CN117442601A - 一种磷酸酶抑制剂类似物BX-金属NPs及其制备方法和应用 - Google Patents

一种磷酸酶抑制剂类似物BX-金属NPs及其制备方法和应用 Download PDF

Info

Publication number
CN117442601A
CN117442601A CN202311423138.8A CN202311423138A CN117442601A CN 117442601 A CN117442601 A CN 117442601A CN 202311423138 A CN202311423138 A CN 202311423138A CN 117442601 A CN117442601 A CN 117442601A
Authority
CN
China
Prior art keywords
nps
phosphatase inhibitor
cerium
solution
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311423138.8A
Other languages
English (en)
Other versions
CN117442601B (zh
Inventor
项耀祖
步文博
陈杨
李圣萱
王昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai East Hospital Tongji University Affiliated East Hospital
Original Assignee
Shanghai East Hospital Tongji University Affiliated East Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai East Hospital Tongji University Affiliated East Hospital filed Critical Shanghai East Hospital Tongji University Affiliated East Hospital
Priority to CN202311423138.8A priority Critical patent/CN117442601B/zh
Publication of CN117442601A publication Critical patent/CN117442601A/zh
Application granted granted Critical
Publication of CN117442601B publication Critical patent/CN117442601B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Rheumatology (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pain & Pain Management (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明涉及生物医药技术领域,尤其涉及IPC A61K33,更具体地涉及,一种磷酸酶抑制剂类似物BX‑金属NPs及其制备方法和应用。本发明通过共沉淀法制得巴西苏木素‑金属离子纳米颗粒(BX(巴西苏木素)‑金属NPs);本发明中的BX‑金属NPs能够降低对巴西苏木素的药物毒性,增强巴西苏木素的药效以及延长巴西苏木素的剂量窗口,下调炎症信号通路/炎症信号因子表达,对急性心肌梗死或脓毒症的小鼠模型具有治疗作用。

Description

一种磷酸酶抑制剂类似物BX-金属 NPs及其制备方法和应用
技术领域
本发明涉及生物医药技术领域,尤其涉及IPC A61K33,更具体地涉及,一种磷酸酶抑制剂类似物BX-金属 NPs及其制备方法和应用。
背景技术
炎症作为机体的一种防御机制,与多种重要疾病紧密相关,包括急性心肌梗死、脓毒症、心肌炎、不稳定性心绞痛、心衰等。近年来,多项研究表明,在炎症高表达型疾病,有效地对炎症进行调控对于疾病的发生发展具有有益的效果,比如在心血管疾病中应用炎症分泌因子IL-1β的单抗Canakinumab,能够改善疾病的复发率。因此,在临床应用中,调节炎症具有重要的意义。炎症调控策略与蛋白质磷酸化过程之间具有紧密的关系。然而,目前已有磷酸化调节剂虽然能够有效地抑制蛋白质的磷酸化,但如何增强蛋白质去磷酸化过程仍然是未知的。此外,现有药物开发往往存在一些限制性因素,如特异性不足、耐药性的出现、毒副作用较为严重,以及生物可用性较低等问题。
巴西苏木素(Brazilin)是从Caesalpinia sappan Linn.的心材中提取的天然化合物,长期以来被用作天然染料和传统中药用于治疗各种疾病。近期,巴西苏木素因其对心血管疾病的药理效应引起了广泛关注。
近年来,由于一些金属离子,如Zr4+和Ce4+,对磷酸盐的强亲和力,被报道其能与有机小分子的磷酸基团中的氧发生配位作用,催化磷酸酯键的水解,在体外展现出优异的类磷酸酶活性。与天然磷酸酶相比,金属离子具有成本低、稳定性高等特点,且可以对所有磷酸化蛋白质进行去磷酸化,而不受氨基酸残基结构变化的影响。然而,由于金属离子靶向性不足,使精确调控目标分子的去磷酸化变得困难。此外,由于游离金属离子的细胞内吞效率较低,其应用受到严重限制。
鉴于此,寻找新型的低毒性、高特异性抑制剂,并制定有效策略在抑制蛋白质磷酸化的同时促进其去磷酸化,对于进一步推动炎症调控领域的发展具有至关重要的作用和研究意义。
发明内容
为了解决现有技术中的问题,本发明第一方面提供了一种磷酸酶抑制剂类似物BX(巴西苏木素)-金属 NPs的制备方法,包括以下步骤:
S1:将金属离子盐溶解在有机溶液中,得到溶液A;
S2:将巴西苏木素溶于有机溶液中,得到溶液B;
S3:将溶液B缓慢滴加到溶液A中,搅拌10~20 min,得到混合溶液,再将三乙胺乙醇溶液缓慢滴加到混合溶液中,搅拌1~2 h,然后以10000~15000rpm/min的转速离心10min,得到BX-金属 NPs;
S4:将BX-金属 NPs用乙醇洗涤3~5次,重新分散在无水乙醇中,保存。
优选的,所述S1中金属离子盐和有机溶液的质量体积比为(15~25)mg:6mL;进一步优选的,为20 mg:6 mL。
优选的,所述S2中巴西苏木素和有机溶液的质量体积比为(3~8)mg:1 mL;进一步优选的,为5 mg:1 mL。
优选的,所述有机溶液包括无水乙醇、乙醚、DMSO(二甲基亚砜)中的一种或多种。
优选的,所述金属离子盐和巴西苏木素的质量比为(2~6):1;进一步优选的,为4:1。
优选的,所述金属离子盐中的阳离子包括Zn2+,Mn2+,Ce3+以及Ce4+中的一种或多种。
在一种优选的方案中,所述金属离子盐包括硫酸锌、氯化锰、氯化铈、硝酸铵铈、硫酸铈铵、硫酸铈、二苯基羟乙酸铈、碘酸铈、过氧化铈、二氧化铈、草酸亚铈、硫酸亚铈、二苯基羟乙酸亚铈、碘酸亚铈中的一种或多种。
优选的,所述三乙胺乙醇溶液为体积百分比为5~25 %的三乙胺乙醇溶液;进一步优选的,为体积百分比为10 %的三乙胺乙醇溶液。
优选的,所述三乙胺乙醇溶液和巴西苏木素的质量体积比为(40~60)mg:1 mL;进一步优选的,为50 mg:1 mL。
本发明第二方面提供了一种磷酸酶抑制剂类似物BX(巴西苏木素)-金属 NPs。
本发明中的BX-Ce NPs作为一种非晶型的纳米材料,具有可降解性能。本发明人发现,MOF材料以其晶型的结构而闻名,然而这也使得它们在降解方面存在挑战。BX-Ce NPs的非晶型结构,能够使其更快地在体内降解,减少体内累积,提高生物相容性,从而促进了药物传递和医学成像等领域的应用,与晶型材料不同,非晶型材料如BX-Ce NPs的降解性能使它们成为一种具有潜力的功能材料,可在多个领域中发挥作用。
本发明第三方面提供了一种磷酸酶抑制剂类似物BX(巴西苏木素)-金属 NPs的应用,应用于制备炎症高表达型疾病药物。
优选的,所述炎症高表达型疾病包括急性心肌梗死、脓毒症、不稳定性心绞痛、心衰、心肌炎、类风湿性关节炎或肠胃炎;进一步优选的,为急性心肌梗死、脓毒症。
本发明中,通过Ce4+和巴西苏木素形成磷酸酶抑制剂类似物BX-Ce NPs,能够治疗急性心肌梗死或脓毒症,在小鼠急性心肌梗死模型,能够显著降低急性心肌梗死后的纤维化面积,提高小鼠左室壁厚度,提高小鼠的生存率,改善炎症,尚未发现不良反应。在脓毒症小鼠损伤模型中,BX-Ce NPs的治疗能够降低小鼠肺泡间质、肺泡细胞浸润和上皮结构的损伤水平,同时改善小鼠的生存率。
有益效果
1、本发明中,构建一种磷酸酶抑制剂(Ce4+与巴西苏木素配位形成的纳米颗粒,称为BX-Ce NPs),并提出一种新颖的去磷酸化/抗磷酸化策略,用于减轻炎症,通过金属离子和巴西苏木素中的氧原子之间具有强配位作用,通过共沉淀法制得巴西苏木素-金属离子纳米颗粒,具有高效的细胞內吞效率和良好的金属离子、巴西苏木素的缓释能力,实现了巴西苏木素的广泛治疗创口,以及通过小分子靶向引导实现金属离子的精准蛋白去磷酸化作用。
2、本发明中,通过Ce4+和巴西苏木素形成磷酸酶抑制剂类似物BX-Ce NPs,能够治疗急性心肌梗死或脓毒症,在小鼠急性心肌梗死模型,能够显著降低急性心肌梗死后的纤维化面积,提高小鼠左室壁厚度,提高小鼠的生存率,改善炎症,尚未发现不良反应。在脓毒症小鼠损伤模型中,BX-Ce NPs的治疗能够降低小鼠肺泡间质、肺泡细胞浸润和上皮结构的损伤水平,同时改善小鼠的生存率。
3、本发明中的BX-Ce NPs能够降低对巴西苏木素的药物毒性,增强巴西苏木素的药效以及延长巴西苏木素的剂量窗口。
4、本发明中的BX-Ce NPs作为一种非晶型的纳米材料,具有高降解性能。
5、本发明中的BX-Ce NPs可实现小鼠体内炎症水平的下调功效,表现为炎症信号通路/炎症信号因子表达下调。
附图说明
图1为实施例1~4中金属离子盐对iBMDM永生化小鼠骨髓源巨噬细胞的细胞存活率和IC50的测定结果。
图2为实施例1 中的BX-Ce NPs表征结果;图2A为BX-Ce NPs的透射电镜(TEM)图;图2B、图2C分别为BX-Ce NPs的水合粒径和水分散性结果图;图2D为BX-Ce NPs的X射线能谱仪检测结果图;图2E为磷酸酶抑制剂类似物BX-Ce NPs的傅里叶变换红外吸收光谱(FTIR)结果图;图2F为BX-Ce NPs的热重分析结果图;图2G-I为BX-Ce NPs的X射线吸收光谱(XANES)和X射线光电子能谱(XPS)结果图。
图3为实施例1中制备得到的BX-Ce NPs在小鼠体内生物安全性评估结果图;图3A为对照、巴西苏木素和BX-Ce NPs处理后血样中血液学检测结果图;图3B为对照、巴西苏木素和BX-Ce NPs处理后组织病理学图。
图4为实施例1中制备得到的磷酸酶抑制剂类似物BX-Ce NPs缓解急性心肌梗死造成的损伤的结果图;图4A为巴西苏木素、BX-Ce NPs的注射步骤图;图4B,C,D分别为对照、巴西苏木素、BX-Ce NPs处理后生存率,心脏纤维化程度以及左室壁厚度的结果图。
图5为实施例1中制备得到的磷酸酶抑制剂类似物BX-Ce NPs减少脓毒症造成的损伤的结果图;图5A为腹腔注射的步骤实验图;图5B为生理盐水、巴西苏木素、BX-Ce NPs治疗脓毒症小鼠损伤的生存率结果图;图5C为生理盐水、巴西苏木素、BX-Ce NPs治疗脓毒症小鼠损伤后小鼠肺泡间质、肺泡细胞浸润和上皮结构的损伤情况图。
图6为实施例1中制备得到的磷酸酶抑制剂类似物BX-Ce NPs对巴西苏木素的毒副作用、药物剂量窗口、药效的结果图;图6A为巴西苏木素、BX-Ce、Ce4+对细胞活性的结果图;图6B、C为巴西苏木素、BX-Ce NPs磷的药效结果图;图6D-F为抑制炎症相关蛋白的磷酸化水平结果图。
具体实施方式
实施例1
本实施例第一方面提供了一种磷酸酶抑制剂类似物BX(巴西苏木素)-金属 NPs的制备方法,包括以下步骤:
首先,将20 mg的Ce(NH4)2(NO3)6溶解在6 mL无水乙醇中,得到溶液A。接着,将5 mg的巴西苏木素(购自北京中科质检生物技术有限公司)溶解在1 mL无水乙醇中,得到溶液B。然后,将溶液B缓慢滴加到溶液A中,并搅拌15 min,得到A和B混合溶液。再将0.1 mL体积百分比为10 %的三乙胺乙醇溶液缓慢滴加到A和B混合溶液中,搅拌2 h。以13000 rpm/min的转速离心10 min,获得BX-Ce NPs。最后,将BX-Ce NPs用无水乙醇洗涤三次,并重新分散在无水乙醇中,保存。
实施例2
实施例2的具体实施方式同实施例1一样,不同之处在于,所述金属离子盐为ZnSO4
实施例3
实施例3的具体实施方式同实施例1一样,不同之处在于,所述金属离子盐为MnCl2
实施例4
实施例4的具体实施方式同实施例1一样,不同之处在于,所述金属离子盐为CeCl3
1、金属离子筛选策略
称取一定量的ZnSO4,MnCl2,CeCl3以及Ce(NH4)2(NO3)6并将其溶于ddH2O,配置成50mM和10 mM的对应Zn2+,Mn2+,Ce3+以及Ce4+金属离子盐溶液。取对数生长期的iBMDM用完全培养基制成细胞密度为1×105/mL的单细胞悬液,接种于96孔板,每孔100 μL,于饱和湿度、5%CO2、37 ℃条件培养。24 h后,分别加入一定量的金属离子盐溶液,使其终浓度为10 μM和50μΜ的Zn2+,Mn2+,Ce3+以及Ce4+,对照组更换为全新正常完全培养基,模型组更换为含有1 μg/mL的LPS的完全培养基,刺激4 h后,各孔加入终浓度为10 μM的Nigericin,继续培养2 h(即为模型组),各5个复孔,再进行细胞存活率和IC50测定。结果见图1。
结果显示,Zn2+,Mn2+,Ce3+以及Ce4+四种金属离子中,对细胞存活率影响最大的为Mn2+和Ce3+,Zn2+和Ce4+几乎不改变细胞本身活力。在IC50测定中,Ce4+表现出优于其他三种金属的炎症抑制效果,其次为Zn2+。综上说明,在金属离子筛选过程中,Ce4+有更好的对于炎症的调节作用。
2、BX-Ce NPs的表征
首先,通过透射电子显微镜(TEM)对BX-Ce NPs的形貌进行了表征,如图2A的TEM所示,BX-Ce NPs呈球形,平均粒径为100 ±14 nm。动态光散射(DLS)检测了BX-Ce NPs的水合粒径和水分散性,水合粒径结果与图2A相符(图2B),且DLS数据呈正态分布,表明纳米粒子具有良好的水分散性(PDI为0.055)。元素maping(图2C)和X射线能谱仪(EDS)(图2D)表明合成的纳米材料是由C,N,O,Ce四种元素组成。傅里叶变换红外吸收光谱(FT-IR)进一步表显示:BX-Ce NPs的红外光谱中含有巴西苏木素的红外特征吸收峰(642 cm−1,1286 cm−1,1618cm−1,2976 cm−1)(图2E)。因此,上述结果均表明BX-Ce NPs的成功制备。热重分析(TG)结果显示BX-Ce NPs中Ce元素与巴西苏木素的摩尔比是1:1.59(图2F)。通过X射线吸收光谱(XANES)和X射线光电子能谱(XPS)对BX-Ce NPs中Ce元素的价态和配位信息进行了分析,结果表明,BX-Ce NPs中铈离子价态为三价和四价的混合价态,铈离子通过与巴西苏木素的酚羟基进行配位,且也存在一定的Ce-Ce金属配位键,从而形成了稳定的BX-Ce NPs纳米颗粒(图2G-I)。
3、BX-Ce NPs的体内生物安全性评估
将15只ICR小鼠(6周龄,雄性)随机分为3组:对照组(生理盐水)、巴西苏木素组(10mg/kg)和BX-Ce NPs(10 mg/kg)组,连续三天腹腔注射给药后,在第3天,将小鼠处死,然后收集了它们的血样进行血液学检测,同时收集了主要器官(心脏、肝脏、脾脏、肺、肾脏)进行组织病理学分析。
结果表明,无论是巴西苏木素还是BX-Ce NPs,所有的血液常规指标均在正常范围内(图3A)。此外,H&E组织学染色结果也表明这些药物不会对脏器造成损伤(图3B)。综上所述,可以得出药物使用剂量处于安全范围内的评价结论。
4、磷酸酶抑制剂类似物BX-Ce NPs在小鼠急性心肌梗死模型下的应用
应用C57BL/6小鼠模型,诱导急性心肌梗死模型,具体为C57BL/6雄性小鼠称重,异氟烷进行气体麻醉,待深度麻醉后进行手术,气管插管后,在小鼠左前肢与背中线中间,用直剪将表皮剪开打开胸腔,暴露心脏,使用4个钩子分别固定四角。夹起心包膜并将其表面撕开,充分暴露左前降支(Left anterior descending,LAD)所在区域,找准左心耳,以垂直心脏长轴方向,从LAD下方穿过确认结扎位置下方心脏有明显的变色方向可继续打结,剪去多余线头后缝合,然后于手术后立即腹腔注射给药治疗,测试其治疗和预防急性心肌梗死的体内疗效及安全性,具体地:将实施例1中制备得到的磷酸酶抑制剂类似物BX-Ce NPs和巴西苏木素以及对照(DMSO)分别以10 mg/kg的剂量浓度经腹腔注射递送至急性心肌梗死小鼠(购自北京斯贝福生物技术有限公司)体内(如图4A)。在1周后评估小鼠生存率,并将存活部分小鼠处死并切除心脏并用马松染色以测量其纤维化面积和左室壁厚度。
结果如图4B,C,D所示:磷酸酶抑制剂类似物BX-Ce NPs和巴西苏木素均能提高小鼠的生存率并且磷酸酶抑制剂类似物BX-Ce NPs相较于巴西苏木素的效果更佳,不论是从生存率,心脏纤维化程度以及左室壁厚度的结果,都呈现出一致的趋势。图4C中紫色部分为纤维化部分,BX-Ce处理后,纤维化面积显著减小。
5、磷酸酶抑制剂类似物BX-Ce NPs对脓毒症小鼠损伤的保护作用
通过腹腔注射5 mg/mL LPS溶液(LPS溶液溶于dd H2O),根据小鼠体重使其体内LPS(购自MCE)浓度达到30 mg/kg来诱导小鼠脓毒症。在LPS刺激后,立即进行腹腔注射1.25mg/mL 磷酸酶抑制剂类似物BX-Ce NPs和巴西苏木素使其体内浓度达至10 mg/kg以及等量的生理盐水作为对照。观察96 h,记录小鼠生存率以及体重变化(如图5A)。并将存活小鼠处死,取其心、肝、脾、肺、肾进行H&E病理检测,评估其药物对小鼠的保护效果。
结果显示:经脓毒症刺激后,磷酸酶抑制剂类似物BX-Ce NPs能够显著改善小鼠的生存率(图5B)。病理切片结果显示得,经磷酸酶抑制剂类似物BX-Ce NPs后,小鼠肺泡间质、肺泡细胞浸润和上皮结构的损伤水平降低(图5C)。巴西苏木素和生理盐水组相较于磷酸酶抑制剂类似物BX-Ce NPs均表现欠佳。
6、磷酸酶抑制剂类似物BX-Ce NPs能够降低药物的毒性,增强药效并延长药物剂量窗口
(1)细胞存活率测定:取对数生长期的iBMDM用完全培养基制成细胞密度为1×105/mL的单细胞悬液,接种于96孔板,每孔100 μL,于饱和湿度、5%CO2、37℃条件培养。24 h后,分别加入含0,0.2,0.8,10,50,100,200和 500 µM 磷酸酶抑制剂类似物BX-Ce NPs和巴西苏木素以及游离Ce4+完全培养基,对照组更换为全新正常完全培养基,各5个复孔,分别继续培养24 h后,各孔加入10 μL的CCK-8细胞检测液,在置培养箱种继续培养2-3 h后用酶标仪检测其在490 nm处的吸光度(OD值),以对照组相对增殖活性100 %计,按照公式药物处理组相对增殖活性(%)=处理组OD值÷对照组OD值×100 %计算相对增殖活性。
(2)IC50测定:取对数生长期的iBMDM用完全培养基制成细胞密度为1×105/mL的单细胞悬液,接种于96孔板,每孔100 μL,于饱和湿度、5 %CO2、37℃条件培养。24 h后,更换为含有1 μg/mL的LPS的完全培养基,并加入不同浓度梯度的磷酸酶抑制剂类似物BX-Ce NPs和巴西苏木素,对照组为不含药物的完全培养基,各5个复孔,继续培养2 h后,各孔加入终浓度为10 μM的Nigericin(购自Invivogen)。再培养2 h后,吸取细胞上清50 μL,使用CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega)对LDH的释放进行检测,酶标仪检测其在490 nm处的吸光度(OD值),测量并分析结果。
(3)药效时间测定:取对数生长期的iBMDM用完全培养基制成细胞密度为1×105/mL的单细胞悬液,接种于96孔板,每孔100 μL,于饱和湿度、5 % CO2、37℃条件培养。24 h后,更换为含有1 μg/mL的LPS的完全培养基,并加入20 μM的磷酸酶抑制剂类似物BX-CeNPs和巴西苏木素,对照组为不含药物的完全培养基,各5个复孔,继续培养2 h后,各孔加入终浓度为10 μM的Nigericin。再培养2,8,14,20 h后,分别吸取细胞上清50 μL,使用CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega)对LDH的释放进行检测,酶标仪检测其在490 nm处的吸光度(OD值),测量并分析结果。
(4)磷酸化蛋白质表达水平的测定:
取对数生长期的iBMDM用完全培养基制成细胞密度为1×105/mL的单细胞悬液,接种于12孔板,每孔1 mL,于饱和湿度、5 % CO2、37℃条件培养。24 h后,更换为含有1 μg/mL的LPS的完全培养基,并加入20 μM的磷酸酶抑制剂类似物BX-Ce NPs和巴西苏木素,对照组为不含药物的完全培养基,各3个复孔,4 h后弃去上清,用PBS润色三次,并使用含有蛋白酶和磷酸酶抑制剂混合物的RIPA缓冲液,从采集的细胞(iBMDM)中进行蛋白质提取。通过使用SDS样品缓冲液和β-ME加热,使蛋白质变性。然后,等量的蛋白质样本在SDS-PAGE凝胶上分离,转移到PVDF膜上,随后进行Western印迹分析。用于抗体孵育的抗体包括:p-p65(3033,CST)、p65(T55034,Abmart)、p-IκBα(TP56280,Abmart)、ΙκΒα(T55026,Abmart)、HSP90(4108S,CST)、GAPDH(2118S,CST)。在4°C孵育过夜后,使用HRP结合的二级抗体(Invitrogen),并在Chemidoc成像系统(Bio-Rad)上使用SuperSignal West Femto底物(Pierce)进行信号可视化。数据分析使用ImageJ软件进行。
结果显示:磷酸酶抑制剂类似物BX-Ce NPs能够降低药物本身对细胞的毒副作用,延长药物剂量窗口(图6A)。与巴西苏木素组比较,磷酸酶抑制剂类似物BX-Ce NPs能够增强药效,IC50值为2.5 μM(图6B)。并且磷酸酶抑制剂类似物BX-Ce NPs能够延长药物的药效时间至18 h,对比巴西苏木素仅在6 h后便失去效果(图6C)。对比二者在抑制炎症相关蛋白的磷酸化水平中,磷酸酶抑制剂类似物BX-Ce NPs也表现出优于巴西苏木素的抑制效果(抑制倍数>2)(图6D-F)。

Claims (10)

1.一种磷酸酶抑制剂类似物BX-金属 NPs的制备方法,其特征在于,包括以下步骤:
S1:将金属离子盐溶解在有机溶液中,得到溶液A;
S2:将巴西苏木素溶于有机溶液中,得到溶液B;
S3:将溶液B缓慢滴加到溶液A中,搅拌10~20 min,得到混合溶液,再将三乙胺乙醇溶液缓慢滴加到混合溶液中,搅拌1~2 h,然后以10000~15000rpm/min的转速离心10 min,得到BX-金属 NPs;
S4:将BX-金属 NPs用乙醇洗涤3~5次,重新分散在无水乙醇中,保存;
所述金属离子盐中的阳离子为Ce4+。
2.根据权利要求1所述的磷酸酶抑制剂类似物BX-金属 NPs的制备方法,其特征在于,所述S1中金属离子盐和有机溶液的质量体积比为(15~25)mg:6 mL。
3.根据权利要求1所述的磷酸酶抑制剂类似物BX-金属 NPs的制备方法,其特征在于,所述S2中巴西苏木素和有机溶液的质量体积比为(3~8)mg:1 mL。
4.根据权利要求1所述的磷酸酶抑制剂类似物BX-金属 NPs的制备方法,其特征在于,所述三乙胺乙醇溶液和巴西苏木素的质量体积比为(40~60)mg:1 mL。
5.据权利要求1所述的磷酸酶抑制剂类似物BX-金属 NPs的制备方法,其特征在于,所述三乙胺乙醇溶液为体积百分比为5~25 %的三乙胺乙醇溶液。
6.据权利要求1所述的磷酸酶抑制剂类似物BX-金属 NPs的制备方法,其特征在于,所述有机溶液包括无水乙醇、乙醚、DMSO中的一种或多种。
7.据权利要求1所述的磷酸酶抑制剂类似物BX-金属 NPs的制备方法,其特征在于,所述金属离子盐包括氯化铈、硝酸铵铈、硫酸铈铵、硫酸铈、二苯基羟乙酸铈、碘酸铈、过氧化铈、二氧化铈、草酸亚铈、硫酸亚铈、二苯基羟乙酸亚铈、碘酸亚铈中的一种或多种。
8.一种根据权利要求1~7所述的磷酸酶抑制剂类似物BX-金属 NPs的制备方法制备得到的BX-金属 NPs。
9.一种根据权利要求8所述的磷酸酶抑制剂类似物BX-金属 NPs的应用,其特征在于,应用于制备炎症高表达型疾病药物。
10.根据权利要求9所述的磷酸酶抑制剂类似物BX-金属 NPs的应用,其特征在于,所述炎症高表达型疾病包括急性心肌梗死、脓毒症、不稳定性心绞痛、心衰、心肌炎、类风湿性关节炎或肠胃炎。
CN202311423138.8A 2023-10-31 2023-10-31 一种磷酸酶抑制剂类似物BX-金属NPs及其制备方法和应用 Active CN117442601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311423138.8A CN117442601B (zh) 2023-10-31 2023-10-31 一种磷酸酶抑制剂类似物BX-金属NPs及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311423138.8A CN117442601B (zh) 2023-10-31 2023-10-31 一种磷酸酶抑制剂类似物BX-金属NPs及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN117442601A true CN117442601A (zh) 2024-01-26
CN117442601B CN117442601B (zh) 2024-05-28

Family

ID=89588757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311423138.8A Active CN117442601B (zh) 2023-10-31 2023-10-31 一种磷酸酶抑制剂类似物BX-金属NPs及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117442601B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100297262A1 (en) * 2009-04-17 2010-11-25 Colby Pharmaceutical Company Pharmaceutically active compositions comprising oxidative stress modulators (osm), new chemical entities, compositions and uses
US20110038942A1 (en) * 2008-04-24 2011-02-17 Technion Research And Development Foundation Ltd. Beta-lactoglobulin-polysaccharide nanoparticles for hydrophobic bioactive compounds
CN102105133A (zh) * 2008-07-21 2011-06-22 奥德纳米有限公司 控制释放型耳结构调节和先天性免疫系统调节组合物以及治疗耳部病症的方法
WO2016118592A1 (en) * 2015-01-20 2016-07-28 Cerion, Llc Edds chelated nanoceria with catalase-like activity
WO2017189506A1 (en) * 2016-04-25 2017-11-02 Immunolight, Llc Insertion devices and systems for production of emitted light internal to a medium and methods for their use
US20190015351A1 (en) * 2017-07-14 2019-01-17 Drexel University Multifunctional Nanoparticles For Prevention And Treatment Of Atherosclerosis
US20190269706A1 (en) * 2016-05-20 2019-09-05 The University Of Chicago Nanoparticles for chemotherapy, targeted therapy, photodynamic therapy, immunotherapy, and any combination thereof
CN115068629A (zh) * 2022-06-30 2022-09-20 南京工业大学 基于姜黄素和氧化铈的载药纳米粒子及其制备方法、应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110038942A1 (en) * 2008-04-24 2011-02-17 Technion Research And Development Foundation Ltd. Beta-lactoglobulin-polysaccharide nanoparticles for hydrophobic bioactive compounds
CN102105133A (zh) * 2008-07-21 2011-06-22 奥德纳米有限公司 控制释放型耳结构调节和先天性免疫系统调节组合物以及治疗耳部病症的方法
US20100297262A1 (en) * 2009-04-17 2010-11-25 Colby Pharmaceutical Company Pharmaceutically active compositions comprising oxidative stress modulators (osm), new chemical entities, compositions and uses
WO2016118592A1 (en) * 2015-01-20 2016-07-28 Cerion, Llc Edds chelated nanoceria with catalase-like activity
WO2017189506A1 (en) * 2016-04-25 2017-11-02 Immunolight, Llc Insertion devices and systems for production of emitted light internal to a medium and methods for their use
US20190269706A1 (en) * 2016-05-20 2019-09-05 The University Of Chicago Nanoparticles for chemotherapy, targeted therapy, photodynamic therapy, immunotherapy, and any combination thereof
US20190015351A1 (en) * 2017-07-14 2019-01-17 Drexel University Multifunctional Nanoparticles For Prevention And Treatment Of Atherosclerosis
CN115068629A (zh) * 2022-06-30 2022-09-20 南京工业大学 基于姜黄素和氧化铈的载药纳米粒子及其制备方法、应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S HINICHI ASANO等: ""C erium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction"", 《INTERNATIONAL JOURNAL OF NANOMEDICINE》, 31 December 2015 (2015-12-31), pages 6215 - 6226 *
孟宪福等: ""稀土上转换纳米颗粒及其肿瘤诊疗应用研究"", 《科学》, 30 September 2017 (2017-09-30), pages 5 - 8 *
袁丽等: ""云实属植物化学成分、药理作用及质量控制研究进展"", 《药物评价研究》, 28 February 2021 (2021-02-28), pages 424 - 431 *

Also Published As

Publication number Publication date
CN117442601B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
KR101990070B1 (ko) 산화 스트레스 치료용 나노세리아
RU2270683C2 (ru) Увеличение эффективности ингаляционной терапии с помощью диоксида углерода
US5994410A (en) Therapeutic use of water-soluble fullerene derivatives
TWI329025B (en) Compositions for delivery of drug combinations
Ling et al. An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer
PT706373E (pt) Taxol encapsulado num liposoma e um metodo
JP2013532733A (ja) 前立腺癌を処置するための併用療法
EP2087890A1 (en) Sustained release preparation for tissue regeneration therapy
CN112933045B (zh) 共载双氢青蒿素/磷酸氯喹双敏感纳米制剂及其制备方法
US8765173B2 (en) Drug delivery system for administration of a water soluble, cationic and amphiphilic pharmaceutically active substance
CN117442601B (zh) 一种磷酸酶抑制剂类似物BX-金属NPs及其制备方法和应用
EP0166436A2 (en) Use of dolichol or its ester in medicines
KR20170095926A (ko) 설폰아마이드류 약학 조성물
JP2000504020A (ja) HER2/neuを過剰発現するガン細胞の化学療法剤に対する感作
US20180105540A1 (en) Novel hydrogen peroxide-activable, anti-oxidant compounds and methods using same
EP2249825B1 (en) Treatment methods and compositions for lung cancer, adenocarcinoma, and other medical conditions
JP5024967B2 (ja) 細胞増殖および血管形成を阻害するための方法および組成物
US20160199497A1 (en) Cholesterol Ester-Depleting Nanomedicine for Non-toxic Cancer Chemotherapy
TWI472330B (zh) 用於癌症治療之增敏劑、套組及用途
CN106176608A (zh) 培美曲塞二钠注射剂及其制备方法
KR20100029634A (ko) 화학요법제 유발 탈모증의 예방 또는 치료용 조성물
US12128019B1 (en) Nanocomposite including abscisic acid-loaded collagen nanoparticles
JPH08509961A (ja) 低密度リポタンパク質および細胞毒性物質の使用
Qin et al. A Bone‐Targeting Hydrogen Sulfide Delivery System for Treatment of Osteoporotic Fracture via Macrophage Reprogramming and Osteoblast‐Osteoclast Coupling
CN115337297B (zh) Cpi-613线粒体靶向小分子前药及其自组装纳米粒、制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant