、钒,增加薄膜中离子活性位点数量,提高电化学活性;
和/或,离子传导层的陶瓷材料为掺杂的氧化硅、掺杂的氧化钨、掺杂的氧化镍、掺杂的钽酸锂、钴酸锂或锂磷氧氮中的至少一种;其中,掺杂的氧化硅所掺杂的金属包含锂、铝、磷、硼,掺杂的氧化钨所掺杂的金属包含钛、锂、铌、镍、铝、钒,掺杂的钽酸锂所掺杂的金属为锂、碳、钛、钽中的至少一种;
和/或,反电极层的陶瓷材料为Ⅷ族金属氧化物或掺杂的Ⅷ族金属氧化物,优选地,掺杂的Ⅷ族金属氧化物所掺杂的金属包括铌、铬、钽、钨、钒、铝、锰、钛、镧、锂,改善靶材磁性利于溅射,改善制备膜层光学性能,增加薄膜中离子活性位点数量,减少盲电荷的数量,提高循环性能。
作为本发明上述方案的进一步改进,下导电层和/或上导电层的陶瓷靶材方阻为1~100Ω,下导电层的厚度为150~350nm;
和/或,下绝缘缓冲层和/或上绝缘缓冲层的厚度为10~100nm,陶瓷靶材方阻为1~1000Ω;
和/或,电致变色过渡层和/或电致变色层的陶瓷靶材的平均粒径为3~15μm,陶瓷靶材致密度>95%、纯度>99%、电导率>30S/cm,无明显掺杂第二相存在,陶瓷靶材微缺氧;
和/或,离子传导层的厚度为15~300nm,离子传导层的电阻率高于1012Ω·cm、离子电导率高于10-7Scm-1;离子传导层具有高的离子电导率和低的电子电导率,快速传导离子和防电子通过;
和/或,反电极层的陶瓷靶材的平均晶粒尺寸3~15μm,陶瓷靶材致密度>95%、纯度>99%、电导率>30S/cm,无明显掺杂第二相存在,陶瓷靶材微缺氧;优选地,反电极层的晶态平均晶粒尺寸为5~30nm,表面粗糙度为4~20nm;
和/或,衬底采用聚酰亚胺、热塑性聚氨酯弹性体、聚对苯二甲酸乙二醇酯、玻璃、镜面材料中的至少一种,其中玻璃包括但不限于钠钙玻璃、铝镁玻璃、硼硅玻璃、石英玻璃;衬底厚度为0.1-10nm。
作为本发明上述方案的进一步改进,所述下绝缘缓冲层、所述电致变色过渡层、所述离子传导层、所述上绝缘缓冲层、所述上导电层均以陶瓷材料作为靶材采用脉冲偏压溅射工艺制备而成。
本发明还提供一种如前所述的全固态电致变色器件的制备方法,包括以下步骤:以陶瓷材料作为靶材,在清洗干燥后的衬底上利用磁控溅射工艺依次制备下导电层、下绝缘缓冲层、电致变色过渡层、电致变色层、离子传导层、反电极层、上绝缘缓冲层、上导电层。
作为本发明上述方案的进一步改进,利用磁控溅射工艺制备所述下绝缘缓冲层的过程中:
磁控溅射阴极电源采用高频率脉冲电源,所述磁控溅射阴极电源的电压为200~800V、震荡频率为1~10kHz,工艺气压为0.5Pa~2.5Pa,溅射靶材功率密度为0.5W/cm2~2.5W/cm2,氩气和氧气的流量比为1~30:1;
基片电源采用脉冲负偏压电源,所述基片电源的负偏压为-50~-200V、占空比为20~80%、脉冲频率为1~10KHz。
作为本发明上述方案的进一步改进,利用磁控溅射工艺制备所述电致变色过渡层的过程中:
磁控溅射阴极电源采用直流电源、脉冲电源、双极脉冲电源、高功率脉冲电源、中频电源、射频电源、直流叠加脉冲电源、复合脉冲电源中的一种或至少两种,所述磁控溅射阴极电源的频率为5~100KHz,溅射气体为氩气,工艺气压0.5~2.5Pa,溅射靶材功率密度2~50W/cm2
基片电源采用偏压电源,所述偏压电源为直流、脉冲、高功率脉冲、中频、射频、直流叠加脉冲、复合脉冲偏压中的一种或至少两种,所述基片电源的负偏压为-250V~-10V、频率为5~50KHz。
作为本发明上述方案的进一步改进,利用磁控溅射工艺制备所述离子传导层的过程中:阴极电源频率5~100KHz,溅射气体为氩气,补充氧气,工艺气压1.5~4.5Pa,溅射靶材功率密度0.5~3W/cm2;基片电源正偏压0V~100V,基片频率5~50KHz。
作为本发明上述方案的进一步改进,利用磁控溅射工艺制备所述上绝缘缓冲层的过程中:工艺气压为0.5Pa~2.5Pa,溅射靶材功率密度为0.5~4W/cm2,氩气和氧气的流量比为1~30:1;靶电压采用200~800V,靶电源震荡频率1~10kHz;基片脉冲负偏压-50~-300V,占空比20~80%,频率1~10KHz。
作为本发明上述方案的进一步改进,利用磁控溅射工艺制备所述上导电层的过程中:溅射温度150~350℃,氩气和氧气的流量比为1~30:1,工艺气压0.1~2Pa,溅射靶材功率密度0.5~5W/cm2;基片电源负偏压-250V~-10V,基片电源频率0~10MHZ。
与现有技术相比,本发明具有以下有益效果:
1.本发明的全固态电致变色器件中,下导电层、下绝缘缓冲层、电致变色过渡层、电致变色层、离子传导层、反电极层、上绝缘缓冲层、上导电层均是以陶瓷材料作为靶材利用磁控溅射工艺制备而成,通过陶瓷靶材,可以提高各膜层的抗电迁移性,减少金属原子迁移到电致变色膜层的趋势,提高电致变色器件的耐久性;减少致色离子的不可逆嵌入量和/或盲电荷量,增加循环稳定性;本发明的全固态电致变色器件的光调控能力较金属靶材制备器件更优,器件漏电流更小,能耗更低,循环寿命得到提高,器件生产效率大幅度提高。
2.本发明的全固态电致变色器件在制备时,结合基片施加脉冲偏压控制形成下绝缘缓冲层、电致变色过渡层和上绝缘缓冲层等,进一步起到致密过渡层作用其与衬底界面相容性更好,增加膜层匹配性和提高膜层间的结合力,使得界面结合力更强,也起到电子阻挡层作用。
3.本发明的利用全陶瓷靶制备的无机全固态电致变色器件,具有制备工艺要求简化,加快生产节拍,提高产能及降低生产成本,提高无机全固态器件/产品的生产效率四倍以上,可实现大规模和大面积制备,工艺重复性好,大幅度提高制备器件/产品的成品率,器件耐候性及循环稳定优良,同时降低了制备工艺要求,节省设备投入成本及产品制造成本,制备器件可应用于建筑幕墙、智能家居、智能眼镜和车载的防眩目后视镜系统等领域。
4.本发明中上绝缘缓冲层、下绝缘缓冲层的设置,分别能够防止更多漏电流、缺陷短路及阻力离子对上导电层、下导电层的侵蚀,防漏电流过大引起器件内部电位差无法满足离子驱动所需的阈值。
5.本发明中电致变色过渡层的设置,在整体器件中起到缓冲/梯度过渡层作用,可实现膜层更好匹配,提高器件循环寿命;有效地调制上下导电层与其他膜层面的功函数大小,提高器件的透过率,提高器件稳定循环;电致变色过渡层以陶瓷材料作为靶材采用脉冲偏压溅射工艺制备而成,偏压轰击利于形成电致变色过渡层,增加膜层匹配性和提高膜层间的结合力。
附图说明
图1为本发明提出的一种全固态电致变色器件的结构示意图;
图2为本发明实施例1制备的的电致变色器件的横截面TEM图;
图3为本发明实施例1制备的的电致变色膜层的HRTEM衍射图案;
图4为本发明实施例1制备的的电致变色器件进行恒压测试的电流电压数据图;
图5为本发明实施例2制备的的电致变色器件的横截面TEM图;
图6为本发明实施例2制备的的电致变色膜层的HRTEM衍射图案;
图7为本发明实施例2制备的的电致变色器件进行恒压测试的电流电压数据图。
附图标记:100、衬底;102、下导电层;104、下绝缘缓冲层;106、电致变色过渡层;108、电致变色层;110、离子传导层;112、反电极层;114、上绝缘缓冲层;116、上导电层。
具体实施方式
如图1所示,本发明提出一种无机全固态电致变色器件,包括依次层叠设置的衬底100、下导电层102、下绝缘缓冲层104、电致变色过渡层106、电致变色层108、离子传导层110、反电极层112、上绝缘缓冲层114、上导电层116,下导电层102、下绝缘缓冲层104、电致变色过渡层106、电致变色层108、离子传导层110、反电极层112、上绝缘缓冲层114、上导电层116均是以陶瓷材料作为靶材利用磁控溅射工艺制备而成。
本发明通过陶瓷靶材制备各膜层,可以提高各膜层的抗电迁移性,减少金属原子迁移到电致变色膜层的趋势,提高电致变色器件的耐久性;减少致色离子的不可逆嵌入量和/或盲电荷量,增加循环稳定性;本发明的全固态电致变色器件的光调控能力较金属靶材制备器件更优,器件漏电流更小,能耗更低,循环寿命得到提高,器件生产效率大幅度提高。
为了便于理解本发明,下面将结合具体的实施例对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
实施例1
本实施例提出一种无机全固态电致变色器件,其制备方法包括以下步骤:
S1.衬底100预处理:选用厚度为5mm的玻璃作为衬底100,将衬底100依次放入丙酮、酒精中依次超声波清洗15min后,使用氮气气流吹干,使用样品盘装好置于连续磁控溅射系统腔室中,抽本底真空至5×10-4pa。
S2.制备下导电层102:以氧化铟锡(93% In2O3和7% SnO2)作为靶材,利用磁控溅射工艺在衬底100表面制备得到厚度为280nm的下导电层102,磁控溅射工艺参数为:溅射温度为200℃,阴极电源频率为8KHz,氩气和氧气的流量比为10:1,工艺气压为0.2Pa,溅射靶材功率密度为4W/cm2;基片电源负偏压为-110V,基片电源频率为8KHz。选择透明衬底的下导电层102,方阻约1欧姆/平方-30欧姆/平方之间,可见光波段的透射率大于75%。
S3.制备下绝缘缓冲层104:以氧化硅铝作为靶材,利用磁控溅射工艺在下导电层102表面制备得到厚度为8nm的下绝缘缓冲层104,磁控溅射工艺参数为:溅射阴极电源采用高频率脉冲电源,溅射阴极电源电压为600V,震荡频率5kHz,溅射靶材功率密度为1.5W/cm2,工艺气压为1Pa,氩气和氧气的流量比为6:1;基片电源采用脉冲负偏压电源,基片电源脉冲负偏压为-150V、占空比为20-80%、频率为5kHz。
S4.制备电致变色过渡层106:以氧化钨为靶材,利用磁控溅射工艺在下绝缘缓冲层104表面制备得到厚度为150nm的电致变色过渡层106,磁控溅射工艺参数为:衬底100常温,溅射阴极电源采用Truplasma MF 7150G2,电源频率为37KHz,溅射气体为氩气且气压为1Pa,溅射靶材功率密度5W/cm2;基片电源采用Truplasma MF 7150G2,基片电源负偏压为-200V,基片频率37KHz。本实施例制得的电致变色过渡层的膜密度大于5g/cm3,平均表面粗糙度3nm。
S5.制备电致变色层108:以氧化钨为靶材,利用磁控溅射工艺在电致变色过渡层106表面制备得到厚度为350nm的电致变色层108,磁控溅射工艺参数为:衬底常温,溅射阴极电源采用Truplasma MF 7150G2,电源频率为37KHz,溅射气体为氩气且气压为2Pa,氩气与氧气的流量比为20:1,溅射靶材功率密度2.8W/cm2;基片电源采用Truplasma MF7150G2,基片频率37KHz。
S6.制备离子传导层110:以氧化钨为靶材,利用磁控溅射工艺在电致变色层108表面制备得到厚度为80nm的离子传导层110,磁控溅射工艺参数为:衬底常温,溅射阴极电源采用Truplasma 7000,电源频率为37KHz,溅射气体为氩气且气压为1.5Pa,补充氧气,氩气与氧气的流量比为1:1,溅射靶材功率密度1.5W/cm2;基片电源采用Truplasma 7000,基片电源正偏压50V,基片频率37KHz。本实施例制备出的离子传导层的电阻率和离子电导率分别高于1012Ω·cm和10-7Scm-1
S7.制备反电极层112:以氧化钨镍为靶材,利用磁控溅射工艺在离子传导层110表面制备得到厚度为350nm的反电极层112,磁控溅射工艺参数为:衬底常温,溅射阴极电源采用Truplasma MF 7150G2,电源频率为80KHz,溅射气体为氩气且气压为2.5Pa,溅射靶材功率密度4W/cm2;基片电源采用Truplasma MF 7150G2。本实施例制得的反电极层的晶态平均晶粒尺寸为15nm,表面粗糙度为6.5nm,单位荷电容量为128mC/cm2/um,着色效率为15-60cm2/C。
S8.锂化:采用金属锂靶材(纯度99%-99.9%),利用磁控溅射工艺在反电极层表面进行锂化,阴极电源频采用Truplasma DC 3040G2,溅射气压为氩气,溅射电压400V,工艺气压为0.3Pa,溅射靶材功率密度为0.3~1W/cm2。沉积后加热衬底到180℃,活化金属锂。
S9.制备上绝缘缓冲层114:以氧化钨镍作为靶材,利用磁控溅射工艺在反电极层112表面制备得到厚度为30nm的上绝缘缓冲层114,磁控溅射工艺参数为:溅射阴极电源采用高频率脉冲电源,溅射阴极电源电压为700V、震荡频率10kHz,溅射气体为氩气且气压为,补充氧气,氩气与氧气的流量比为;基片电源采用脉冲负偏压电源,基片电源脉冲负偏压为-100V、占空比为20-80%、频率为10kHz。
S10.制备上导电层116:以氧化铟锡作为靶材,利用磁控溅射工艺在上绝缘缓冲层114表面制备得到厚度为450nm的上导电层116,从而得到电致变色器件,磁控溅射工艺参数为:溅射温度300℃,阴极电源频率0.5MHz,氩气和氧气的流量比8:1,工艺气压0.1Pa,溅射靶材功率密度5W/cm2;基片电源负偏压-150V,基片电源频率0.5MHz。本实施例制得的上导电层116的电子迁移率大于35cm2/V·s。
S11.沉积工艺完成后,电致变色器件在退火炉中在350℃下进行空气退火,退火处理时间70min,此过程对上导电层116进行补氧处理,增加膜层致密度和提高膜层透过率,同时提高上导电层116方阻均匀性和降低方阻。
参照图2-图4,图2是本实施案例1制备的电致变色器件的横截面TEM图;图3是本实施例1电致变色层的TEM衍射图,从图3可以看出,本实施例的电致变色层为多晶结构;图4为本实施例的无机全固态器件(300*300mm)进行恒压测试的电流电压数据图,其测试条件为恒压着褪色为±3V,处理时间分别5min,从图4结果可以看出,具有较小的着褪色漏电流-126/132mA,且器件着/褪过程内阻大小为10966/25600mΩ。
实施例2:
本实施例提出一种无机全固态电致变色器件,其采用与实施例1相同的实施方式,与实施例1的区别在于:在步骤S3中,以氧化钛作为靶材利用磁控溅射工艺在下导电层102表面制备得到厚度为8nm的下绝缘缓冲层104;在步骤S6中,以氧化硅铝为靶材,利用磁控溅射工艺在电致变色层106表面制备得到厚度为15nm的离子传导层108,磁控溅射工艺参数为:衬底常温,溅射阴极电源采用Truplasma 7000,溅射气压为1Pa,氩气与氧气的流量比为5:1,溅射靶材功率密度1W/cm2,靶电压为500V,靶电源震荡频率为5kHz;在步骤S10中,以氧化铟钨作为靶材,利用磁控溅射工艺在上绝缘缓冲层112表面制备得到厚度为250nm的上导电层114,磁控溅射工艺参数为:溅射温度300℃,阴极电源频率0.5MHz,氩气和氧气的流量比20:1,工艺气压0.3Pa,溅射靶材功率密度3.5W/cm2;基片电源负偏压-150V,基片电源频率0.5MHz。
参照图5-图7,图5是本实施案例2制备的电致变色器件的横截面TEM图;图6是本实施例2电致变色层的TEM衍射图,从图6可以看出,本实施例的电致变色层为多晶结构;图7为本实施例2的无机全固态器件(300*300mm)进行恒压测试的电流电压数据图,其测试条件为恒压着褪色为±3V,处理时间分别5min,从图7结果可以看出,具有更小的着褪色漏电流-92/120mA,且器件着/褪过程内阻大小为11566/28902mΩ。
对比例1
本对比例提出一种无机全固态电致变色器件,其制备方法包括以下步骤:
S1.衬底100预处理:选用厚度为5mm的玻璃作为衬底100,将衬底100依次放入丙酮、酒精中依次超声波清洗15min后,使用氮气气流吹干,使用样品盘装好置于连续磁控溅射系统腔室中,抽本底真空至5×10-4pa。
S2.制备下导电层102:以氧化铟锡(93% In2O3和7% SnO2)作为靶材,利用磁控溅射工艺在衬底表100面制备得到厚度为280nm的下导电层102,磁控溅射工艺参数为:溅射温度为200℃,阴极电源频率为8KHz,氩气和氧气的流量比为10:1,工艺气压为0.2Pa,溅射靶材功率密度为4W/cm2;基片电源负偏压为-110V,基片电源频率为8KHz。
S3.制备下绝缘缓冲层104:以硅铝作为靶材,补充氧气溅射,利用磁控溅射工艺在下导电层102表面制备得到厚度为8nm的下绝缘缓冲层104,磁控溅射工艺参数为:溅射阴极电源采用高频率脉冲电源,溅射阴极电源电压为600V、震荡频率5kHz,溅射靶材功率密度为1.5W/cm2,工艺气压为1Pa,氩气和氧气的流量比为6:1;基片电源采用脉冲负偏压电源,基片电源脉冲负偏压为150V、占空比为20-80%、频率为5kHz。
S4.制备电致变色过渡层106:以金属钨为靶材,利用磁控溅射工艺在下绝缘缓冲层104表面制备得到厚度为150nm的电致变色过渡层106,磁控溅射工艺参数为:衬底常温,溅射阴极电源采用Truplasma MF 7150G2,电源频率为37KHz,溅射气体为氩气且气压为1Pa,溅射靶材功率密度5W/cm2;基片电源采用Truplasma MF 7150G2,基片电源负偏压为-200V,基片频率37KHz。
S5.制备电致变色层108:以金属钨为靶材,利用磁控溅射工艺在电致变色过渡层106表面制备得到厚度为200-3500nm电致变色层108,磁控溅射工艺参数为:衬底常温,溅射阴极电源采用Truplasma MF 7150G2,电源频率为37KHz,溅射气体为氩气且气压为2.5Pa,氩气与氧气的流量比为2:1,溅射靶材功率密度2.8W/cm2;基片电源采用Truplasma MF7150G2,基片频率37KHz。
S6.制备离子传导层110:以金属钨为靶材,利用磁控溅射工艺在电致变色层108表面制备得到厚度为80nm的离子传导层110,磁控溅射工艺参数为:衬底常温,溅射阴极电源采用Truplasma 7000,电源频率为37KHz,溅射气体为氩气且气压为2Pa,补充大量氧气,氩气与氧气的流量比为1:3,溅射靶材功率密度1.5W/cm2;基片电源采用Truplasma 7000,基片电源正偏压50V,基片频率37KHz。
S7.制备反电极层112:以金属钨镍为靶材,利用磁控溅射工艺在离子传导层110表面制备得到厚度为350nm的反电极层112,磁控溅射工艺参数为:衬底常温,溅射阴极电源采用Truplasma MF 7150G2,电源频率为80KHz,溅射气体为氩气且气压为2.5Pa,溅射靶材功率密度4W/cm2;基片电源采用Truplasma MF 7150G2。
S8.锂化:采用金属锂靶材(纯度99%-99.9%),利用磁控溅射工艺在反电极层表面进行锂化,阴极电源频采用Truplasma DC 3040G2,溅射气压为氩气,溅射电压400V,工艺气压为0.3Pa,溅射靶材功率密度为0.3~1W/cm2。沉积后加热衬底到180℃,活化金属锂。
S9.制备上绝缘缓冲层114:以金属钨镍作为靶材,利用磁控溅射工艺在反电极层112表面制备得到厚度为30nm的上绝缘缓冲层114,磁控溅射工艺参数为:溅射阴极电源采用高频率脉冲电源,溅射阴极电源电压为700V、震荡频率10kHz;基片电源采用脉冲负偏压电源,基片电源脉冲负偏压为-100V、占空比为20-80%、频率为10kHz。
S10.制备上导电层116:以氧化铟锡作为靶材,利用磁控溅射工艺在衬底表面制备得到厚度为450nm的上导电层116,从而得到电致变色器件,磁控溅射工艺参数为:溅射温度300℃,阴极电源频率0.5MHz,氩气和氧气的流量比8:1,工艺气压0.1Pa,溅射靶材功率密度5W/cm2;基片电源负偏压-150V,基片电源频率0.5MHz。本实施例制得的上导电层的电子迁移率大于35cm2/V·s。
S11.沉积工艺完成后,电致变色器件在退火炉中在350℃下进行空气退火,退火处理时间70min,可对上电极进行中含氧量低的次氧化成分进行补氧处理。
对比例2
本对比例提出一种无机全固态电致变色器件,采用与对比例1相同的实施方式,与对比例1的区别在于:在步骤S7中,以氧化钨镍为靶材利用磁控溅射工艺在离子传导层表面制备反电极层;在步骤S9中,以氧化钨镍作为靶材利用磁控溅射工艺在反电极层表面制备上绝缘缓冲层。
测试例
对实施例1-2以及对比例1-2制备的电致变色器件进行性能测试,测试结果如下表所示。
从上表结果可知,采用本发明陶瓷靶材制备的器件的光调控能力较金属靶材制备的器件着色效率/光调节幅度等光调控性能更优,器件漏电流更小,能耗更低,循环寿命得到提高,器件生产效率大幅度提高。
需要说明的是,当组件被称为“安装于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种全固态电致变色器件,其特征在于,其包括依次层叠设置的衬底、下导电层、下绝缘缓冲层、电致变色过渡层、电致变色层、离子传导层、反电极层、上绝缘缓冲层、上导电层,其中,所述下导电层、所述下绝缘缓冲层、所述电致变色过渡层、所述电致变色层、所述离子传导层、所述反电极层、所述上绝缘缓冲层、所述上导电层均是以陶瓷材料作为靶材利用磁控溅射工艺制备而成。
2.根据权利要求1所述全固态电致变色器件,其特征在于,所述下导电层和/或上导电层的陶瓷材料为氧化铟锡、掺杂氟的氧化锡、铟锌氧、铟镓锌氧、硼锌氧、铝锌氧、氧化铟钨中的一种或至少两种;
和/或,所述下绝缘缓冲层和/或上绝缘缓冲层的陶瓷材料为氧化钽、氧化钛、氧化铝、氧化铌、氧化硅、氧化硅铝、氧化硅磷、氧化锡、氧化锌、氧化钨、氧化钨镍、过氧化的氧化铟锡、铟锌氧、铟镓锌氧、硼锌氧、铝锌氧或掺钨氧化铟;
和/或,所述电致变色过渡层和/或电致变色层的陶瓷材料为Ⅵ族金属氧化物、掺杂的Ⅵ族金属氧化物;
和/或,所述离子传导层的陶瓷材料为掺杂的氧化硅、掺杂的氧化钨、氧化镍、钽酸锂、钴酸锂或锂磷氧氮;
和/或,所述反电极层的陶瓷材料为Ⅷ族金属氧化物或掺杂的Ⅷ族金属氧化物。
3.根据权利要求1所述全固态电致变色器件,其特征在于,所述下导电层和/或上导电层的陶瓷靶材方阻为1~100Ω,下导电层的厚度为150~350nm;
和/或,所述下绝缘缓冲层和/或上绝缘缓冲层的厚度为10~100nm,陶瓷靶材方阻为1~1000Ω;
和/或,所述电致变色过渡层和/或电致变色层的陶瓷靶材的平均粒径为3~15μm,陶瓷靶材致密度>95%、纯度>99%、电导率>30S/cm;
和/或,所述离子传导层的厚度为15~300nm,离子传导层的电阻率高于1012Ω·cm、离子电导率高于10-7Scm-1
和/或,所述反电极层的陶瓷靶材的平均晶粒尺寸3~15μm,陶瓷靶材致密度>95%、纯度>99%、电导率>30S/cm。
4.根据权利要求1所述全固态电致变色器件,其特征在于,所述下绝缘缓冲层、所述电致变色过渡层、所述离子传导层、所述上绝缘缓冲层、所述上导电层均以陶瓷材料作为靶材采用脉冲偏压溅射工艺制备而成。
5.一种如权利要求1-4中任一项所述的全固态电致变色器件的制备方法,其特征在于,包括以下步骤:以陶瓷材料作为靶材,在清洗干燥后的衬底上利用磁控溅射工艺依次制备下导电层、下绝缘缓冲层、电致变色过渡层、电致变色层、离子传导层、反电极层、上绝缘缓冲层、上导电层。
6.根据权利要求5所述的全固态电致变色器件的制备方法,其特征在于,利用磁控溅射工艺制备所述下绝缘缓冲层的过程中:
磁控溅射阴极电源采用高频率脉冲电源,所述磁控溅射阴极电源的电压为200~800V、震荡频率为1~10kHz,工艺气压为0.5Pa~2.5Pa,溅射靶材功率密度为0.5W/cm2~2.5W/cm2,氩气和氧气的流量比为1~30:1;
基片电源采用脉冲负偏压电源,所述基片电源的负偏压为-50~-200V、占空比为20~80%、脉冲频率为1~10KHz。
7.根据权利要求5所述的全固态电致变色器件的制备方法,其特征在于,利用磁控溅射工艺制备所述电致变色过渡层的过程中:
磁控溅射阴极电源采用直流电源、脉冲电源、双极脉冲电源、高功率脉冲电源、中频电源、射频电源、直流叠加脉冲电源、复合脉冲电源中的一种或至少两种,所述磁控溅射阴极电源的频率为5~100KHz,溅射气体为氩气,工艺气压0.5~2.5Pa,溅射靶材功率密度2~50W/cm2
基片电源采用偏压电源,所述偏压电源为直流、脉冲、高功率脉冲、中频、射频、直流叠加脉冲、复合脉冲偏压中的一种或至少两种,所述基片电源的负偏压为-250V~-10V、频率为5~50KHz。
8.根据权利要求5所述的全固态电致变色器件的制备方法,其特征在于,利用磁控溅射工艺制备所述离子传导层的过程中:阴极电源频率5~100KHz,溅射气体为氩气,补充氧气,工艺气压1.5~4.5Pa,溅射靶材功率密度0.5~3W/cm2;基片电源正偏压0V~100V,基片频率5~50KHz。
9.根据权利要求5所述的全固态电致变色器件的制备方法,其特征在于,利用磁控溅射工艺制备所述上绝缘缓冲层的过程中:工艺气压为0.5Pa~2.5Pa,溅射靶材功率密度为0.5~4W/cm2,氩气和氧气的流量比为1~30:1;靶电压采用200~800V,靶电源震荡频率1~10kHz;基片脉冲负偏压-50~-300V,占空比20~80%,频率1~10KHz。
10.根据权利要求5所述的全固态电致变色器件的制备方法,其特征在于,利用磁控溅射工艺制备所述上导电层的过程中:溅射温度150~350℃,氩气和氧气的流量比为1~30:1,工艺气压0.1~2Pa,溅射靶材功率密度0.5~5W/cm2;基片电源负偏压-250V~-10V,基片电源频率0~10MHZ。
CN202311532068.XA 2023-11-16 2023-11-16 一种全固态电致变色器件及其制备方法和应用 Pending CN117590661A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311532068.XA CN117590661A (zh) 2023-11-16 2023-11-16 一种全固态电致变色器件及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311532068.XA CN117590661A (zh) 2023-11-16 2023-11-16 一种全固态电致变色器件及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117590661A true CN117590661A (zh) 2024-02-23

Family

ID=89910758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311532068.XA Pending CN117590661A (zh) 2023-11-16 2023-11-16 一种全固态电致变色器件及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117590661A (zh)

Similar Documents

Publication Publication Date Title
EP1427042B1 (en) Solid electrolyte with incorporated nitrogen and battery employing the same
CN103771724B (zh) 全固态薄膜电致变色玻璃及其制备方法
CN111142304B (zh) 一种全固态电致变色器件及其制作方法
CN105278198B (zh) 互补型无机全固态电致变色器件及其制备方法
WO2010119754A1 (ja) 固体電解質電池の製造方法および固体電解質電池
WO2018188154A1 (zh) 一种固态全薄膜电致变色器件的结构及制备方法
CN107502870B (zh) 一种提高锂电池正极铝箔集电极电性能的方法
CN104178731A (zh) 一种电致变色wo3薄膜的可控制备方法
CN109148894A (zh) 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件
WO2022105174A1 (zh) 一种金属氧化物半导体及薄膜晶体管与应用
WO2019228303A1 (zh) 一种固态离子传导层及含该固态离子传导层的固态电致变色器件
CN102290595A (zh) 一种全固态高循环寿命薄膜锂电池及其制作方法
CN110646997B (zh) 一种全无机固态电致变色器件及其制备方法
TWI473209B (zh) 電阻式記憶體的製造方法
CN117590661A (zh) 一种全固态电致变色器件及其制备方法和应用
CN103762250A (zh) 碲化镉薄膜太阳电池的背接触结构、太阳电池、电池组件及制备方法
CN116234419A (zh) 一种自旋轨道矩器件的制备方法
CN116322072A (zh) 一种半透明钙钛矿太阳电池制备方法
Pham et al. Long-term stability electrochromic electrodes based on porous tungsten trioxide and nickel oxide films via a facile triple pulse electrodeposition
KR20150042011A (ko) 나노선들을 포함하는 박막전극의 제조방법, 나노선 박막전극 및 이를 포함하는 박막전지
CN110085917B (zh) 全固态锂离子电池及其制备方法和用电设备
US20210123131A1 (en) Method for manufacturing a doped metal oxide film
Wang et al. All-thin-film inorganic complementary electrochromic devices with the novel self-aligned lithium-rich ion conductor
JPS617577A (ja) 電池の正極構造
JPH0547943B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination