CN117512559A - 一种原位c掺杂的p型六方氮化硼薄膜及其制备方法 - Google Patents

一种原位c掺杂的p型六方氮化硼薄膜及其制备方法 Download PDF

Info

Publication number
CN117512559A
CN117512559A CN202311501689.1A CN202311501689A CN117512559A CN 117512559 A CN117512559 A CN 117512559A CN 202311501689 A CN202311501689 A CN 202311501689A CN 117512559 A CN117512559 A CN 117512559A
Authority
CN
China
Prior art keywords
film
doped
chamber
situ
hbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311501689.1A
Other languages
English (en)
Inventor
陈占国
范盛达
刘晓航
陈曦
侯丽新
刘秀环
赵纪红
高延军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202311501689.1A priority Critical patent/CN117512559A/zh
Publication of CN117512559A publication Critical patent/CN117512559A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种原位C掺杂的P型六方氮化硼薄膜及其制备方法,属于半导体薄膜制备和掺杂技术领域。本发明采用低压化学气相沉积(LPCVD)技术,通过BCl3+NH3→hBN+HCl反应在衬底上生长本征hBN薄膜缓冲层,然后在缓冲层上以Cp2Mg为掺杂源进行原位掺杂,受控降温后得到原位C掺杂的P型六方氮化硼薄膜。薄膜的生长速率与厚度可通过生长温度、生长源流量等进行调控,其电学性质与掺杂浓度可通过掺杂源加热温度与稀释比例进行调节。本发明所述方法简单稳定且掺杂均匀,能够制备出空穴浓度较高的P型hBN薄膜,进一步通过异质外延等方式,可以与其他半导体材料形成各种半导体器件。

Description

一种原位C掺杂的P型六方氮化硼薄膜及其制备方法
技术领域
本发明属于半导体薄膜制备和掺杂技术领域,具体涉及一种原位C掺杂的P型六方氮化硼薄膜及其制备方法。
背景技术
近年来,氮化物半导体材料与器件发展迅速,已经成为紫外光电器件、功率电子器件等领域不可或缺的一部分。六方氮化硼(hBN)是一种人工合成的Ⅲ-Ⅴ族化合物,具有与石墨类似的六方层状结构。作为一种禁带宽度高达6.0eV左右的超宽禁带半导体材料,六方氮化硼(hBN)具有许多优异的特性,例如,优异的物理和化学稳定性、高热导率、高介电强度等,使得近年来其潜在的应用价值被广泛关注与研究。
掺杂是改变半导体材料电学性质的重要手段,也是半导体材料能否实现器件应用的关键。但宽禁带III族氮化物半导体材料的高效P型掺杂是公认的技术难题,因此,寻求合适的掺杂方法与掺杂剂以制备P型的hBN材料具有重要研究意义。
Ⅳ族元素C在Ⅲ-Ⅴ族半导体材料hBN中是一种两性杂质,其电学行为取决于C原子在hBN晶体中的状态,当其替位hBN晶体中的N原子时,可作为受主杂质电离出空穴,因而,利用C掺杂制备P型hBN薄膜是可能的。相比于离子注入、扩散等后掺杂工艺,原位掺杂技术具有工艺简单、杂质分布均匀、不损伤晶格等优点,是调控外延层电学性质的重要手段。
目前,有关C掺杂hBN的研究相对较少,除了非故意C掺杂的研究之外,主要研究都集中在以甲烷(CH4)为掺杂剂的N型掺杂研究上。例如,美国德州理工大学的H.X.Jiang教授团队(Uddin,M.R.,Li,J.,Lin,J.Y.&Jiang,H.X.Probing carbon impurities inhexagonal boron nitride epilayers.Applied Physics Letters 110,doi:10.1063/1.4982647(2017))以甲烷为掺杂源,使用MOCVD制备了C掺杂的N型hBN薄膜,其样品的杂质电离能为0.45eV。使用其他C源以及P型掺杂的研究均未有报导。
发明内容
本发明的目的在于提供一种稳定、高效、简单的原位C掺杂的P型六方氮化硼薄膜及其制备方法。本发明是采用低压化学气相沉积(LPCVD)技术,以三氯化硼(BCl3)、氨气(NH3)为前驱体,二茂镁(Cp2Mg)为掺杂气体制备原位C掺杂的P型六方氮化硼薄膜。
本发明所述的一种原位C掺杂的P型hBN薄膜的制备方法,其步骤如下:
(1)将衬底(包括但不限于硅片、蓝宝石等)依次使用丙酮、乙醇、去离子水分别超声清洗3~8min,然后放入LPCVD设备的腔室;
(2)将腔室真空度抽至5×10-4Pa以下,向腔室中通入高纯氮气使腔室气压稳定在50~500Pa后,对腔室进行升温;
(3)本征hBN薄膜缓冲层的生长:腔室升温至700~900℃后,使用N2作为载气,分别携带BCl3与NH3进入腔室进行缓冲层生长,其中BCl3流量为1~10sccm,NH3流量为1~100sccm;反应原理为:BCl3+NH3→hBN+HCl,缓冲层生长的时间为1~5min,得到厚度为50~250nm的本征hBN薄膜缓冲层;
(4)C掺杂P型hBN薄膜的生长:关闭步骤(3)的所有反应源,将腔室继续升温至1000~1400℃,然后再次开启BCl3与NH3,使用N2作为载气,BCl3流量为10~100sccm,NH3流量为10~1000sccm;同时将Cp2Mg以25~50℃水浴加热挥发,并使用N2作为载气经稀释后携带汇入BCl3的管路中;汇入时可采用连续汇入或脉冲汇入两种方式,采用连续汇入时,Cp2Mg汇入的流量为5~25μmol/min,采用脉冲汇入时,脉冲周期为2~20s,占空比为1/4~3/4;本步骤生长时间为0.5~5h,可在本征hBN薄膜缓冲层上制备得到厚度为0.5~5μm的C掺杂P型hBN薄膜;
(5)关闭步骤(4)的所有反应源结束生长;在氮气的保护下,先以8~15℃/min的降温速率将腔室进行受控降温至380~420℃,以保证高温状态下生长的薄膜样品与腔室不因温度梯度过大而破坏,之后再使腔室自然降温至室温;
(6)将步骤(5)降至室温的腔室充入氮气,使腔室气压回到常压;打开腔室,取出薄膜样品,从而在衬底上完成C掺杂P型hBN薄膜的制备。
本发明的优点在于:
(1)工艺简单且稳定,制备成本低廉,有望应用于大规模生产;
(2)通过对反应源流量与比例、反应温度、气压、掺杂源水浴加热温度与稀释程度等工艺参数的调整,能够精准把控样品的质量、厚度、掺杂浓度、导电性等关键性能指标;
(3)原位掺杂的浓度均匀,且不需要杂质激活,能够制备出空穴浓度较高的P型hBN薄膜;
(4)通过异质外延等方式,可以与其他半导体材料形成各种半导体器件,应用前景广泛。
附图说明
图1:本发明使用的定制卧式LPCVD设备腔室结构示意图。如图1所示,在石英管反应腔室内设有石墨加热台,石英管外侧绕有电磁感应加热线圈作为加热系统,衬底放置在石墨加热台上进行加热。石英管反应腔室分别设有两进气口提供反应前驱体与掺杂源,本发明中,NH3使用一进气口通入,BCl3与Cp2Mg汇合后使用另一进气口通入;
图2:本发明实施例1制备的原位C掺杂P型hBN薄膜的XRD图谱;
图3:本发明实施例1制备的原位C掺杂P型hBN薄膜的EDS能谱;
图4:本发明实施例1制备的原位C掺杂P型hBN薄膜的I-V特性曲线;
图5:本发明实施例1制备的原位C掺杂P型hBN薄膜的杂质电离能拟合曲线。
具体实施方式
实施例1:
(1)将蓝宝石衬底依次使用丙酮、乙醇、去离子水分别超声清洗5min后,然后放入LPCVD设备的腔室;
(2)将设备腔室真空度抽至5×10-4Pa以下。向腔室中通入高纯氮气使腔室气压稳定在100Pa后,使用电磁感应加热系统对腔室进行升温;
(3)本征hBN薄膜缓冲层的生长:腔室升温至700℃后,使用N2作为载气,分别携带BCl3与NH3进入腔室进行反应,其中BCl3流量为10sccm,NH3流量为30sccm。反应原理为:BCl3+NH3→hBN+HCl,缓冲层生长的时间为3min,得到厚度为150nm的本征hBN薄膜缓冲层;
(4)C掺杂P型hBN薄膜的生长:关闭反应源并将腔室继续升温至1200℃后,再次开启BCl3与NH3,使用N2作为载气,使BCl3流量为20sccm,NH3流量为60sccm。同时将Cp2Mg以40℃水浴加热挥发,并使用N2为载气经稀释后携带汇入BCl3的管路中,汇入时采用连续汇入方式,汇入Cp2Mg的流量为18μmol/min。本步骤生长时间为2h,可在缓冲层上制备得到的厚度为2μm的C掺杂P型hBN薄膜;
(5)关闭步骤(4)中的所有反应源,结束生长。在氮气的保护下,先以10℃/min的降温速率对腔室进行受控降温至400℃,以保证高温状态下生长的样品与腔室不因温度梯度过大而破坏,之后使腔室自然降温至室温;
(6)腔室降温至室温后,充入氮气使腔室气压回到常压,打开腔室,取出薄膜样品,从而在衬底上完成C掺杂P型hBN薄膜的制备。
对上述薄膜进行XRD表征的结果如图2所示,薄膜的衍射峰位于25.95°,对应hBN(002)晶面的衍射峰;其半峰宽为1.163°,证明薄膜质量良好。
图3为薄膜的EDS能谱,从中可以明显观察到B、N、C、O四个元素的Kα特征峰,证明C元素成功被掺入hBN薄膜中。此外,未见到Mg元素的特征峰,表明没有将Mg掺入薄膜中。
对C掺杂hBN薄膜进行室温下的I-V特性测试,并使用本征hBN薄膜在相同条件下测试以进行对比,其结果如图4所示。为了方便与本征hBN薄膜的I-V特性相比较,图4采用的是半对数坐标。图4中的插图是掺杂薄膜在线性坐标系下的I-V特性。在100V偏压下,流过C掺杂hBN薄膜的电流可达4×10-4A,导电性相较于本征材料(~10-10A@100V)得到大幅提升。由插图可以看到,C掺杂hBN薄膜的I-V特性接近线性,证明薄膜与电极之间能够形成良好的欧姆接触。
通过变温I-V测试对薄膜进行了杂质电离能拟合,其结果如图5所示。拟合所得的杂质电离能为321meV。
对薄膜进行霍尔效应测试得到的结果为:霍尔系数RH=992cm3/C>0,表明薄膜为P型导电,电阻率约为880Ω·cm,空穴浓度约为2.01×1015cm-3,霍尔迁移率为3.55cm2/(V·s),电学特性良好。
实施例2:
(1)将蓝宝石衬底依次使用丙酮、乙醇、去离子水分别超声清洗5min后,然后放入LPCVD设备的腔室;
(2)将设备腔室真空度抽至5×10-4Pa以下。向腔室中通入高纯氮气使腔室气压稳定在100Pa后,使用电磁感应加热系统对腔室进行升温;
(3)本征hBN薄膜缓冲层的生长:腔室升温至700℃后,使用N2作为载气,分别携带BCl3与NH3进入腔室进行反应,其中BCl3流量为10sccm,NH3流量为30sccm。反应原理为:BCl3+NH3→hBN+HCl,缓冲层生长的时间为2min,可得到厚度为100nm的缓冲层;
(4)C掺杂P型hBN薄膜的生长:关闭反应源并将腔室继续升温至1200℃后,再次开启BCl3与NH3,使用N2作为载气,使BCl3流量为20sccm,NH3流量为60sccm。同时将Cp2Mg以40℃水浴加热挥发,并使用N2为载气经稀释后携带汇入BCl3的管路中,汇入时采用脉冲汇入方式,脉冲周期为10s,占空比为1/2。本步骤生长时间为2h,可在缓冲层上制备得到的厚度为2μm的C掺杂P型hBN薄膜;
(5)关闭步骤(4)中的所有反应源,结束生长。在氮气的保护下,先以10℃/min的降温速率对腔室进行受控降温至400℃,以保证高温状态下生长的样品与腔室不因温度梯度过大而破坏,之后使腔室自然降温至室温;
(6)腔室降温至室温后,充入氮气使腔室气压回到常压,打开腔室,取出薄膜样品,从而在衬底上完成C掺杂P型hBN薄膜的制备。
对薄膜进行霍尔效应测试得到的结果为:霍尔系数RH=1.28×103cm3/C>0,表明薄膜为P型导电,电阻率约为2196Ω·cm,空穴浓度约为1.63×1015cm-3,霍尔迁移率为1.74cm2/(V·s),电学特性良好。

Claims (8)

1.一种原位C掺杂的P型hBN薄膜的制备方法,其步骤如下:
(1)将衬底依次使用丙酮、乙醇、去离子水分别超声清洗3~8min,然后放入低压化学气相沉积设备的腔室;
(2)将腔室真空度抽至5×10-4Pa以下,向腔室中通入高纯氮气使腔室气压稳定在50~500Pa后,对腔室进行升温;
(3)本征hBN薄膜缓冲层的生长:腔室升温至700~900℃后,使用N2作为载气,分别携带BCl3与NH3进入腔室进行缓冲层生长,得到厚度为50~250nm的本征hBN薄膜缓冲层;
(4)C掺杂P型hBN薄膜的生长:关闭步骤(3)的所有反应源,将腔室继续升温至1000~1400℃,然后再次开启BCl3与NH3,使用N2作为载气;同时将Cp2Mg以25~50℃水浴加热挥发,并使用N2作为载气经稀释后携带汇入BCl3的管路中,在本征hBN薄膜缓冲层上制备得到厚度为0.5~5μm的C掺杂P型hBN薄膜;
(5)关闭步骤(4)的所有反应源结束生长;在氮气的保护下,将腔室进行受控降温至380~420℃,之后再使腔室自然降温至室温;
(6)将步骤(5)降至室温的腔室充入氮气,使腔室气压回到常压;打开腔室,取出薄膜样品,从而在衬底上完成C掺杂P型hBN薄膜的制备。
2.如权利要求1所述的一种原位C掺杂的P型hBN薄膜的制备方法,其特征在于:步骤(1)中的衬底为硅片或蓝宝石。
3.如权利要求1所述的一种原位C掺杂的P型hBN薄膜的制备方法,其特征在于:步骤(3)中,BCl3流量为1~10sccm,NH3流量为1~100sccm,生长时间为1~5min。
4.如权利要求1所述的一种原位C掺杂的P型hBN薄膜的制备方法,其特征在于:步骤(4)中BCl3流量为10~100sccm,NH3流量为10~1000sccm,生长时间为0.5~5h。
5.如权利要求1所述的一种原位C掺杂的P型hBN薄膜的制备方法,其特征在于:步骤(4)中Cp2Mg采用连续汇入或脉冲汇入两种方式汇入BCl3的管路。
6.如权利要求5所述的一种原位C掺杂的P型hBN薄膜的制备方法,其特征在于:采用连续汇入时,Cp2Mg汇入的流量为5~25μmol/min;采用脉冲汇入时,脉冲周期为2~20s,占空比为1/4~3/4。
7.如权利要求1所述的一种原位C掺杂的P型hBN薄膜的制备方法,其特征在于:步骤(5)的降温速率为8~15℃/min。
8.一种原位C掺杂的P型hBN薄膜,其特征在于:是由权利要求1~7任何一项所述的方法制备得到。
CN202311501689.1A 2023-11-13 2023-11-13 一种原位c掺杂的p型六方氮化硼薄膜及其制备方法 Pending CN117512559A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311501689.1A CN117512559A (zh) 2023-11-13 2023-11-13 一种原位c掺杂的p型六方氮化硼薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311501689.1A CN117512559A (zh) 2023-11-13 2023-11-13 一种原位c掺杂的p型六方氮化硼薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN117512559A true CN117512559A (zh) 2024-02-06

Family

ID=89752535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311501689.1A Pending CN117512559A (zh) 2023-11-13 2023-11-13 一种原位c掺杂的p型六方氮化硼薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN117512559A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11703440B2 (en) 2021-09-24 2023-07-18 General Electric Company Porosity of a part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11703440B2 (en) 2021-09-24 2023-07-18 General Electric Company Porosity of a part

Similar Documents

Publication Publication Date Title
KR100450316B1 (ko) 탄화 규소 및 이의 제조 방법
US7915646B2 (en) Nitride semiconductor material, semiconductor element, and manufacturing method thereof
US8324631B2 (en) Silicon carbide semiconductor device and method for manufacturing the same
US9842898B2 (en) Methods of growing a silicon carbide epitaxial layer on a substrate to increase and control carrier lifetime
CN111725072B (zh) 一种电子浓度稳定的高质量氧化镓薄膜及其制备方法
CN117512559A (zh) 一种原位c掺杂的p型六方氮化硼薄膜及其制备方法
CN102486993B (zh) 一种掺杂石墨烯的制备方法及其用途
CN107492482A (zh) 一种提高碳化硅外延层载流子寿命的方法
CN109585592B (zh) p-BN/i-AlGaN/n-AlGaN的紫外探测器及制作方法
CN102592976A (zh) P型重掺杂碳化硅薄膜外延制备方法
CN102610500A (zh) N型重掺杂碳化硅薄膜外延制备方法
TW201030854A (en) Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation
CN103578986A (zh) 一种高阻GaN薄膜的制备方法
EP2226413B1 (en) Method for manufacturing diamond monocrystal having a thin film, and diamond monocrystal having a thin film.
WO2009128301A1 (ja) ダイヤモンド半導体装置及びその製造方法
CN110724922B (zh) 一种柔性衬底上晶体取向和极性可控的外延azo薄膜及其制备方法
CN104264219A (zh) 一种基区缓变掺杂碳化硅薄膜外延制备方法
US6110276A (en) Method for making n-type semiconductor diamond
JP2004343133A (ja) 炭化珪素製造方法、炭化珪素及び半導体装置
CN113913931A (zh) 一种具有p型缓冲层的外延结构及其制备方法
Kato 5.2 technical aspects of diamond pn junction and bipolar junction transistor formation
CN110061046B (zh) n型硼碳氮薄膜/p型单晶硅异质pn结原型器件及制备方法
Nagao et al. Crystalline film quality in reduced pressure silicon epitaxy at low temperature
Baert et al. Heavily phosphorus‐doped epitaxial Si deposited by low‐temperature plasma‐enhanced chemical vapor deposition
Atabaev et al. Diffusion and electroluminescence studies of low temperature diffusion of boron in 3C-SiC

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination