CN117427158A - 奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用 - Google Patents

奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用 Download PDF

Info

Publication number
CN117427158A
CN117427158A CN202311650828.7A CN202311650828A CN117427158A CN 117427158 A CN117427158 A CN 117427158A CN 202311650828 A CN202311650828 A CN 202311650828A CN 117427158 A CN117427158 A CN 117427158A
Authority
CN
China
Prior art keywords
nelfinavir
tumor
inhibitor
cancer
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311650828.7A
Other languages
English (en)
Inventor
夏承来
刘畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Maternal and Child Health Care Hospital
Original Assignee
Foshan Maternal and Child Health Care Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Maternal and Child Health Care Hospital filed Critical Foshan Maternal and Child Health Care Hospital
Priority to CN202311650828.7A priority Critical patent/CN117427158A/zh
Publication of CN117427158A publication Critical patent/CN117427158A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用。本发明实验结果表明,与单独使用PD‑1抑制剂相比,奈非那韦与PD‑1抑制剂联合用药能进一步抑制宫颈癌肿瘤生长,缩小肿瘤体积,且无明显毒副作用产生。奈非那韦能提高体外及体内免疫细胞对多种肿瘤细胞的识别及杀伤能力,实现与PD‑1抑制剂联用的协同抗肿瘤作用。奈非那韦和PD‑1抑制剂联合用药能提高抗肿瘤治疗效能,降低患者用药剂量,降低毒副作用,减轻患者经济负担。

Description

奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用
技术领域
本发明属于抗肿瘤药物技术领域,具体涉及奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用。
背景技术
目前临床主流的抗肿瘤药物可分为传统的化疗制剂、靶向药物和免疫制剂。化疗制剂发现最早、临床应用时间最长,目前针对多种癌症已经开发出成熟的用药方案,但特异性差,毒副作用强烈,患者耐受性差,同时肿瘤耐药性问题日益突出。靶向制剂只对特定蛋白有强结合力,特异性提高,临床应用中全身副作用降低,可以有效提高临床抗肿瘤治疗效果,但对于靶点蛋白发生突变的肿瘤细胞无效,不同的肿瘤对各类型靶向制剂有不同的敏感性,且价格昂贵,在临床应用上仍然存在限制。
免疫细胞有能力识别肿瘤细胞,并通过固有免疫细胞的吞噬作用以及杀伤性T细胞介导的细胞毒作用进行清除。此外,单核-巨噬细胞、树突状细胞一类通过抗原递呈作用募集更多的杀伤性T细胞形成局部浸润,提高清除效率。但肿瘤细胞可以通过表达名为免疫检查点的蛋白躲避免疫细胞的识别杀伤、抑制抗原提呈和免疫细胞募集,这种现象被称为免疫逃避反应。
免疫制剂是新一类抗肿瘤药物类型,具有毒副作用小、疗效明确、适用范围广的特点,其作用于人体免疫系统,通过提高宿主免疫细胞对肿瘤细胞的清除作用达到抗肿瘤的效果,其中以免疫检查点抑制剂(Immune Checkpoint inhibitors,ICIs)一类的药物发展最为成熟。在肿瘤发生发展的过程中,会在细胞膜上表达一类叫免疫检查点的蛋白分子(如PD-L1、CTLA-4),该分子被抗原递呈细胞或杀伤性T细胞识别后会误认为肿瘤细胞是正常细胞从而抑制了免疫细胞的募集和细胞毒作用的发挥。免疫检查点抑制剂就是通过抑制免疫细胞识别免疫检查点分子、抑制免疫逃避反应的发生达到保持抗肿瘤活性的效果。
免疫检查点抑制剂是一类新型抗肿瘤制剂,对特定亚型的黑色素瘤、非小细胞肺癌以及宫颈癌都有明确疗效。但在免疫检查点分子低表达的肿瘤亚型或者突变肿瘤细胞上,免疫检查点抑制剂的抗肿瘤活性被削弱。同时由于药物价格昂贵,治疗效能的下降将导致患者用药成本上升。根据统计,应用免疫检查点抑制剂的临床肿瘤患者中仅有30%能获得良好疗效。
发明内容
本发明的目的是提供奈非那韦(Nelfinavir,NFV)联合免疫检查点抑制剂在制备抗肿瘤药物中的应用。
发明人发现抗病毒药物奈非那韦可以调节肿瘤细胞免疫检查点分子的表达量,进一步提高肿瘤细胞对ICIs的敏感性,并扩展ICIs在低表达免疫检查点分子肿瘤亚型上的治疗应用。奈非那韦这一作用使其有望成为现有抗肿瘤治疗的辅助/联合用药,提高临床抗肿瘤效果。本发明实验结果表明,与单独使用PD-1抑制剂相比,奈非那韦与PD-1抑制剂联合用药能进一步抑制肿瘤生长,缩小肿瘤体积,且无明显毒副作用产生。
因此,本发明的第一个目的是提供有效量的奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用。
优选,所述的免疫检查点抑制剂为PD-1抑制剂或CTLA-4抑制剂。在治疗方案的用药上,ICIs的种类不受限制,可根据具体肿瘤类型和亚型进行选择,包括但不仅限于PD-1抑制剂和CTLA-4抑制剂等。
优选,所述的PD-1抑制剂为帕博利珠单抗(pembrolizumab)、纳武利尤单抗(nivolumab)或替雷利珠单抗(Tislelizumab)。
优选,所述的CTLA-4抑制剂为易普利姆单抗(ipilimumab)。
优选,所述的肿瘤为宫颈癌、卵巢癌、乳腺癌、胃癌、结直肠癌、肺癌、食道癌、睾丸癌、肝癌、骨癌、胰腺癌、甲状腺癌、黑色素瘤或白血病。
优选,奈非那韦通过抑制免疫检查点分子表达的作用来联合免疫检查点抑制剂协同抗肿瘤。其中,所述的免疫检查点分子为PD-L1和PD-1。
本发明的第二个目的是提供一种抗肿瘤药盒,所述的药盒包括:含有奈非那韦的制剂,含有免疫检查点抑制剂的制剂。
优选,所述的肿瘤为宫颈癌。
优选,所述的免疫检查点抑制剂为PD-1抑制剂。
优选,所述的PD-1抑制剂为帕博利珠单抗(pembrolizumab)。
应用中,ICIs的用药剂量在10-100mg/kg范围内可根据实际情况进行调整。奈非那韦的用药剂量在10-100mg/kg范围内可根据实际情况进行调整。
在给药方式上,包括但不仅限于口服、注射以及粘膜给药方式。给药间隔可以根据实际情况进行调整。
在应用于治疗肿瘤时,奈非那韦联合ICIs治疗肿瘤的可选的一种给药方案是,ICIs以25mg/kg的剂量通过注射的方式给药[1],同期通过口服给药的方式对宿主给予25mg/kg奈非那韦用药[2],每四天给药一次,每次给药均同时给予ICIs及奈非那韦,直至疗程结束。给药方案参考自以下两项文献:
[1]Luo,M.,et al.,PD0325901,an ERK inhibitor,enhances the efficacy ofPD-1inhibitor in non-small cell lung carcinoma.Acta Pharm Sin B,2021.11(10):p.3120-3133;
[2]Garcia-Soto,A.E.,et al.,Phase 1trial of nelfinavir added tostandard cisplatin chemotherapy with concurrent pelvic radiation for locallyadvanced cervical cancer.Cancer,2021.127(13):p.2279-2293。
本发明将奈非那韦和免疫检查点抑制剂联合用药,有临床前和临床研究资料支持,毒理学、药物动力学信息明确,在能提高联合用药治疗效能同时,不影响原有治疗过程,毒副作用更低,且用药方式无创,药物价格相对低廉,患者顺应性高。
本发明利用奈非那韦的抗肿瘤活性及下调肿瘤细胞免疫检查点分子的表达量的作用,提高体外及体内免疫细胞对多种肿瘤细胞的识别及杀伤能力,实现奈非那韦与ICIs联用的协同抗肿瘤作用。同时,奈非那韦和ICIs联合用药能提高抗肿瘤治疗效能,降低患者用药剂量,降低毒副作用,减轻患者经济负担。
附图说明
图1是奈非那韦体内外抗肿瘤活性检测;图A:各宫颈癌细胞对奈非那韦的敏感程度;图B:奈非那韦对宫颈癌细胞克隆形成的浓度依赖型抑制作用;图C:低浓度奈非那韦对宫颈癌细胞迁移的抑制作用;图D:低浓度奈非那韦对宫颈癌细胞侵袭的抑制作用;图E:奈非那韦在体内给药抑制肿瘤细胞生长。
图2是奈非那韦调节免疫细胞对肿瘤的识别/杀伤能力检测;图A:口服奈非那韦增加宫颈癌实体肿瘤中免疫细胞浸润;图B:奈非那韦增强免疫细胞对宫颈癌细胞细胞的杀伤作用;图C:奈非那韦与PD-1抗体存在体外抗宫颈癌细胞协同作用;图D:奈非那韦低浓度不引起细胞凋亡。
图3是宫颈癌移植瘤模型中各治疗组的体重、肿瘤体积、肿瘤重量变化,图A:各组肿瘤状态;图B:20天期间内各组小鼠的体重变化;图C:20天期间内各组肿瘤体积的变化,图D:20天后小鼠肿瘤的最终重量及大小;图E:奈非那韦对宫颈癌细胞表面免疫检查点分子表达的抑制作用。
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
以下实施例中所用材料说明如下:
人源宫颈鳞状上皮癌细胞HeLa、SiHa、Caski及鼠源宫颈鳞状上皮癌细胞U14四种细胞系由广州医科大学购自ATCC并赠予我单位,澳洲胎牛血清(Gibco),DMEM培养基(Gibco),青霉素/链霉素(碧云天),Ficoll分离液(天津灏洋),0.25%胰酶(碧云天),C57BL6小鼠(广东省动物中心),PD-1鼠单克隆抗体αPD-1(BioXcell,克隆号29F.1A12,7.36μg/μL,该抗体阴性对照为厂家提供的搭载无生理活性氨基酸序列的小鼠来源IgG)。
以下实施例的通用细胞培育方案如下:
细胞接种于培养瓶、培养板或者培养皿中,采用含10%胎牛血清/1%抗生素的DMEM培养基作为培养介质,培养环境条件为5%二氧化碳、37℃恒温,95%恒湿。当细胞融合度达70%-85%时进行37℃胰酶消化、重悬并以1:3的比例接种于新培养容器中。用于体外实验的肿瘤细胞在胰酶消化重悬离心收集后按照70%融合度的细胞密度接种于培养皿中,贴壁完成后以不含血清及双抗的DMEM培养基培养12-18小时后,进行药物处理。
克隆形成实验采用6孔板或96孔板进行,接种密度为2000/孔,后续培育时长72小时。共培育实验用免疫细胞来源于人外周血单个核细胞(PBMCs),志愿者采集,结合淋巴细胞分离液进行梯度离心处理并富集纯化,后用于共培育实验。
以下实施例的动物实验方法如下:
取4-6周龄小鼠,品系为C57BL6,SPF级,体重14.0±1.5g,雌性,环境恒温25℃,以普通饲料维持。造模时,使用U14细胞以2×106密度接种到C56BL6小鼠皮下构建的宫颈癌实体移植瘤模型。接种第六天,测量实体肿瘤投影面积大于3.5mm×3.5mm后,进行给药治疗。奈非那韦给药剂量如实施例所示,以100mg/mL奈非那韦的DMSO溶液用200μL生理盐水稀释后的混悬液为单次给药剂型,口服给药,对照组采用生理盐水代替。PD-1鼠单克隆抗体(αPD-1)给药剂量如实施例所示,腹腔注射给药,对照组采用同剂量的对照抗体(IgG)给药代替。各处理组小鼠数量为6-8只。
实施例1:奈非那韦体内外抗肿瘤活性
按照上述条件,以等比数列(对数值2)设置含有浓度为1-64μM奈非那韦的梯度环境,将四种宫颈癌细胞分别以2000/孔的密度接种于96孔板中,观察每孔2000个细胞24小时后的存活率,以CCK8法检测细胞存活能力,在490nm波长下检测各孔吸光度并计算细胞相对活力(公式:细胞相对活力%=100%×(OD待测样本-OD空白本底)/(OD对照样本-OD空白本底)),找到奈非那韦的半数抑制浓度IC50(图1A)。
随后,以2000/孔的密度将HeLa细胞接种于六孔板中,并以不同浓度的奈非那韦加入到体外细胞的培养媒介中,观察每孔2000个HeLa细胞分别在溶剂对照培养环境以及各含有1μM、2μM、4μM奈非那韦的培养环境中的肿瘤细胞克隆形成能力,于处理第7天进行固定染色观察,结果表明奈非那韦对宫颈癌细胞克隆形成具有浓度依赖型抑制作用,验证了奈非那韦有肿瘤抑制活性(图1B)。
构建划痕实验细胞模型,观察每孔融合度达95%的HeLa宫颈癌细胞分别在溶剂对照培养环境以及含有2μM奈非那韦的培养环境中的迁移能力,于48小时后观察划痕愈合情况。利用培养小室以及基质胶铺板构建细胞侵袭模型,观察每小室10000个HeLa宫颈癌细胞分别在溶剂对照培养环境以及含有2μM奈非那韦的培养环境中的迁移能力,于48小时后观察Transwell小室底部细胞附着情况。在奈非那韦的干扰下,肿瘤细胞在以划痕实验测量的迁移能力和以Transwell实验检测的侵袭能力上都有弱化(图1C、图1D)。
构建在体宫颈癌荷瘤小鼠模型,在成瘤第6天开始每4天分别口服给予生理盐水、25mg/kg及100mg/kg奈非那韦作为治疗手段,于第20天获得肿瘤样本并进行瘤体积和瘤重测量,肿瘤体积越小说明药物疗效越好,小鼠体重越低则说明药物毒性越高。在移植瘤动物模型中,高剂量(100mg/kg)的奈非那韦产生了明显的肿瘤生长抑制作用(图1E)。
实施例2:奈非那韦调节免疫细胞对肿瘤的识别/杀伤能力
对实施例1中治疗实验后的在体宫颈癌荷瘤小鼠模型肿瘤组织进行取材,并进行病理切片及免疫荧光染色,利用免疫荧光成像技术,以CD45标记免疫细胞,观察不同治疗组的肿瘤内部免疫细胞浸润情况。可以发现奈非那韦低浓度(25mg/kg)及高浓度(100mg/kg)给药均可提高肿瘤细胞中免疫细胞浸润程度(图2A)。
对HeLa细胞或SiHa细胞与免疫细胞进行体外共培育实验,以无外周血单个核细胞共孵育的2000个HeLa或SiHa宫颈癌细胞克隆形成能力为阴性对照,通过分别使用等量、两倍以及四倍数量单个核细胞与癌细胞共培育,观察2μM奈非那韦预处理后的肿瘤细胞引起免疫细胞清除的能力,剩余细胞集落数越少则清除能力越强。发现低浓度(2μM)奈非那韦可以显著提升免疫细胞对肿瘤的清除能力(图2B)。
确定免疫细胞培养比例后,对SiHa细胞及HeLa细胞再次进行体外共培育实验,并引入PD-1抗体处理。具体为:以外周血单个核细胞对未经预处理的2000个HeLa或SiHa宫颈癌细胞的清除能力为阴性对照,通过分别使用2μM奈非那韦、10mg/LαPD-1、以及2μM奈非那韦加10mg/LαPD-1共同处理的癌细胞与等比例的人外周血单个核细胞进行共培育,观察各药物预处理后的肿瘤细胞引起免疫细胞清除的能力变化,剩余细胞集落数越少则清除能力越强。结果发现低浓度(2μM)奈非那韦对两种宫颈癌细胞的处理都可以提升免疫细胞对肿瘤细胞的清除能力(图2C)。
通过流式细胞仪计数使用AnnexinV/PI对体外经过2μM奈非那韦处理24小时前后的HeLa细胞中处于早期及晚期凋亡的细胞进行标记,Q3为早期凋亡细胞,Q4为晚期凋亡细胞。通过流式细胞计数测量的调亡实验,排除了上述作用受奈非那韦本身抗肿瘤活性的干扰(图2D)。
实施例3:奈非那韦联用PD-1抗体发挥体内抗癌作用
构建小鼠皮下宫颈癌移植瘤模型,并给予PD-1抗体和/或奈非那韦药物治疗。以等体积生理盐水灌胃、腹腔注射阴性对照IgG的荷瘤小鼠为阴性对照组,其余三组小鼠则分别给予25mg/kg奈非那韦口服给药、25mg/kgαPD-1腹腔给药、以及25mg/kg奈非那韦口服给药加25mg/kgαPD-1腹腔给药,每4天给药一次,每组共给药4次。各治疗组于接种肿瘤细胞后第20天收集肿瘤标本,肿瘤状态如图3A所示。
图3B为20天期间内各组小鼠的体重变化,6天成瘤后每2天记录一次,小鼠体重越低则说明药物毒性越高;结果表明各组动物的体重发展差异不大,说明给药方法毒副作用受到控制。
图3C为20天期间内各组肿瘤体积的变化,结果表明,在肿瘤体积变化上,单用低浓度(25mg/kg)奈非那韦组与无治疗组没有显著差异,与上述实施例1结果吻合。PD-1抗体治疗组对肿瘤的抑制作用有统计学差异,而奈非那韦联合PD-1抗体用药组肿瘤生长趋势相比单用PD-1抗体治疗组有进一步抑制效果。
图3D为20天后小鼠肿瘤的最终重量及大小,肿瘤体积越小、瘤重越少说明药物疗效越好。肿瘤最终重量和体积均符合上述治疗效果。
对6孔板中融合度达80%的HeLa细胞给予2μM奈非那韦进行处理,24小时后收集细胞蛋白,并通过免疫印迹法测量细胞PD-L1表达量,比较奈非那韦处理前后的表达量差异。结果表明,体外基于宫颈癌细胞2μM奈非那韦处理可显著降低PD-L1蛋白表达量(图3E),奈非那韦对宫颈癌细胞表面免疫检查点分子表达有抑制作用,其机制可能与Src介导的信号通路相关。
以上数据表明,奈非那韦可以通过调节肿瘤细胞免疫检查点表达,与PD-1抑制剂发挥协同抗肿瘤作用。

Claims (10)

1.有效量的奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用。
2.根据权利要求1所述的应用,其特征在于,所述的免疫检查点抑制剂为PD-1抑制剂或CTLA-4抑制剂。
3.根据权利要求2所述的应用,其特征在于,所述的PD-1抑制剂为帕博利珠单抗、纳武利尤单抗或替雷利珠单抗。
4.根据权利要求2所述的应用,其特征在于,所述的CTLA-4抑制剂为易普利姆单抗。
5.根据权利要求1所述的应用,其特征在于,所述的肿瘤为宫颈癌、卵巢癌、乳腺癌、胃癌、结直肠癌、肺癌、食道癌、睾丸癌、肝癌、骨癌、胰腺癌、甲状腺癌、黑色素瘤或白血病。
6.根据权利要求1所述的应用,其特征在于,奈非那韦通过抑制免疫检查点分子表达的作用来联合免疫检查点抑制剂协同抗肿瘤。
7.一种抗肿瘤药盒,其特征在于,所述的药盒包括:含有奈非那韦的制剂,含有免疫检查点抑制剂的制剂。
8.根据权利要求7所述的抗肿瘤药盒,其特征在于,所述的肿瘤为宫颈癌。
9.根据权利要求7所述的抗肿瘤药盒,其特征在于,所述的免疫检查点抑制剂为PD-1抑制剂。
10.根据权利要求9所述的抗肿瘤药盒,其特征在于,所述的PD-1抑制剂为帕博利珠单抗。
CN202311650828.7A 2023-12-04 2023-12-04 奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用 Pending CN117427158A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311650828.7A CN117427158A (zh) 2023-12-04 2023-12-04 奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311650828.7A CN117427158A (zh) 2023-12-04 2023-12-04 奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用

Publications (1)

Publication Number Publication Date
CN117427158A true CN117427158A (zh) 2024-01-23

Family

ID=89548275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311650828.7A Pending CN117427158A (zh) 2023-12-04 2023-12-04 奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用

Country Status (1)

Country Link
CN (1) CN117427158A (zh)

Similar Documents

Publication Publication Date Title
WO2022126689A1 (zh) 抗b7h3嵌合抗原受体及其应用
Xiang et al. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway
Hsu et al. Cordycepin and a preparation from Cordyceps militaris inhibit malignant transformation and proliferation by decreasing EGFR and IL-17RA signaling in a murine oral cancer model
KR101841339B1 (ko) 항암 활성을 갖는 펩티드, 이를 유효성분으로 함유하는 암 예방 및 치료용 약학 조성물 및 건강기능식품 조성물
CN110575458A (zh) 一种抗肿瘤复方药物的组成及其在抗肿瘤中的应用
CN111548331B (zh) 一种靶向免疫节点pd-1与shp-2互作的先导化合物及其应用
CN114286681A (zh) Nad+和/或nad+抑制剂和/或nad+激动剂的用途及其联合制剂
US20240325538A1 (en) Tumor infiltration lymphocyte culture medium and application thereof
KR101124622B1 (ko) Socs2 유전자의 발현을 조절하여 자연 살해 세포를 활성화시키는 방법
CN114948938B (zh) 白术内酯i在制备预防和/或治疗宫颈癌的药物中的用途
CN113876946B (zh) 一种pd-1抗体和绿脓杆菌的联合制药用途及药物组合物
WO2024188106A1 (zh) 包含阿兹夫定的免疫调节剂组合物
WO2016119308A1 (zh) 一种抗肿瘤制剂及其制备方法
CN111920948B (zh) 包含免疫细胞的药物组合物用于治疗癌症
US20190160099A1 (en) Pharmaceutical composition and use thereof
CN113616652A (zh) Sms2抑制剂在制备治疗高侵袭性乳腺癌药物中的应用
CN111166867B (zh) Pd-1泛素化激动剂的功能与用途
CN117427158A (zh) 奈非那韦联合免疫检查点抑制剂在制备抗肿瘤药物中的应用
US20240342176A1 (en) Pharmaceutical combination and application thereof
CN115837037A (zh) 一种乳酸肠球菌在制备治疗黑色素瘤的药物中的应用
US10988429B2 (en) Quinochalcone compound and uses thereof for treating cancer or inflammation
KR102352715B1 (ko) Il-21을 이용한 항원 특이적 cd8+ t 세포의 증식 촉진 또는 대량 배양 방법
US11179425B2 (en) Method of activating tumor-infiltrating lymphocytes (TILs)
Zhang et al. The current role of dendritic cells in the progression and treatment of colorectal cancer
WO2023097764A1 (zh) 青蒿素在靶向抑制髓系来源的抑制性细胞及其在制备肿瘤免疫治疗药物中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination