CN117423768A - 一种基于Sb2O3纳米棒/Si异质结的自驱动光电探测器及其制备方法 - Google Patents

一种基于Sb2O3纳米棒/Si异质结的自驱动光电探测器及其制备方法 Download PDF

Info

Publication number
CN117423768A
CN117423768A CN202311258975.XA CN202311258975A CN117423768A CN 117423768 A CN117423768 A CN 117423768A CN 202311258975 A CN202311258975 A CN 202311258975A CN 117423768 A CN117423768 A CN 117423768A
Authority
CN
China
Prior art keywords
metal
substrate
nanorod
electrode
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311258975.XA
Other languages
English (en)
Inventor
王敬尧
凌翠翠
姬洪光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202311258975.XA priority Critical patent/CN117423768A/zh
Publication of CN117423768A publication Critical patent/CN117423768A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光探测技术领域,具体涉及一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器及其制备方法,该自驱动光电探测器,由上至下依次包括金属In点电极、金属Pd前电极、PdTe2修饰制备Sb2O3纳米棒薄膜层、Si单晶基底和金属In背电极。PdTe2修饰制备Sb2O3纳米棒薄膜层是利用磁控溅射、化学气相沉积等方法制备的。测试结果显示,所制备薄膜器件在深紫外光照下表现出良好的自驱动光探测性能,具有性能稳定等优点。

Description

一种基于Sb2O3纳米棒/Si异质结的自驱动光电探测器及其制 备方法
技术领域
本发明属于光探测技术领域,具体涉及一种深紫外自驱动光电探测器及其制备方法。
背景技术
光电探测器是指一种能将光信号转变为电信号的电子器件。光电探测器已被广泛地应用于生物成像、无损检测、通讯、环境监测等领域。但是目前报道的大部分光电探测器需要电源驱动,这严重阻碍了光电探测器在实际生活中的应用。[Small,2017,13(45):1701687]因此,开发自驱动光电探测器具有重要的意义。
人们将波长400nm到10nm的光称为紫外光(UV)。紫外光的应用范围很广,如在汽车自动化,空间探测,军事,特别是在生物,环境,医疗等领域更是具有很大作用。由于紫外光的功能强大,促使研巧者们对UV波段的光电探测器进行了深入研究,目前,紫外光探测器主要分为下几个波段:
①UV-A,波段为400-320nm,在这个波段内工作的光电探测器主要是以ZnO和ZnS为材料,以银掺杂的ZnS纳米棒(ZnS:Ag NRs)为例,通过掺杂Ag元素,改变ZnS的导电类型,通过掺杂改变了本征ZnS导电性差的缺点。
②UV-B,波长范围是320-280nm,在该波段内的光电探测器所使用的材料主要是掺杂的半导体如ZnO、ZnS和一些三元化合物,如MgZnO等。
③UV-C,波段范围从280到10nm,这是最大能量的波长范围,也是最有害的。所幸太阳光中这部分可以完全被平流臭氧层吸收掉。这个波段的使用的材料有β-Ga2O3、SiC等。
锑烯最为一种新型第五主族纳米结构,最令人感兴趣的性质莫过于其较大的能隙(2.28eV),这种大于2.0eV的宽带隙使得锑烯在场效应晶体管和光电子器件领域拥有十分可观的应用潜力。与此同时,锑烯还存在较强的自旋轨道耦合作用,被预言在应力下会产生拓扑相变,可应用于量子信息传输和量子计算。锑烯在空气中会表现出反应性,但与黑磷相反,锑烯在氧化后会形成新的稳定结构。因为电子能带结构取决于氧化程度,所以氧化过程可能有利于调整电子特性。此外,锑烯是目前发现的第一个自然形成稳定二维氧化物的单元素纳米结构。由于其锑与其他氮族元素的相似性,相关的氮族2D材料也可能发生类似的过程。可以利用锑烯的氧化特性来进一步提高单质2D材料的质量,例如在单质材料的层间进行氧化层的包覆。
发明内容
本发明的目的在于提供一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器及其制备方法,可以解决目前深紫外自驱动光电探测器的性能一般的问题。
本发明为实现上述目的所要解决的技术问题是,通过磁控溅射、化学气相沉积等方法,提高光电探测器的性能;即通过磁控溅射、化学气相沉积方法在硅基底表面制备PdTe2修饰生长的Sb2O3纳米棒薄膜层,以获得具有优异性能的深紫外自驱动光电探测器。
本发明为实现上述目的所采用的技术方案是,一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器,其特征在于,为层状结构,由上至下依次包括金属In点电极、金属Pd前电极、PdTe2修饰生长的Sb2O3纳米棒薄膜层、Si单晶基底和金属In背电极;其中:
优选的,所述Si单晶基底是单面抛光,晶面取向为(100)面,导电类型为p型,电阻率为0.1~1欧姆·厘米;
一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器的制备方法,包括以下步骤:
(1)选取Si基底,对其进行清洗;
(2)对清洗完成后的Si基底进行干燥;
(3)将干燥完成的Si基底放入真空腔,在氩气环境下,采用射频磁控溅射技术,利用电离出的氩离子轰击Pd靶材,在Si基底表面沉积Pd薄膜层;靶材纯度为99.9%,所述氩气气压维持1.2帕斯卡不变,靶基距为50毫米,薄膜的沉积温度为20~25摄氏度,薄膜层厚度为10-20纳米;
(4)将覆盖有Pd薄膜层的Si基底放入CVD后端,前端加入Te粉,蒸发温度430℃,后端反应温度480℃,通入气体,温度上升速率为5摄氏度每分钟,至480摄氏度时保持150分钟,然后自然冷却至室温;在Si上获得PdTe2基底。
(5)将获得PdTe2基底的Si基底放入CVD后端,前端加入Sb粉,蒸发温度750℃,后端反应温度480℃,通入气体,温度上升速率为5摄氏度每分钟,至480摄氏度时保持10分钟,然后自然冷却至室温;PdTe2基底上获得Sb2O3纳米棒。
(6)将步骤(5)得到的样品取出,并在PdTe2表面生长的Sb2O3纳米棒薄膜层的表面覆盖掩膜片,然后将样品放入真空腔;采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在PdTe2表面生长的Sb2O3纳米棒薄膜层表面沉积金属Pd前电极;所述Pd靶材为Pd金属靶,靶材纯度为99.9%;所述氩气气压维持5.0帕斯卡不变,靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd前电极厚度为5~15纳米;
(7)分别在金属Pd前电极和Si基底上完成金属In电极的压制,并引出金属Cu导线,完成器件的制备。
优选的,步骤(1)中,所述Si基底为p型Si单晶基底,尺寸为10毫米×10毫米,电阻率为0.1~1欧姆·厘米;清洗过程如下:将Si基底依次在高纯酒精和丙酮溶液中多次超声清洗,每次清洗时间长度为180秒。
优选的,步骤(3)中,所述真空腔的背底真空度为5×10-5帕斯卡,真空条件是由机械泵和分子泵双级真空泵共同制得。
优选的,步骤(4)中,气体比例与流速为氩气:氢气45sccm:5sccm。
优选的,步骤(5)中,气体比例与流速为氩气:氧气45sccm:5sccm。
优选的,步骤(6)中,所述掩模片材料为不锈钢,厚度为0.1毫米,尺寸为12毫米×12毫米,孔径尺寸为5毫米×5毫米;所述真空腔的背底真空度为5×10-5帕斯卡,真空条件是由机械泵和分子泵双级真空泵共同制得。
优选的,步骤7)中,所述金属电极和导线材料分别是In和Cu,其中In的纯度为99.5%,金属Pd薄膜层上金属In电极大小和厚度分别为1毫米×1.5毫米和1毫米,Si基底上金属In电极大小和厚度均分别为10毫米×10毫米和2毫米,Cu导线直径为0.1毫米。
上述具有自驱动光探测能力的器件可在制备自驱动光电探测器方面进行应用。
本发明的有益技术效果是:
发明通过在Si基底表面利用PdTe2修饰制备Sb2O3纳米棒薄膜层,研制出具有自驱动光探测能力的薄膜器件。测试结果显示:所制备的薄膜器件对深紫外光具有明显的敏感性能,即在工作电压为0伏特时,在光照条件下器件电流显著增加。所制备薄膜器件对光的响应随光照强度的增加而增大。同时,该器件具有周期重复性好等优点。与目前存在的自驱动光电探测器相比较,本发明所涉及器件的制备方法简单、无毒、成本低廉,并具有光响应性能显著等优点,可广泛应用于光电探测器领域。
附图说明
图1为所制备器件XRD表征图。
图2为所制备器件光探测性能测量的结构示意图。
图3为外加电压为0伏特时器件对不同功率深紫外光的响应性能。
图4为Sb2O3纳米棒的SEM表征图。
具体实施方式
本发明利用磁控溅射、化学气相沉积等方法,在Si半导体基底上利用PdTe2修饰制备Sb2O3纳米棒薄膜层,通过直流磁控溅射技术沉积金属Pd前电极并压制金属In电极和连接金属导线,形成器件。当暴露于光照条件下时,由于光电效应以及内建电场的存在,器件可以在外加电压为0伏特时对深紫外光表现出明显的响应性能。
下面结合实施例和附图,对本发明进行详细说明。
本发明是一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器,包括PdTe2修饰制备的Sb2O3纳米棒薄膜层和Si半导体基底,Si基底作为PdTe2的载体,PdTe2修饰制备的Sb2O3纳米棒薄膜层设置在Si基底表面。Si基底为p型Si单晶基底,电阻率为0.1~1欧姆·厘米,结晶取向为(100)取向。
进一步地说,所述在PdTe2表面生长的Sb2O3纳米棒薄膜层的表面覆盖掩膜片,然后将样品放入真空腔;采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在PdTe2表面生长的Sb2O3纳米棒薄膜层表面沉积金属Pd前电极;所述Pd靶材为Pd金属靶,靶材纯度为99.9%;所述氩气气压维持5.0帕斯卡不变,靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd前电极厚度为5~15纳米。
更进一步地,在金属Pd前电极上和Si基底上分别压制金属In电极,并引出导线,得到器件。
上述器件的制备方法,具体包括以下步骤:
(1)选取Si基底,对其进行清洗;
(2)对清洗完成后的Si基底进行干燥;
(3)将干燥完成的Si基底放入真空腔,在氩气环境下,采用射频磁控溅射技术,利用电离出的氩离子轰击Pd靶材,在Si基底表面沉积Pd薄膜层;靶材纯度为99.9%,所述氩气气压维持1.2帕斯卡不变,靶基距为50毫米,薄膜的沉积温度为20~25摄氏度,薄膜层厚度为10-20纳米;
(4)将覆盖有Pd薄膜层的Si基底放入CVD后端,前端加入Te粉,蒸发温度430℃,后端反应温度480℃,通入气体,温度上升速率为5摄氏度每分钟,至480摄氏度时保持150分钟,然后自然冷却至室温;在Si上获得PdTe2基底。
(5)将获得PdTe2基底的Si基底放入CVD后端,前端加入Sb粉,蒸发温度750℃,后端反应温度480℃,通入气体,温度上升速率为5摄氏度每分钟,至480摄氏度时保持10分钟,然后自然冷却至室温;PdTe2基底上获得Sb2O3纳米棒。
(6)将步骤(5)得到的样品取出,并在PdTe2表面生长的Sb2O3纳米棒薄膜层的表面覆盖掩膜片,然后将样品放入真空腔;采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在PdTe2表面生长的Sb2O3纳米棒薄膜层表面沉积金属Pd前电极;所述Pd靶材为Pd金属靶,靶材纯度为99.9%;所述氩气气压维持5.0帕斯卡不变,靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd前电极厚度为5~15纳米;
(7)分别在金属Pd前电极和Si基底上完成金属In电极的压制,并引出金属Cu导线,完成器件的制备。
上述具有自驱动光探测能力的器件可在制备自驱动光电探测器方面进行应用。
下面结合性能测量结果进一步说明本发明的效果:
图1为所制备器件XRD表征图。从XRD表征图中可以看出,Sb2O3纳米棒具有较好的结晶性能。
图2为所制备器件光探测性能测量的结构示意图。
图3为外加电压为0伏特的条件下器件对光的周期响应性能。测试电压为0伏特。如图所示,通过改变其所处的光照环境,所制备薄膜器件表现出良好的光响应性能,具有性能稳定等优点。测试电压为0伏特时,在波长为255纳米的光照下(不同光功率下的动态响应曲线),薄膜器件的开关比为100倍以上。这些特征进一步说明了该薄膜器件可用来开发新型自驱动光探测器件。
图4为Sb2O3纳米棒的SEM表征图。从SEM表征图中可以看出,Sb2O3纳米棒成功生长于Si基底表面。

Claims (8)

1.一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器,其特征在于:包括金属In点电极、金属Pd前电极、在PdTe2表面生长的Sb2O3纳米棒薄膜层、Si单晶基底和金属In背电极,PdTe2表面生长的Sb2O3纳米棒薄膜层设置在Si基底表面,金属Pd前电极在PdTe2表面生长的Sb2O3纳米棒薄膜层表面,金属In电极分别压制于金属Pd前电极和Si基底表面。
2.根据权利要求1所述的一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器,其特征在于:所述Si基底为p型Si单晶基底,电阻率为0.1~1欧姆·厘米,实现深紫外自驱动探测。
3.一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器的制备方法,其特征在于包括以下步骤:
(1)选取Si基底,对其进行清洗;
(2)对清洗完成后的Si基底进行干燥;
(3)将干燥完成的Si基底放入真空腔,在氩气环境下,采用射频磁控溅射技术,利用电离出的氩离子轰击Pd靶材,在Si基底表面沉积Pd薄膜层;靶材纯度为99.9%,所述氩气气压维持1.2帕斯卡不变,靶基距为50毫米,薄膜的沉积温度为20~25摄氏度,薄膜层厚度为10-20纳米;
(4)将覆盖有Pd薄膜层的Si基底放入CVD后端,前端加入Te粉,蒸发温度430℃,后端反应温度480℃,通入气体,温度上升速率为5摄氏度每分钟,至480摄氏度时保持150分钟,然后自然冷却至室温;在Si上获得PdTe2基底。
(5)将获得PdTe2基底的Si基底放入CVD后端,前端加入Sb粉,蒸发温度750℃,后端反应温度480℃,通入气体,温度上升速率为5摄氏度每分钟,至480摄氏度时保持10分钟,然后自然冷却至室温;PdTe2基底上获得Sb2O3纳米棒。
(6)将步骤(5)得到的样品取出,并在PdTe2表面生长的Sb2O3纳米棒薄膜层的表面覆盖掩膜片,然后将样品放入真空腔;采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在PdTe2表面生长的Sb2O3纳米棒薄膜层表面沉积金属Pd前电极;所述Pd靶材为Pd金属靶,靶材纯度为99.9%;所述氩气气压维持5.0帕斯卡不变,靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd前电极厚度为5~15纳米;
(7)分别在金属Pd前电极和Si基底上完成金属In电极的压制,并引出金属Cu导线,完成器件的制备。
4.根据权利要求3所述的一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器的制备方法,其特征在于:步骤(1)中,所述Si基底为p型Si单晶基底,尺寸为10毫米×10毫米,电阻率为0.1~1欧姆·厘米;清洗过程如下:将Si基底依次在高纯酒精和丙酮溶液中多次超声清洗,每次清洗的时间长度为180秒。
5.根据权利要求3所述的一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器的制备方法,其特征在于:步骤(6)中,所述掩模片材料为不锈钢,厚度为0.1毫米,尺寸为12毫米×12毫米,孔径尺寸为5毫米×5毫米。
6.根据权利要求3所述的一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器的制备方法,其特征在于:步骤(4)中,气体比例与流速为氩气:氢气45sccm:5sccm。
7.根据权利要求3所述的一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器的制备方法,其特征在于:步骤(5)中,气体比例与流速为氩气:氧气45sccm:5sccm。
8.根据权利要求3所述的一种基于Sb2O3纳米棒/Si异质结的深紫外自驱动光电探测器的制备方法,其特征在于:步骤(7)中,所述金属In电极所用原料In的纯度为99.5%,金属Pd前电极上金属In电极大小和厚度分别为1毫米×1.5毫米和1毫米,Si基底上金属In电极大小和厚度均分别为10毫米×10毫米和2毫米,Cu导线直径为0.1毫米。
CN202311258975.XA 2023-09-27 2023-09-27 一种基于Sb2O3纳米棒/Si异质结的自驱动光电探测器及其制备方法 Pending CN117423768A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311258975.XA CN117423768A (zh) 2023-09-27 2023-09-27 一种基于Sb2O3纳米棒/Si异质结的自驱动光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311258975.XA CN117423768A (zh) 2023-09-27 2023-09-27 一种基于Sb2O3纳米棒/Si异质结的自驱动光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN117423768A true CN117423768A (zh) 2024-01-19

Family

ID=89523792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311258975.XA Pending CN117423768A (zh) 2023-09-27 2023-09-27 一种基于Sb2O3纳米棒/Si异质结的自驱动光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN117423768A (zh)

Similar Documents

Publication Publication Date Title
Young et al. High response of ultraviolet photodetector based on Al-doped ZnO nanosheet structures
CN110047957B (zh) 一种中红外光探测器及其制备方法
KR101558801B1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
CN109360862B (zh) 基于ZnO纳米棒/Si异质结的自驱动光电探测器及制备方法
CN112382691A (zh) 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
EP3396721A1 (en) Two-dimensional electronic devices and related fabrication methods
CN104183665B (zh) 基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法
Locovei et al. Physical properties of Cu and Dy co-doped ZnO thin films prepared by radio frequency magnetron sputtering for hybrid organic/inorganic electronic devices
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Sakalley et al. High power impulse magnetron sputtering growth processes for copper nitride thin film and its highly enhanced UV-visible photodetection properties
CN108878575B (zh) 一种基于硅/氟化石墨烯的双工作模式宽波段光电探测器及其制备方法
CN103746056A (zh) 一种基于镓掺杂氧化锌纳米线阵列的波长可调节发光二极管及其制备方法
CN110828589B (zh) 一种柔性日盲紫外光电探测器及其制备方法
Shabannia et al. High UV-to-visible rejection ratio and low cost UV photodetector based on Co-doped ZnO nanorods grown on polyethylene terephthalate substrate
CN113113507A (zh) 基于NiO/GaN p-n结自供电紫外探测器及制备方法
Ghosh et al. Effect of oxygen flow rate and radio-frequency power on the photoconductivity of highly ultraviolet sensitive ZnO thin films grown by magnetron sputtering
CN110491966B (zh) 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法
CN117423768A (zh) 一种基于Sb2O3纳米棒/Si异质结的自驱动光电探测器及其制备方法
CN110707176B (zh) 一种超宽频带的薄膜光电探测器件及其制备方法
Li et al. Highly transparent oxide-based ultraviolet photodetectors for flexible electronics
CN112071652B (zh) 一种三维刺猬状ZnO/SnO2异质结构及其制备方法与其在紫外探测器中的应用
Lu et al. Noise characteristics of ZnO-nanowire photodetectors prepared on ZnO: Ga/glass templates
CN113113499A (zh) 一种pn结型氧化镓基自供电紫外探测器及其制备方法
Djeffal et al. Enhanced photoresponse of ultraviolet photodetector via RF sputtered ZnO/a-SiC heterostructure
CN114242816B (zh) 一种单分子层表面改性的InGaAs纳米线光电探测器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication