CN117551261A - 一种聚合物给体材料及其制备方法与应用 - Google Patents

一种聚合物给体材料及其制备方法与应用 Download PDF

Info

Publication number
CN117551261A
CN117551261A CN202311348839.XA CN202311348839A CN117551261A CN 117551261 A CN117551261 A CN 117551261A CN 202311348839 A CN202311348839 A CN 202311348839A CN 117551261 A CN117551261 A CN 117551261A
Authority
CN
China
Prior art keywords
polymer
donor material
formula
substituted benzene
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311348839.XA
Other languages
English (en)
Inventor
李正
王明
唐正
马在飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202311348839.XA priority Critical patent/CN117551261A/zh
Publication of CN117551261A publication Critical patent/CN117551261A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明涉及有机高分子半导体材料领域,涉及一种聚合物给体材料及其制备方法与应用,本发明提供的聚合物给体材料含有两个卤素取代基,卤素取代基为氟取代基或氯取代基中的一种,同时具有多个烷基支链,使聚合物具有良好的溶解性,在器件制备中可溶液加工成膜;本发明提供的聚合物给体材料具有空穴传输特性,对可见光区光子有较好的吸收,可以作为有机光伏电池器件的电子给体材料组分。与现有技术相比,本发明具有增强聚合物的光吸收强度,提高有机光电器件的能量转化效率等优点。

Description

一种聚合物给体材料及其制备方法与应用
技术领域
本发明涉及有机高分子半导体材料领域,尤其是涉及一种聚合物给体材料及其制备方法与应用。
背景技术
如今,面对越来越严峻的能源危机,人类开始使用可持续利用的绿色能源,包括风能,地热能,氢能以及最为广泛的太阳能。目前,市场上占主导地位的太阳能电池仍旧是无机硅类太阳能电池,但是无机太阳能电池的制造过程中会对环境产生大量的污染。有机太阳能电池(OPV)由于其轻柔、易大面积制备、可制成半透明器件等特点逐渐受到人们的广泛关注,将有机太阳能电池作为与无机太阳能电池相互补充的技术有望为人类社会的可持续发展做出贡献。
有机太阳能电池性能的实现依赖其光电转换的性能,然而目前高性能的有机太阳能电池材料并不是很多,要满足对太阳光的高转换率的要求,需要研发更多高性能的材料,其中就包括给体材料以及受体材料。高效率的给体材料相对较少,亟需研究发现更多结构设计合理、性能良好、制备成本低的聚合物给体材料,从而促进有机太阳能电池行业的发展。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种使器件获得更高的填充因子、开路电压和短路电流密度的聚合物给体材料及其制备方法与应用。
本发明的目的可以通过以下技术方案来实现:
一种含有氟/氯取代苯结构的聚合物给体材料,具有式Ⅰ或式Ⅱ所示结构:
其中,式Ⅰ及式Ⅱ中:n为2-2000;X1,X2,X3、X4为两个卤素取代基和两个H的组合,所述卤素取代基为氟取代基或氯取代基中的一种;Y为H、F或Cl;R1和R2包括氢原子以及分子式为CmH2m+1(0<m<50)的烷基侧链。
进一步地,所述烷基侧链包括甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十四烷基、十六烷基、十八烷基、三十烷基、异丙基异丁基、2-乙基己基、2-丁基己基、2-丁基辛基、2-己基辛基、2-己基癸基、2-己基十二烷基、2-辛基癸基、2-辛基十二烷基、2-辛基十四烷基、2-辛基十六烷基、2-癸基十二烷基、2-癸基十四烷基、2-癸基十六烷基、2-十二烷基十四烷基、2-十二烷基十六烷基或2-十二烷基十八烷基。
进一步地,所述含有氟/氯取代苯结构的聚合物给体材料包括:
一种含有氟/氯取代苯结构的聚合物给体材料的制备方法,所述含有氟/氯取代苯结构的聚合物给体材料具有式Ⅰ所示的结构式,制备方法包括以下步骤:
S1:将式1所示的化合物1(并噻吩烷基链三甲基锡)与式2所示的化合物2(二溴氟/氯苯)溶于甲苯中,加入四(三苯基膦)钯为催化剂,得到式3所示的聚合物前体A:
S2:将聚合物前体A溶于四氢呋喃中,加入N-溴代丁二酰亚胺,反应得到式4所示的聚合单体B:
S3:以聚合单体B与式5所示的聚合物单体C聚合,添加四(三苯基膦)钯为催化剂,得到该具有式Ⅰ所示结构式的含有氟/氯取代苯结构的聚合物给体材料:
进一步地,步骤S1中,所述并噻吩烷基链三甲基锡与二溴氟/氯苯的摩尔比为2:1-3:1,优选为2.5:1。
进一步地,步骤S1反应温度为60-150℃,时间为12h-24h,优选为110℃,时间为12h。
进一步地,步骤S2中,所述聚合物前体A与N-溴代丁二酰亚胺的摩尔比为2:1-3:1,优选为2.2:1。
进一步地,步骤S2反应温度为0-50℃,时间为2h-24h,优选为室温,时间为6h。
进一步地,步骤S3中,所述聚合单体B或二溴氟/氯苯与聚合物单体C的摩尔比为1:1-1.2:1,优选为1.01:1。
进一步地,步骤S3,所述聚合的反应温度为110-200℃,时间为1h-36h,优选为140℃,时间为12h。
一种含有氟/氯取代苯结构的聚合物给体材料的制备方法,所述含有氟/氯取代苯结构的聚合物给体材料具有式Ⅱ所示的结构式,制备方法包括以下步骤:
以式2所示的化合物为与式5所示的聚合物单体C按照摩尔比为1:1-1.2:1进行聚合,添加四(三苯基膦)钯为催化剂,得到该具有式Ⅱ所示结构式的含有氟/氯取代苯结构的聚合物给体材料:
一种含有氟/氯取代苯结构的聚合物给体材料的应用,该聚合物给体材料用于有机光伏电池器件中作为电子给体材料使用。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明的氟/氯取代苯结构的聚合物给体材料具有良好的稳定性,相对于5%质量损失,热分解温度为400℃-500℃,在实验室可以以高效经济的路线制备,聚合物的光学带隙为2.0-2.5eV,使聚合物的吸收与太阳光谱更加匹配,实现对太阳光光谱更宽的覆盖,可以作为聚合物太阳电池的活性层组分,所得电池器件的开路电压为0.80-0.95V,短路电流为10.0-19.8mA/cm2,填充因子为50-65%,能量转换效率1.23-9.73%。
(2)本发明将基于给体-受体型结构单元引入多元共轭聚合物体系,能够有效扩宽聚合物对太阳光光谱的吸收范围,增强聚合物的光吸收强度,提高有机光电器件的能量转化效率。
(3)本发明的氟/氯取代苯结构的聚合物给体材料具有低成本,易制备,可应用于大面积有机太阳能电池器件制备,具有大的商业化潜力。
(4)本发明的氟/氯取代苯结构的聚合物给体材料具有高度平面结构的优势,且结构新颖,具有独创性。
附图说明
图1为本发明实施例1-8中聚合物P1、P2、P3、P4、P5、P6、P7和P8的溶液吸收光谱图;
图2为本发明实施例1-8中聚合物P1、P2、P3、P4、P5、P6、P7和P8的薄膜吸收光谱图;
图3为本发明实施例1-8中聚合物P1、P2、P3、P4、P5、P6、P7和P8的循环伏安曲线图;
图4为本发明实施例9中聚合物P9循环伏安曲线图;
图5为本发明实施例1-8中聚合物P1、P2、P3、P4、P5、P6、P7和P8的热重曲线图;
图6为本发明实施例9中聚合物P9的溶液吸收光谱图和薄膜吸收光谱图;
图7为本发明实施例1-6中聚合物P1、P2、P3、P4、P5和P6为电子给体材料制备有机太阳电池器件的电流-电压曲线图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
以下各实施例中,如无特别说明的原料试剂或处理技术,则表明其均为本领域的常规市售产品或常规处理技术。
实施例1
本实施例提供一种含氟/氯取代苯结构的聚合物给体材料P1,其合成路线如下:
(1)聚合物前体A(本实施例中为化合物3)的合成:将1.14g(2.5mmol、2.5equiv)并噻吩烷基链三甲基锡(本实施例中为化合物1:三丁基(6-十一烷基噻吩并[3,2-B]噻吩-2-基)锡烷);二溴氟/氯苯(本实施例为化合物2:2,5-二溴-1,3-二氟苯)271mg(1.0mmol、1.0equiv);催化剂四三苯基膦钯57.8mg(0.05mmol、0.005equiv),加入到含转子的干燥两口圆底烧瓶中,抽真空,换氮气,然后将5ml的溶剂甲苯加入到两口瓶中,将混合物溶液加热到110℃,400rpm条件下搅拌反应12小时,该反应在氮气氛围下进行;反应结束后将混合物溶液自然冷却至室温,用水(70mL)和CH2Cl2(70mL×3)萃取,取下层有机相,使用无水硫酸镁干燥并过滤,通过旋转蒸发仪除去溶剂,粗产物经过柱层析纯化得到浅黄色固体,该固体即为聚合物前体A(本实施例中的化合物3:426mg,产率为61%)对合成的聚合物前体A进行核磁检测,数据如下:
1H NMR(chloroform-d,298K,400MHz,δ/ppm):7.70(s,2H),7.40(s,2H),7.03(s,2H),2.76-2.72(m,4H),1.79-1.76(m,4H),1.40-1.27(m,32H),0.89-0.86(m,6H).
13C NMR(101MHz,CDCl3)δ145.15,138.16,137.69,135.10,133.30,121.41,121.34,121.03,120.78,118.25,30.20,28.19,27.94,27.92,27.85,27.68,27.64,26.89,20.97,12.40.
(2)聚合单体B(本实施例中为化合物M1)的合成:将400mg(0.57mmol,1.0equiv)聚合物前体A(化合物3)加入到干燥的含转子两口圆底烧瓶中,抽真空,换氮气,然后将50ml溶剂四氢呋喃加入到两口瓶中,随后将223mgNBS缓慢加入并在室温下反应3h。反应结束后将混合液滴入到100ml的甲醇溶液中得到析出的固体,将其过滤干燥后柱层析纯化得到黄色固体,即为聚合单体B(本实施例中为化合物M1:451mg,产率为92%),对合成的聚合单体B进行核磁检测,数据如下:
1H NMR(chloroform-d,298K,400MHz,δ/ppm):7.66(s,2H),7.40(s,2H),7.23-7.20(d,J=12Hz,2H),2.75-2.73(m,4H),1.73-1.71(m,4H),1.38-1.27(m,36H),0.89-0.86(m,6H).
13C NMR(101MHz,CDCl3)δ160.97,158.47,158.39,141.55,139.63,138.43,137.77,136.89,134.77,134.37,134.19,129.95,121.37,121.30,121.23,116.74,111.54,111.51,111.21,111.04,109.00,108.73,31.94,29.67,29.65,29.56,29.39,29.37,29.32,29.16,29.13,28.03,27.99,22.72,14.15.
(3)含氟/氯取代苯结构的聚合物给体材料(本实施例中为P1)的合成:在干燥的圆底烧瓶中加入85.7mg(0.1mmol)化合物M1和119.1mg(0.1mmol)单体M2(本实施例中为:(4,8-双(4-氯-5-(2-乙基己基)噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩-2,6-二基)双(三甲基锡)),加入5.8mg催化剂四(三苯基膦)钯,通过抽真空换氮气操作三次,再加入5mL有机溶剂(本实施例中为邻二甲苯);将混合物溶液在140℃条件下搅拌反应12小时,反应在氮气氛围下进行;反应完毕后且溶液恢复至室温后,将所得聚合物溶液以0.5mL/min的速率滴加到150mL甲醇中,通过滤纸过滤得到聚合物沉淀,即为聚合物粗产物;将收集得到的聚合物粗产物依次通过甲醇、正己烷、二氯甲烷、氯仿四种不同溶剂环境的索氏提取器进行分离提纯,收集氯仿相的浓缩液后在甲醇中析出沉淀,过滤收集沉淀并烘干后得到深色固体,即为含氟/氯取代苯结构的聚合物给体材料(本实施例中为P1)(132mg,产率为86%)。
实施例2
本实施例提供一种含氟/氯取代苯结构的聚合物给体材料P2,其合成路线如下:
与实施例1不同之处在于:
1、步骤(1)中,选用的二溴氟/氯苯(化合物4):1,4-二溴-2,3-二氟苯;
2、步骤(3)中,有机溶剂(邻二甲苯)为2mL,其他步骤、药品、投料均同实施例1。
(1)聚合物前体A(本实施例中为化合物5:492mg,产率为70%)的核磁数据:
1H NMR(chloroform-d,298K,400MHz,δ/ppm):7.70(s,2H),7.40(s,2H),7.03(s,2H),2.76-2.72(m,4H),1.79-1.76(m,4H),1.40-1.27(m,32H),0.89-0.86(m,6H).
13C NMR(101MHz,CDCl3)δ145.15,138.16,137.69,135.10,133.30,121.41,121.34,121.03,120.78,118.25,30.20,28.19,27.94,27.92,27.85,27.68,27.64,26.89,20.97,12.40.
(2)聚合单体B(本实施例中为化合物M3:465mg,产率为95%)的核磁数据:
1H NMR(chloroform-d,298K,400MHz,δ/ppm):7.62(s,2H),7.39(s,2H),7.23-7.20(d,J=12Hz,2H),2.78-2.74(m,4H),1.75-1.72(m,4H),1.37-1.26(m,32H),0.89-0.86(m,6H).
13C NMR(101MHz,CDCl3)δ147.34,147.18,144.81,144.65,136.52,135.73,134.16,132.23,120.85,120.82,120.79,120.75,120.48,120.45,120.42,117.39,117.34,117.30,109.52,29.93,27.66,27.64,27.57,27.54,27.37,27.36,27.31,27.14,26.70,26.00,20.70,12.13.
(3)含氟/氯取代苯结构的聚合物给体材料(本实施例中为P2)(111mg,产率为70%)。
实施例3
本实施例提供一种含氟/氯取代苯结构的聚合物给体材料P3,其合成路线如下:
与实施例1不同之处在于:
1、步骤(1)中,选用的二溴氟/氯苯(化合物6):1,4-二溴-2,5-二氟苯;
2、步骤(2)中,聚合单体B(本实施例中为化合物M4)合成时,称取300mg聚合物前体A(化合物7),其他步骤、药品、投料均同实施例1。
(1)聚合物前体A(本实施例中为化合物7:300mg,产率为43%)的核磁数据:
1H NMR(chloroform-d,298K,400MHz,δ/ppm):7.70(s,2H),7.45-7.40(t,2H),7.04(s,2H),2.77-2.73(m,4H),1.80-1.76(m,4H),1.32-1.27(m,30H),0.89-0.86(m,8H).
13C NMR(101MHz,CDCl3)δ155.88,154.09,141.02,139.15,137.29,134.83,123.80,121.73,119.69,116.27,31.01,29.01,28.74,28.72,28.66,28.49,28.44,27.72,21.78,13.21.
(2)聚合单体B(本实施例中为化合物M4:289mg,产率为79%)的核磁数据:
1H NMR(chloroform-d,298K,400MHz,δ/ppm):7.56(s,2H),7.37-7.32(t,2H),2.75-2.71(m,4H),1.74-1.70(m,4H),1.39-1.27(m,32H),0.89-0.86(m,6H).
13C NMR(101MHz,CDCl3)δ156.78,153.82,138.48,137.24,136.55,134.39,122.24,121.61,119.57,114.90,114.70,114.50,111.82,31.44,29.23,29.17,29.15,29.06,28.89,28.87,28.82,28.67,27.52,22.22,13.64.
(3)含氟/氯取代苯结构的聚合物给体材料(本实施例中为P3)(145mg,产率为92%)。
实施例4
本实施例提供一种含氟/氯取代苯结构的聚合物给体材料P4,其合成路线如下:
与实施例1不同之处在于:
步骤(1)中,选用并噻吩烷基链三甲基锡(本实施例中为化合物8)为:三丁基(6-(2-丁基己基)噻吩并[3,2-B]噻吩-2-基)锡烷,其他步骤、药品、投料均同实施例1。
(1)聚合物前体A(本实施例中为化合物9:496mg,产率为71%)的核磁数据:
1H NMR(chloroform-d,298K,400MHz,δ/ppm):7.68(s,1H),7.44(s,1H),7.24(s,2H),2.69-2.66(m,4H),2.02-1.91(m,2H),1.35 -1.25(m,30H),0.91-0.85(m,10H).
(2)聚合单体B(本实施例中为化合物M5:426mg,产率为87%)的核磁数据:
1H NMR(chloroform-d,298K,400MHz,δ/ppm):7.67(s,2H),7.41(s,2H),7.24-7.2(d,J=8Hz,2H),2.68-2.658(m,4H),1.96-1.94(m,4H),1.39-1.27(m,32H),0.89-0.86(m,6H).
(3)含氟/氯取代苯结构的聚合物给体材料(本实施例中为P4)(126mg,产率为82%)。
实施例5
本实施例提供一种含氟/氯取代苯结构的聚合物给体材料P5,其合成路线如下:
与实施例1不同之处在于:
步骤(3)中,选用的另一个聚合单体(本实施例中为M6)为:4,8-双(4-氯-5-(2-辛基癸基)噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩-2,6-二基)双(三甲基锡),投料为131.0mg,(0.1mmol)其他步骤、药品、投料均同实施例1。
(1)聚合物前体A(本实施例中为化合物3)的核磁数据同实施例1。
(2)聚合单体B(本实施例中为化合物M1)的核磁数据同时实力1。
(3)含氟/氯取代苯结构的聚合物给体材料(本实施例中为P5)(90.7mg,产率为54%)。
实施例6
本实施例提供一种含氟/氯取代苯结构的聚合物给体材料P6,其合成路线如下:
本实施例直接以二溴氟/氯苯为原料(同实施例1:1,4-二溴-2,5-二氟苯)与单体M2(同实施例1)聚合:
含氟/氯取代苯结构的聚合物给体材料(本实施例中为P6)的合成:
在干燥的圆底烧瓶中加入27.2mg(0.1mmol)单体2(同实施例1:1,4-二溴-2,5-二氟苯)、119.1mg(0.1mmol)单体M2(同实施例1)和5.8mg催化剂四(三苯基膦)钯,通过抽真空换氮气操作三次,再加入5mL邻二甲苯;将混合物溶液在140℃条件下搅拌反应12小时,反应在氮气氛围下进行;混合物溶液恢复至室温后将所得聚合物溶液以0.5mL/min速率滴加到150mL甲醇中,通过滤纸过滤得到聚合物沉淀,即为聚合物粗产物;将收集得到的聚合物粗产物依次通过甲醇、正己烷、二氯甲烷作为溶剂用索氏提取器进行分离提纯,收集二氯甲烷相的浓缩液后在甲醇中析出沉淀,过滤收集沉淀并烘干后得到深色固体,即聚合物P6(75mg,产率为76%)。
实施例7
本实施例提供一种含氟/氯取代苯结构的聚合物给体材料P7,其合成路线如下:
本实施例直接以二溴氟/氯苯为原料(同实施例1)与单体M7(本实施例为:4,8-双(5-(2己基辛基)噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩-2,6-二基)双(三甲基锡)。
含氟/氯取代苯结构的聚合物给体材料(本实施例中为P7)的合成:
在干燥的圆底烧瓶中加入27.2mg(0.1mmol)单体2(同实施例1)、119.1mg(0.1mmol)单体M7和5.8mg催化剂四(三苯基膦)钯,通过抽真空换氮气操作三次,再加入5mL邻二甲苯;将混合物溶液在140℃条件下搅拌反应12小时,反应在氮气氛围下进行;混合物溶液恢复至室温后将所得聚合物溶液以0.5mL/min速率滴加到150mL甲醇中,通过滤纸过滤得到聚合物沉淀,即为聚合物粗产物;将收集得到的聚合物粗产物依次通过甲醇、正己烷、二氯甲烷作为溶剂用索氏提取器进行分离提纯,收集二氯甲烷相的浓缩液后在甲醇中析出沉淀,过滤收集沉淀并烘干后得到深色固体,即聚合物P7(80.4mg,产率为88%)。
实施例8
本实施例提供一种含氟/氯取代苯结构的聚合物给体材料P8,其合成路线如下:
本实施例直接以二溴氟/氯苯为原料(同实施例3:1,4-二溴-2,5-二氟苯)与单体M2(同实施例1)。
含氟/氯取代苯结构的聚合物给体材料(本实施例中为P8)的合成:
在干燥的圆底烧瓶中加入85.7mg(0.1mmol)单体6(同实施例3)、119.1mg(0.1mmol)单体M2和5.8mg催化剂四(三苯基膦)钯,通过抽真空换氮气操作三次,再加入5mL邻二甲苯;将混合物溶液在140℃条件下搅拌反应12小时,反应在氮气氛围下进行;混合物溶液恢复至室温后将所得聚合物溶液以0.5mL/min速率滴加到150mL甲醇中,通过滤纸过滤得到聚合物沉淀,即为聚合物粗产物;将收集得到的聚合物粗产物依次通过甲醇、正己烷、二氯甲烷作为溶剂用索氏提取器进行分离提纯,收集二氯甲烷相的浓缩液后在甲醇中析出沉淀,过滤收集沉淀并烘干后得到深色固体,即聚合物P8(88.0mg,产率为96%)。
性能测试:
(1)实施例1-8中聚合物P1、P2、P3、P4、P5、P6、P7和P8的溶液(溶液浓度为0.01mg/mL)紫外吸收光谱图如图1所示,由图可知聚合物材料在溶液状态下对太阳光的吸收覆盖在300-700nm,对可见光区域具有较好的吸收,在有机光伏器件应用中具有较大潜力;
(2)实施例1-8中聚合物P1、P2、P3、P4、P5、P6、P7和P8的薄膜(使用旋涂仪按照一定的转速滴涂,溶剂挥发后即可得到薄膜,膜厚为80-120nm之间区间)紫外吸收光谱图如图2所示,表明聚合物材料在薄膜状态下对太阳光的吸收覆盖300-800nm,对可见光区域具有较好的吸收,在有机光伏器件应用中具有较大潜力;
实施例9
本实施例提供一种含氟/氯取代苯结构的聚合物给体材料P9,其合成路线如下:
本实施例直接以二溴氟/氯苯为原料(本实施例为:2,5-二氯-1,4-二溴苯)与单体M2(同实施例1)。
含氟/氯取代苯结构的聚合物给体材料(本实施例中为P9)的合成:
在干燥的圆底烧瓶中加入30.4mg(0.1mmol)单体10(2,5-二氯-1,4-二溴苯)、119.1mg(0.1mmol)单体M2和5.8mg催化剂四(三苯基膦)钯,通过抽真空换氮气操作三次,再加入5mL邻二甲苯;将混合物溶液在140℃条件下搅拌反应12小时,反应在氮气氛围下进行;混合物溶液恢复至室温后将所得聚合物溶液以0.5mL/min速率滴加到150mL甲醇中,通过滤纸过滤得到聚合物沉淀,即为聚合物粗产物;将收集得到的聚合物粗产物依次通过甲醇、正己烷、二氯甲烷作为溶剂用索氏提取器进行分离提纯,收集二氯甲烷相的浓缩液后在甲醇中析出沉淀,过滤收集沉淀并烘干后得到深色固体,即聚合物P9(74.0mg,产率为73%)。
实施例9中聚合物P9的溶液(左)和薄膜(右)紫外吸收光谱图如图6所示,使用的仪器为紫外可见光谱仪,本聚合物材料P9溶液状态下对太阳光的吸收覆盖300-520nm在薄膜状态下对太阳光的吸收覆盖300-570nm,对可见光区域具有较好的吸收,在有机光伏器件应用中具有较大潜力。
应用测试效果:
1、表1及图3、4为实施例1-9中聚合物P1、P2、P3、P4、P5、P6、P7、P8和P9的循环伏安曲线图,采用CHI 660A电化学工作站,用标准的三电极电化学电池来测定。铂碳电极做工作电极,铂丝为辅助电极,以甘汞电极(SCE)作为参比电极。电解液为浓度为0.1mol L–1的Bu4NPF(四丁基六氟磷酸铵)的无水乙腈溶液,仪器使用二茂铁溶液标定,标定后以相对二茂铁的氧化还原电位根据按的公式计算得到材料HOMO和LUMO:HOMO=-(Eox+4.8eV);LUMO=-(Ered+4.8eV)。
同时,图3和4可以表明聚合物P1、P2、P3、P4、P5、P6、P7、P8和P9的HOMO及LUMO能级,其中HOMO均较高,分别为-5.38eV、-5.41eV、-5.43eV、-5.48eV、-5.38eV、-5.69eV、-5.80ev、-5.57eV和-5.33eV;LUMO均较低,分别为-2.88eV、-2.84eV、-2.95eV、-2.92eV、-2.81eV、-3.01eV、-3.08Ev、-3.21eV和-2.82eV,这样Eg=LUMO-HOMO,均得到了中等的能带隙Eg,分别为2.50eV、2.57eV、2.48eV、2.56eV、2.57eV、2.68eV、2.72eV、2.48eV和2.51eV,同时九种聚合物光学带隙Egopt(对所的图形拐点做切线得到初始氧化电位Eox以及初始还原电位Ered根据按的公式计算得到材料HOMO和LUMO:HOMO=-(Eox+4.8eV);LUMO=-(Ered+4.8eV))分别为2.14eV、2.12eV、2.10eV、2.14eV、2.08eV、2.04eV、2.18eV以及2.25eV;
这表明本发明聚合物均具有较为优良的电化学性质,可以应用于有机光伏器件;
图5所示,为实施例1-8中聚合物P1、P2、P3、P4、P5、P6、P7和P8的热失重曲线,使用仪器为热重分析仪,结合表1可以看出聚合物P1、P2、P3、P6、P7和P8均具有较高的热稳定性,聚合物热分解温度均在400℃以上。
表1实施例1-9电子传输型聚合物的物理表征数据
2、以实施例1-6所合成的聚合物P1-P6作为电子给体材料应用于有机太阳能电池器件中(ITO阳极/阳极界面层/活性层/阴极界面层/阴极;器件结构:ITO/PEDOT4083/Active Layer/PFN-Br/Ag)。
使用商业购买的Y6作为有机太阳能电池的受体,聚合物P1-P6作为电子给体材料,制备有机太阳能电池器件;将购买的ITO基底先后用丙酮和异丙醇超声清洗,再在紫外臭氧中处理10分钟;将洗净且吹干的ITO基底放在旋涂仪的转台上,采用溶液旋涂法将PEDOT4083:PSS水溶液旋涂在ITO导电玻璃上,然后置于空气中150℃条件下干燥15分钟形成PEDOT:PSS薄膜;在氮气氛围的手套箱中将P1/P2/P3/P4/P5/P6:Y6(w/w=1:1.2)的氯仿溶液旋涂沉积在PEDOT:PSS薄膜上,形成一层厚度为60-120nm的活性层薄膜;在氮气氛围的手套箱中将PFN-Br旋涂在活性层薄膜上,形成一层厚度为20nm的薄膜;在高真空条件下蒸镀100nm的Ag作为阴电极,所制备的太阳能电池的有效工作面积为4mm2,所有制备过程均在氮气氛围的手套箱内进行。
将聚合物溶于CF中,使用旋涂仪甩膜,转速为3000转每分钟,得到器件的开路电压Voc、开路电流Jsc以及填充因子FF,经过计算得到能量转化效率PCE=Jsc*Voc*FF/Pin,Pin为标准太阳光AM1.5G,测试在Orie191192型AM1.5太阳光模拟灯的照射下进行,辐射度为1kW/m2,使用Keithley2400型数字源表测试J-V曲线,所制备的正装电池器件的电流-电压曲线如图7所示,相关数据在表2中列出,
表2为基于所述聚合物P1-P6作为电子给体材料,Y6(12,13-二(2-乙基己基)-3,9-双十一基-12,13-二氢-[1,2,5]噻二唑并[3,4-e]噻吩并[2”,3”:4',5']噻吩并[2',3':4,5]吡咯并[3,2-g]噻吩并[2',3':4,5]噻吩并[3,2-b]吲哚-2,10-二(5,6-二氟-3-(二氰基亚甲基)茚-1-酮);购于苏州纳凯科技有限公司)作为电子受体材料有机太阳能电池的器件性能参数:
表2基于实施例1制备的有机太阳能电池的器件性能参数
由图7和表2可以看出,本发明提供的含有氟/氯取代苯结构的聚合物作为给体用于活性层能够得到较高的开路电压,较大的短路电流以及合适的填充因子,可以获得较高的电池器件性能。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种含有氟/氯取代苯结构的聚合物给体材料,其特征在于,具有式Ⅰ或式Ⅱ所示的结构式:
式Ⅰ、式Ⅱ中:n分别为2-2000;X1,X2,X3、X4为两个卤素取代基和两个H的组合,所述卤素取代基为氟取代基或氯取代基中的一种;Y为H、F或Cl;R1、R2分别为氢原子或分子式为CmH2m+1的烷基侧链,其中0<m<50。
2.根据权利要求1所述的含有氟/氯取代苯结构的聚合物给体材料,其特征在于,所述烷基侧链包括甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十四烷基、十六烷基、十八烷基、三十烷基、异丙基异丁基、2-乙基己基、2-丁基己基、2-丁基辛基、2-己基辛基、2-己基癸基、2-己基十二烷基、2-辛基癸基、2-辛基十二烷基、2-辛基十四烷基、2-辛基十六烷基、2-癸基十二烷基、2-癸基十四烷基、2-癸基十六烷基、2-十二烷基十四烷基、2-十二烷基十六烷基或2-十二烷基十八烷基。
3.一种如权利要求1或2所述的含有氟/氯取代苯结构的聚合物给体材料的制备方法,其特征在于,所述含有氟/氯取代苯结构的聚合物给体材料具有式Ⅰ所示的结构式,制备方法包括以下步骤:
S1:将式1所示的化合物1与式2所示的化合物2溶于甲苯中,加入四(三苯基膦)钯为催化剂,得到式3所示的聚合物前体A;
S2:将聚合物前体A溶于四氢呋喃中,加入N-溴代丁二酰亚胺,反应得到式4所示的聚合单体B;
S3:以聚合单体B与式5所示的聚合物单体C聚合,添加四(三苯基膦)钯为催化剂,得到具有式Ⅰ所示结构式的含有氟/氯取代苯结构的聚合物给体材料。
4.根据权利要求3所述的含有氟/氯取代苯结构的聚合物给体材料,其特征在于,步骤S1中,所述化合物1与化合物2的摩尔比为2:1-3:1。
5.根据权利要求3所述的含有氟/氯取代苯结构的聚合物给体材料,其特征在于,步骤S1反应温度为60-150℃,时间为12h-24h。
6.根据权利要求3所述的含有氟/氯取代苯结构的聚合物给体材料,其特征在于,步骤S2中,所述聚合物前体A与N-溴代丁二酰亚胺的摩尔比为2:1-3:1。
7.根据权利要求3所述的含有氟/氯取代苯结构的聚合物给体材料,其特征在于,步骤S2反应温度为0-50℃,时间为2h-24h。
8.根据权利要求3所述含有氟/氯取代苯结构的聚合物给体材料,其特征在于,步骤S3中,所述聚合单体B与式5所示的聚合物单体C的摩尔比为1:1-1.2:1。
9.一种如权利要求1或2所述的含有氟/氯取代苯结构的聚合物给体材料的制备方法,其特征在于,所述含有氟/氯取代苯结构的聚合物给体材料具有式Ⅱ所示的结构式,制备方法包括以下步骤:
以式2所示的化合物与式5所示的聚合物单体C按照摩尔比为1:1-1.2:1进行聚合,添加四(三苯基膦)钯为催化剂,得到该具有式Ⅱ所示结构式的含有氟/氯取代苯结构的聚合物给体材料。
10.一种如权利要求1或2所述的含有氟/氯取代苯结构的聚合物给体材料的应用,其特征在于,所述的聚合物给体材料用于有机光伏电池器件中作为电子给体材料使用。
CN202311348839.XA 2023-10-18 2023-10-18 一种聚合物给体材料及其制备方法与应用 Pending CN117551261A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311348839.XA CN117551261A (zh) 2023-10-18 2023-10-18 一种聚合物给体材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311348839.XA CN117551261A (zh) 2023-10-18 2023-10-18 一种聚合物给体材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN117551261A true CN117551261A (zh) 2024-02-13

Family

ID=89811827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311348839.XA Pending CN117551261A (zh) 2023-10-18 2023-10-18 一种聚合物给体材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN117551261A (zh)

Similar Documents

Publication Publication Date Title
Li et al. Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%
EP2381500B1 (en) Material for photovoltaic element, and photovoltaic element
EP2266982B1 (en) Electron donating organic material, material for photovoltaic element, and photovoltaic element
Wang et al. New low-bandgap polymetallaynes of platinum functionalized with a triphenylamine-benzothiadiazole donor–acceptor unit for solar cell applications
EP2072557A1 (en) Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
Li et al. An expanded isoindigo unit as a new building block for a conjugated polymer leading to high-performance solar cells
US9153785B2 (en) Semiconducting polymers
WO2013015298A1 (ja) 有機半導体材料
Liang et al. Donor–acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells
CN112375079B (zh) 一类基于萘二酰亚胺单元衍生物的小分子受体材料及制备方法与应用
WO2010006698A1 (en) Conjugated low band-gap copolymers and relative preparation process
TWI671303B (zh) 用於高效率有機光伏之卟啉材料之設計及合成
CN108467402A (zh) 氟取代有机小分子空穴传输材料及其应用
EP2562197A1 (en) Copolymer comprising anthracene and benzoselenadiazole, preparing method and uses thereof
EP2530084B1 (en) Copolymer containing fluorenylporphyrin-anthracene, preparation method and use thereof
Li et al. Synthesis and photovoltaic performances of a conjugated polymer based on a new naphthodifuran monomer
CN114507337A (zh) 含有喹喔啉结构的共轭聚合物及其合成方法与应用
Li et al. An effective heteroatom-substituted strategy on photovoltaic properties of D (A-Ar) 2 small molecules for efficient organic solar cells
Liu et al. Asymmetric 2D benzodithiophene and quinoxaline copolymer for photovoltaic applications
KR101828012B1 (ko) 유기 태양전지용 공액 고분자 및 이의 제조방법
JP5667693B2 (ja) キノキサリン単位含有ポルフィリン共重合体及びその製造方法、並びにその応用
CN114349771B (zh) 一种六苯并蔻基非富勒烯受体材料及其制备和应用
CN117551261A (zh) 一种聚合物给体材料及其制备方法与应用
JP5701453B2 (ja) ジフルオロベンゾトリアゾリル太陽電池材料、調合法、およびその使用方法
KR20160004916A (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 포함하는 유기 전자 소자 및 유기 태양전지 소자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination