CN117564273A - 一种粉末冶金高强韧含氮高熵合金及其制备方法 - Google Patents

一种粉末冶金高强韧含氮高熵合金及其制备方法 Download PDF

Info

Publication number
CN117564273A
CN117564273A CN202311676340.1A CN202311676340A CN117564273A CN 117564273 A CN117564273 A CN 117564273A CN 202311676340 A CN202311676340 A CN 202311676340A CN 117564273 A CN117564273 A CN 117564273A
Authority
CN
China
Prior art keywords
nitrogen
entropy alloy
sintering
toughness
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311676340.1A
Other languages
English (en)
Inventor
陈丽
陈锴
赵太婷
邓婷婷
李战江
戴品强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUZHOU UNIVERSITY ZHICHENG COLLEGE
Original Assignee
FUZHOU UNIVERSITY ZHICHENG COLLEGE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUZHOU UNIVERSITY ZHICHENG COLLEGE filed Critical FUZHOU UNIVERSITY ZHICHENG COLLEGE
Priority to CN202311676340.1A priority Critical patent/CN117564273A/zh
Publication of CN117564273A publication Critical patent/CN117564273A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明提供了一种粉末冶金高强韧含氮高熵合金及其制备方法。本发明在Fe50Mn30Co10Cr10高熵合金的基础上,采用粉末冶金法(气雾化+放电等离子烧结相结合)制成了高强韧含氮高熵合金。放电等离子烧结过程使用氮气作为保护气体和氮源,在保护试样免于氧化的同时,向合金中加入N元素,避免了传统加N方法的缺陷;与无氮的基体合金相比,含氮合金实现强度和塑性的同时提升。本发明同样适用于其他合金体系,为高性能粉末冶金材料的开发提供了一条经济、高效的新途径。

Description

一种粉末冶金高强韧含氮高熵合金及其制备方法
技术领域
本发明属于金属材料技术领域,具体涉及一种粉末冶金高强韧含氮高熵合金及其制备方法。
背景技术
高熵合金作为一类性能优异的新型金属材料,受到了材料界的广泛关注。高熵合金由于其独特的元素组成,产生一些和传统合金显著不同的特性,中国台湾学者叶均蔚将其归纳为“四大效应”,即热力学上的高熵效应、结构上的晶格畸变效应、动力学上的缓慢扩散效应和性能上的“鸡尾酒”效应。传统合金设计理论认为合金组元数多会形成金属间化合物,从而使合金结构变得复杂,性能恶化。而对高熵合金的研究发现,其高的混合熵增强了固溶体的相稳定性,促使合金形成简单固溶体。与传统合金相比,高熵合金表现出了高强韧、良好的软磁性、高温稳定性、耐腐蚀性等突出特点,在许多的领域具有巨大的应用潜力。
Fe50Mn30Co10Cr10高熵合金是一种具有应力诱发相变效应的双相结构亚稳型高熵合金,在拉伸过程中会发生面心立方相(FCC)向密排六方相(HCP)转变,相变过程释放了应变储能并缓解了应力集中,从而使其获得较好的塑性,但其强度相对较低,限制了其作为结构材料的应用,所以进一步提高该合金的强度是研究的重点。对于传统金属材料,为了提高强化效果,常向材料中添加C或N等小原子半径元素,获得间隙固溶强化和析出强化的块体材料。故目前国内外研究学者大多采用熔炼法向Fe50Mn30Co10Cr10高熵合金中掺杂间隙元素C或N,产生间隙固溶强化和第二相析出强化,进一步提高其综合性能。关于粉末冶金Fe50Mn30Co10Cr10高熵合金的研究,主要是通过外加Al元素、石墨烯等方式来改善合金的组织和性能,且性能方面的研究主要停留在硬度、摩擦磨损性能和压缩性能等方面,而较少涉及拉伸性能方面的研究。
中国发明专利(CN 103551574 B)公开了一种含氮的钛基合金的粉末冶金制备方法,是将纯钛粉或钛合金粉放入氮气环境中进行高温固态表面渗氮处理,获得颗粒表面含氮的纯钛粉或钛合金粉,然后再进行烧结得到含氮的粉末冶金钛氮合金。该方法工艺较复杂,且所制备的钛氮合金的压缩率低于5%。中国发明专利(CN 110548869 B)公开了一种含氮高熵合金复合材料及其制备方法,是先采用气雾化法制备含氮的高熵预合金粉,然后采用选区激光熔化技术对预合金粉进行成形处理,零件成型后还需进行去应力退火,最终得到含氮高熵合金。该方法工艺较复杂,成本较高,且所制备的含氮合金的性能提高幅度较小。
C和N是常见的间隙强化元素。由于N的原子半径比C小,故将N引入材料中可以提供更显著的强化效果。目前大多采用熔炼法制备含氮高熵合金,且通常使用氮化物(如MnN、FeCrN2、TiN)作为氮源,熔炼过程中氮元素易挥发,加入量少,控制困难。此外,易出现成分偏析、组织粗大和内部缩孔、夹杂等铸造缺陷,需要经过后续加工及热处理才能得到最佳的组织结构和性能,在一定程度上限制了高熵合金的工程化应用。
针对现有技术的不足,本发明提供了一种粉末冶金高强韧含氮高熵合金及其制备方法。本发明在Fe50Mn30Co10Cr10高熵合金的基础上,采用粉末冶金法 (气雾化+放电等离子烧结相结合)制成了高强韧含氮高熵合金。放电等离子烧结过程使用氮气作为保护气体和氮源,在保护试样免于氧化的同时,向合金中加入N元素,避免了传统加N方法的缺陷;与无氮的基体合金相比,含氮合金实现强度和塑性的同时提升。本发明同样适用于其他合金体系,为高性能粉末冶金材料的开发提供了一条经济、高效的新途径。
发明内容
本发明的目的在于提供一种粉末冶金高强韧含氮高熵合金及其制备方法。
为实现上述目的,本发明采用如下技术方案:
一种粉末冶金高强韧含氮高熵合金的制备方法,包括以下步骤:
(1) 将气雾化Fe50Mn30Co10Cr10高熵合金粉末放入石墨模具中预压成形;
(2) 将装有合金粉末的石墨模具置于放电等离子快速烧结炉中并抽真空,当炉内真空度达7×10-3Pa后停止抽真空,并向炉内通入纯度达99.99%的氮气,抽真空与通入氮气的过程至少循环 3次,以除去残留的空气;
(3) 烧结前控制炉内氮气压强为6-10 kPa,即选用氮气作为保护气体和氮源;
(4) 设置烧结工艺参数,进行放电等离子烧结;
(5) 烧结完成后逐渐卸载压力,合金试样随炉冷却至室温,制备出含氮高熵合金块体。
步骤(1)所述高熵合金粉末用量为50 g,石墨模具直径为30 mm。
步骤(2)所述抽真空后真空度达7×10-3Pa。
步骤(4)所述烧结工艺参数为烧结温度1000 ℃,保温时间30 min,烧结压力45MPa,升温速率为70℃/min。
图1为本发明合金的制备工艺流程图。
利用上述制备方法制备粉末冶金高强韧含氮高熵合金。
与现有技术相比,本发明具有以下优点 :
1. 在放电等离子烧结过程中向Fe50Mn30Co10Cr10高熵合金中引入N,避免了传统加N方法的缺陷。
2. 通过调节氮气压强和烧结工艺参数,可在一定程度上调控氮含量。
3. 间隙元素N的引入,实现了粉末冶金高熵合金强度和塑性的同时提升,打破了强度和塑性的倒置关系。
4. 采用粉末冶金法制备的含氮高熵合金,其组织细小,N元素分布均匀,且无氮化物析出相。
5. 采用粉末冶金法制备高强韧含氮高熵合金,工艺简单,成本低廉;可实现近终成型,不需要或很少需要随后的机械加工,则材料利用率高,生产效率高。这为高性能粉末冶金高熵合金的开发提供了一条经济、高效的新途径。
6. 本发明所述的粉末冶金高强韧含氮高熵合金的制备方法,同样适用于其他合金体系。
附图说明
图1为本发明合金的制备工艺流程图。
图2为本发明合金的XRD图谱。
图3为本发明合金的室温拉伸工程应力-应变曲线 。
具体实施方式
实施案例1:
本发明粉末冶金高强韧含氮高熵合金的制备方法,包括以下步骤:
1.选用商业化的气雾化Fe50Mn30Co10Cr10高熵合金粉末,粒径范围为0.87~25.66 μm,平均粒径约为6.24 μm。
2. 称取50 g的 Fe50Mn30Co10Cr10高熵合金粉末,并放入直径为30 mm的石墨模具中预压成形。
3. 将装有合金粉末的石墨模具置于放电等离子快速烧结炉中并抽真空,当炉内真空度达7×10-3Pa后停止抽真空,并向炉内通入氮气(纯度达99.99%),使炉内氮气压强为6kPa,上述抽真空与通入氮气的过程至少循环 3次,以除去残留的空气。
4. 烧结前使炉内氮气压强为6 kPa,即选用氮气作为保护气体和氮源。
5. 设置烧结工艺参数,进行放电等离子烧结。烧结工艺参数为:烧结温度1000℃,保温时间30 min,烧结压力45MPa,升温速率为70 ℃/min。
6. 烧结完成后逐渐卸载压力,合金试样随炉冷却至室温,制备出尺寸约为φ30mm×8 mm的含氮高熵合金块体,即粉末冶金高强韧含氮高熵合金,实现近终成型。
实施案例2:
本发明粉末冶金高强韧含氮高熵合金的制备方法,包括以下步骤:
1.选用商业化的气雾化Fe50Mn30Co10Cr10高熵合金粉末,粒径范围为0.87~25.66 μm,平均粒径约为6.24 μm。
2. 称取50 g的 Fe50Mn30Co10Cr10高熵合金粉末,并放入直径为30 mm的石墨模具中预压成形。
3. 将装有合金粉末的石墨模具置于放电等离子快速烧结炉中并抽真空,当炉内真空度达7×10-3Pa后停止抽真空,并向炉内通入氮气(纯度达99.99%),使炉内氮气压强为10 kPa,上述抽真空与通入氮气的过程至少循环 3次,以除去残留的空气。
4. 烧结前使炉内氮气压强为10 kPa,即选用氮气作为保护气体和氮源。
5. 设置烧结工艺参数,进行放电等离子烧结。烧结工艺参数为:烧结温度1000℃,保温时间30 min,烧结压力45MPa,升温速率为70 ℃/min。
6. 烧结完成后逐渐卸载压力,合金试样随炉冷却至室温,制备出尺寸约为φ30mm×8 mm的含氮高熵合金块体,即粉末冶金高强韧含氮高熵合金,实现近终成型。
对比例1:
本发明粉末冶金无氮高熵合金的制备方法,包括以下步骤:
1.选用商业化的气雾化Fe50Mn30Co10Cr10高熵合金粉末,粒径范围为0.87~25.66 μm,平均粒径约为6.24 μm。
2. 称取50 g的 Fe50Mn30Co10Cr10高熵合金粉末,并放入直径为30 mm的石墨模具中预压成形。
3. 将装有合金粉末的石墨模具置于放电等离子快速烧结炉中并抽真空,烧结前使炉内真空度至少达7×10-3Pa。
4. 设置烧结工艺参数,进行放电等离子烧结。烧结工艺参数为:烧结温度1000℃,保温时间30 min,烧结压力45MPa,升温速率为70 ℃/min。
5. 烧结完成后逐渐卸载压力,合金试样随炉冷却至室温,制备出尺寸约为φ30mm×8 mm的无氮高熵合金块体。
在真空条件下烧结的无N合金呈现双相结构(FCC+HCP),而在氮气氛下烧结时,随着固溶N含量的增加,合金的相结构由FCC+HCP双相逐渐转变为FCC单相(图2)。
含N合金具有比无N合金更优异的拉伸力学性能,其中含2.3 at.% N的合金的屈服强度、极限抗拉强度和均匀伸长率分别为563.6 MPa、936.5 MPa和39.4%,比无N合金分别提高了96.3%、25.6%和40.2%(图3)。间隙元素N的引入,实现了粉末冶金高熵合金强度和塑性的同时提升,打破了强度和塑性的倒置关系。
在真空下烧结制备的无氮高熵合金中N的含量为0,而在氮气氛下烧结制备的合金中N的含量分别为0.7 at.%和2.3 at.%。通过调节氮气压强和烧结工艺参数,可在一定程度上调控氮含量。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种粉末冶金高强韧含氮高熵合金的制备方法,其特征在于,包括以下步骤:
将气雾化Fe50Mn30Co10Cr10高熵合金粉末放入石墨模具中预压成形;
将装有合金粉末的石墨模具置于放电等离子快速烧结炉中并抽真空,当炉内真空度达7×10-3 Pa后停止抽真空,并向炉内通入纯度达99.99%的氮气,抽真空与通入氮气的过程至少循环 3次,以除去残留的空气;
烧结前控制炉内氮气压强为6-10 kPa,即选用氮气作为保护气体和氮源;
设置烧结工艺参数,进行放电等离子烧结;
烧结完成后逐渐卸载压力,合金试样随炉冷却至室温,制备出含氮高熵合金块体。
2. 根据权利要求1所述的一种粉末冶金高强韧含氮高熵合金的制备方法,其特征在于,步骤(1)所述高熵合金粉末用量为50 g,石墨模具直径为30 mm。
3.根据权利要求1所述的一种粉末冶金高强韧含氮高熵合金的制备方法,其特征在于,步骤(2)所述抽真空后真空度达7×10-3 Pa。
4.根据权利要求1所述的一种粉末冶金高强韧含氮高熵合金的制备方法,其特征在于,步骤(4)所述烧结工艺参数为烧结温度1000 ℃,保温时间30 min,烧结压力45 MPa,升温速率为70 ℃/min。
5.一种利用权利要求1-5任一所述的制备方法制得的粉末冶金高强韧含氮高熵合金。
CN202311676340.1A 2023-12-08 2023-12-08 一种粉末冶金高强韧含氮高熵合金及其制备方法 Pending CN117564273A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311676340.1A CN117564273A (zh) 2023-12-08 2023-12-08 一种粉末冶金高强韧含氮高熵合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311676340.1A CN117564273A (zh) 2023-12-08 2023-12-08 一种粉末冶金高强韧含氮高熵合金及其制备方法

Publications (1)

Publication Number Publication Date
CN117564273A true CN117564273A (zh) 2024-02-20

Family

ID=89893817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311676340.1A Pending CN117564273A (zh) 2023-12-08 2023-12-08 一种粉末冶金高强韧含氮高熵合金及其制备方法

Country Status (1)

Country Link
CN (1) CN117564273A (zh)

Similar Documents

Publication Publication Date Title
CN108103381B (zh) 一种高强度FeCoNiCrMn高熵合金及其制备方法
CN109182882B (zh) 一种高强度氧化物弥散强化Fe基合金的制备方法
Ivasishin et al. Cost-effective blended elemental powder metallurgy of titanium alloys for transportation application
CN108145156B (zh) 一种高性能tzm钼合金棒材的制备方法
CN110273092B (zh) 一种CoCrNi颗粒增强镁基复合材料及其制备方法
CN109763056B (zh) 一种Fe-Co-Ni-Mn-Cu高熵合金材料及其制备工艺
CN110373561B (zh) 一种粉末锻造制备高致密度细晶钛合金的方法
CN110343887B (zh) 一种粉末挤压制备高致密度细晶钛合金的方法
CN115044794B (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
CN115198162B (zh) 高强韧异质多相“核壳”组织结构中熵合金及其制备方法
CN114774727B (zh) 纳米二氧化锆增强NbMoTaW难熔高熵合金的制备方法
CN114535576B (zh) 一种含Al难熔高熵合金及其制备方法
CN109518021B (zh) 一种高强度铁钴镍合金的制备方法
CN114799155A (zh) 陶瓷颗粒强化难熔高熵合金的制备方法
CN110983152B (zh) 一种Fe-Mn-Si-Cr-Ni基形状记忆合金及其制备方法
CN111455329B (zh) 一种铝钛硼靶材及其粉末固相合金化烧结方法
US5458847A (en) Electroless plating method of NI-Al intermetallic compound
CN116426783A (zh) 一种提高AlxCoCrFeNi系高熵合金致密度的制备方法
CN117564273A (zh) 一种粉末冶金高强韧含氮高熵合金及其制备方法
CN112941391B (zh) 一种含NbC的高致密复合金属陶瓷材料及其制备方法
CN111411249B (zh) VNbMoTaW高熵合金的制备方法
CN113020604A (zh) 一种高强耐磨抗高温氧化钛铝合金材料及其制备方法
CN113151728B (zh) FeCrVTiCu高熵合金及其制备方法
CN115612890B (zh) 一种Mo2C颗粒增强CuCrZr复合材料及其制备工艺
CN115341112B (zh) 一种高强度超细晶的钨钽镍铁铜合金及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination