CN117401967A - 一种医用可回弹硅酸钙多孔陶瓷支架的制备方法 - Google Patents

一种医用可回弹硅酸钙多孔陶瓷支架的制备方法 Download PDF

Info

Publication number
CN117401967A
CN117401967A CN202311267429.2A CN202311267429A CN117401967A CN 117401967 A CN117401967 A CN 117401967A CN 202311267429 A CN202311267429 A CN 202311267429A CN 117401967 A CN117401967 A CN 117401967A
Authority
CN
China
Prior art keywords
calcium silicate
porous ceramic
rebound
medical
silicate porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311267429.2A
Other languages
English (en)
Inventor
刘晞晨
黄嘉航
李春淼
王士赫
何家屹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou North America High School
Original Assignee
Suzhou North America High School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou North America High School filed Critical Suzhou North America High School
Priority to CN202311267429.2A priority Critical patent/CN117401967A/zh
Publication of CN117401967A publication Critical patent/CN117401967A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公布了一种医用可回弹硅酸钙多孔陶瓷支架的制备方法,先合成硅酸钙纳米纤维,然后在0℃以下,将硅酸钙纳米纤维与冰粉混匀、压实成型、冰点保温重结晶、冻干、烧结,得到由一维硅酸钙纳米纤维架构的多孔陶瓷支架,本发明公布的硅酸钙多孔陶瓷支架,克服了陶瓷材料的脆性,具备刚性和可回弹性,另外使用冰粉为造孔剂,洁净无污染,且孔径可由冰粉粒径调节,多孔陶瓷支架孔道联通性可由冰粉在冰点的保温重结晶调节。多孔陶瓷表现出高刚度和可回弹性,在生物医学领域有较大应用前景。

Description

一种医用可回弹硅酸钙多孔陶瓷支架的制备方法
技术领域
本发明属于新材料领域,具体涉及一种医用可回弹硅酸钙多孔陶瓷支架的制备方法
背景技术
多孔陶瓷支架是一种在骨科手术中广泛应用的特殊类型的支架或骨植入物。这些支架以其独特的材料特性和结构而著称,通常由陶瓷材料如氧化铝或氧化锆制成,具有高度多孔的结构。这种多孔性不仅有助于支持骨细胞的生长,还可以促进新骨组织的形成,从而加速骨折愈合或骨植入物融合的过程。与传统的金属支架相比,多孔陶瓷支架具有生物相容性更好、不引发金属过敏反应、更接近自然骨的机械性能等优点。然而,它们也存在一些缺点,如脆弱性较高和制造成本较高。因此,在使用多孔陶瓷支架之前,医生通常会根据患者的具体情况仔细评估其可行性和适用性,以确保手术的成功和患者的安全。
硅酸钙多孔陶瓷因为其生物安全性,通常用于骨科和牙科领域,作为骨修复和组织工程的支架。现有技术制备硅酸钙多孔陶瓷,是将含钙化合物,常见的如氧化钙、氢氧化钙等与二氧化硅粉末,添加造孔剂模压成型后高温烧结得到。现有技术制备得到的硅酸钙多孔陶瓷,晶粒形状为颗粒型,孔隙连通性差,高孔隙率时候,力学性能差。申请号为CN202111617687X的中国专利公布了一种多孔硅酸钙陶瓷及其超快速制备方法。该申请使用脱铝后的高铝粉煤灰为硅源制备硅酸钙多孔陶瓷,孔隙结构为颗粒堆积型孔隙结构。
申请号为CN2021104533217的中国专利公布了锰掺杂硅酸钙多孔陶瓷支架及其制备方法和应用,通过3D打印的方法制备硅酸钙多孔陶瓷材料。
申请号为CN2013104397152的中国专利公布了一种利用造孔剂模压的方法制备含锶可降解硅酸钙多孔陶瓷。
申请号为CN2019101171749的中国专利公布了一种孔形可调的硅酸钙多孔陶瓷膜的制备方法,使用溶胶凝胶的方法,制备硅酸钙多孔陶瓷。
现有技术制备的硅酸钙多孔陶瓷支架,存在有机造孔剂残留,易掉粉的问题,容易引发感染,且陶瓷脆性较大,多次吸收脱水后,在表面张力作用下容易开裂损坏的问题。
发明内容
本发明的目的是提供一种医用可回弹硅酸钙多孔陶瓷支架的制备方法,以解决上述背景技术中提出的问题,本发明的技术方案:
将45wt%~62wt%氢氧化钙和38wt%~55wt%二氧化硅加水混匀,其中液固比为20:1,将混匀后的样品置于带搅拌功能的水热反应釜中,设定搅拌速度为50~500转/分钟,温度为180℃~300℃,反应2~12小时得到均匀浆料,将浆料烘干后得到蓬松硅酸钙纳米纤维粉,20wt%~70wt%上述硅酸钙纳米纤维在0℃下预先冷冻后与30wt%~80wt%的冰粉混匀,然后置于低温模具中压实成型,将上述压实成型的样品至于冰点保温1~12h使冰粉重结晶,将进过重结晶处理的样品冻干,将冻干后的样品1100℃~1400℃热处理得到医用可回弹硅酸钙多孔陶瓷支架。制备得到的可回弹硅酸钙多孔陶瓷支架孔隙率为70%~90%,抗压强度为15~30Mpa,具备纤维状孔隙结构,回弹性达到50%。有益效果:本发明公布的硅酸钙多孔陶瓷支架,克服了陶瓷材料的脆性,具备刚性和可回弹性,另外使用冰粉为造孔剂,洁净无污染,且孔径可由冰粉粒径调节,多孔陶瓷支架孔道联通性可由冰粉在冰点的保温重结晶调节。多孔陶瓷表现出高刚度和可回弹性,在生物医学领域有较大应用前景。
附图说明
图1为实施例1制备得到的硅酸钙多孔陶瓷支架的sem图。
图2为实施例1的可回弹压力测试
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,仍然属于本发明保护的范围。
实施例1:
一种可回弹硅酸钙多孔陶瓷支架的制备方法,将62wt%氢氧化钙和38wt%二氧化硅加水混匀,其中液固比为20:1,将混匀后的样品置于带搅拌功能的水热反应釜中,设定搅拌速度500转/分钟,温度为300℃,反应2小时得到均匀浆料,将浆料烘干后得到蓬松硅酸钙纳米纤维粉,70wt%上述硅酸钙纳米纤维在0℃下预先冷冻后与30wt%的粒径为500纳米冰粉混匀,然后置于低温模具中压实成型,将上述压实成型的样品至于冰点保温1h使冰粉重结晶,将进过重结晶处理的样品冻干,将冻干后的样品1400℃热处理得到医用可回弹硅酸钙多孔陶瓷支架。制备得到的可回弹硅酸钙多孔陶瓷支架孔隙率为70%,抗压强度为30Mpa,具备纤维状孔隙结构,回弹性达到50%。
实施例2:
一种可回弹硅酸钙多孔陶瓷支架的制备方法,将45wt%氢氧化钙和55wt%二氧化硅加水混匀,其中液固比为20:1,将混匀后的样品置于带搅拌功能的水热反应釜中,设定搅拌速度50转/分钟,温度为180℃,反应12小时得到均匀浆料,将浆料烘干后得到蓬松硅酸钙纳米纤维粉,50wt%上述硅酸钙纳米纤维在0℃下预先冷冻后与50wt%的粒径为2微米冰粉混匀,然后置于低温模具中压实成型,将上述压实成型的样品至于冰点保温12h使冰粉重结晶,将进过重结晶处理的样品冻干,将冻干后的样品1100℃热处理得到医用可回弹硅酸钙多孔陶瓷支架。制备得到的可回弹硅酸钙多孔陶瓷支架孔隙率为80%,抗压强度为24Mpa,具备纤维状孔隙结构,回弹性达到52%。
实施例3:
一种可回弹硅酸钙多孔陶瓷支架的制备方法,将55wt%氢氧化钙和45wt%二氧化硅加水混匀,其中液固比为20:1,将混匀后的样品置于带搅拌功能的水热反应釜中,设定搅拌速度200转/分钟,温度为200℃,反应4小时得到均匀浆料,将浆料烘干后得到蓬松硅酸钙纳米纤维粉40wt%上述硅酸钙纳米纤维在0℃下预先冷冻后与60wt%的粒径为5微米冰粉混匀,然后置于低温模具中压实成型,将上述压实成型的样品至于冰点保温8h使冰粉重结晶,将进过重结晶处理的样品冻干,将冻干后的样品1300℃热处理得到医用可回弹硅酸钙多孔陶瓷支架。制备得到的可回弹硅酸钙多孔陶瓷支架孔隙率为88%,抗压强度为21Mpa,具备纤维状孔隙结构,回弹性达到56%。
实施例4:
一种可回弹硅酸钙多孔陶瓷支架的制备方法,将58wt%氢氧化钙和42wt%二氧化硅加水混匀,其中液固比为20:1,将混匀后的样品置于带搅拌功能的水热反应釜中,设定搅拌速度100转/分钟,温度为230℃,反应5小时得到均匀浆料,将浆料烘干后得到蓬松硅酸钙纳米纤维粉40wt%上述硅酸钙纳米纤维在0℃下预先冷冻后与60wt%的粒径为10微米冰粉混匀,然后置于低温模具中压实成型,将上述压实成型的样品至于冰点保温8h使冰粉重结晶,将进过重结晶处理的样品冻干,将冻干后的样品1300℃热处理得到医用可回弹硅酸钙多孔陶瓷支架。制备得到的可回弹硅酸钙多孔陶瓷支架孔隙率为88%,抗压强度为17Mpa,具备纤维状孔隙结构,回弹性达到60%。
实施例5:
一种可回弹硅酸钙多孔陶瓷支架的制备方法,将53wt%氢氧化钙和47wt%二氧化硅加水混匀,其中液固比为20:1,将混匀后的样品置于带搅拌功能的水热反应釜中,设定搅拌速度100转/分钟,温度为250℃,反应5小时得到均匀浆料,将浆料烘干后得到蓬松硅酸钙纳米纤维粉20wt%上述硅酸钙纳米纤维在0℃下预先冷冻后与80wt%的粒径为10微米冰粉混匀,然后置于低温模具中压实成型,将上述压实成型的样品至于冰点保温6h使冰粉重结晶,将进过重结晶处理的样品冻干,将冻干后的样品1200℃热处理得到医用可回弹硅酸钙多孔陶瓷支架。制备得到的可回弹硅酸钙多孔陶瓷支架孔隙率为98%,抗压强度为15Mpa,具备纤维状孔隙结构,回弹性达到70%。

Claims (6)

1.一种医用可回弹硅酸钙多孔陶瓷支架的制备方法,其特征包括下述步骤:步骤1,将45wt%~62wt%氢氧化钙和38wt%~55wt%二氧化硅原料水热反应制备硅酸钙纳米纤维;步骤2,将20wt%~70wt%上述硅酸钙纳米纤维在0℃下预先冷冻后与30wt%~80wt%的冰粉混匀,然后置于零度以下低温模具中压实成型;步骤3,将上述压实成型的样品置于冰点保温1~12h使冰粉重结晶;步骤4,将经过重结晶处理的样品冻干;步骤5,将冻干后的样品1100℃~1400℃热处理得到医用可回弹硅酸钙多孔陶瓷支架。
2.根据权利要求1,一种医用可回弹硅酸钙多孔陶瓷支架的制备方法,所述水热反应的搅拌速度为50~500转/分钟。
3.根据权利要求1,一种医用可回弹硅酸钙多孔陶瓷支架的制备方法,所述水热反应釜的温度为180℃~300℃。
4.根据权利要求1,一种医用可回弹硅酸钙多孔陶瓷支架的制备方法,所制备得到的医用硅酸钙多孔陶瓷支架的的孔隙率为70%~90%。
5.根据权利要求1,一种医用可回弹硅酸钙多孔陶瓷支架的制备方法,所制备得到的医用硅酸钙多孔陶瓷支架的抗压强度为15~30Mpa。
6.根据权利要求1,一种医用可回弹硅酸钙多孔陶瓷支架的制备方法,所制备得到的医用硅酸钙多孔陶瓷支架弹性变形达到50%。
CN202311267429.2A 2023-09-28 2023-09-28 一种医用可回弹硅酸钙多孔陶瓷支架的制备方法 Pending CN117401967A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311267429.2A CN117401967A (zh) 2023-09-28 2023-09-28 一种医用可回弹硅酸钙多孔陶瓷支架的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311267429.2A CN117401967A (zh) 2023-09-28 2023-09-28 一种医用可回弹硅酸钙多孔陶瓷支架的制备方法

Publications (1)

Publication Number Publication Date
CN117401967A true CN117401967A (zh) 2024-01-16

Family

ID=89497065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311267429.2A Pending CN117401967A (zh) 2023-09-28 2023-09-28 一种医用可回弹硅酸钙多孔陶瓷支架的制备方法

Country Status (1)

Country Link
CN (1) CN117401967A (zh)

Similar Documents

Publication Publication Date Title
WO2006046414A1 (ja) アパタイト/コラーゲン複合体繊維を含む多孔体の製造方法
RU2011105299A (ru) Кизельзоль-материал, по меньшей мере, с одним терапевтически активным веществом для получения биологически разлагаемых и/или впитываемых кизельгель-материалов для медицины человека и/или медтехники
CN105748510B (zh) 一种可控氟缓释磷酸钙生物活性材料及其制备方法
Escobar-Sierra et al. Chitosan/hydroxyapatite scaffolds for tissue engineering manufacturing method effect comparison
CN113582680B (zh) 一种羟基磷灰石陶瓷及其制备方法和应用
KR20070028271A (ko) 칼슘 포스페이트 시멘트로부터 의료용 임플란트의 제조방법및 의료용 임플란트
CN109331223B (zh) 一种载药生物活性玻璃复合磷酸钙骨水泥及其应用
CN109125782A (zh) 一种多孔纤维/无机生物材料颗粒复合型皮肤创面敷料及其制备方法
CN117401967A (zh) 一种医用可回弹硅酸钙多孔陶瓷支架的制备方法
KR101331582B1 (ko) 골 치료용 다공성 바이오세라믹 조성물
CN105999418A (zh) 一种可注射型生物活性骨水泥材料及其制备方法
CN104984387A (zh) 一种骨组织工程蜂窝支架材料及其制备方法
US20120330434A1 (en) Bilayered bone graft device
CN108383516B (zh) 一种兼具力学强度和降解性的生物活性陶瓷材料及其制备方法
CN108424138A (zh) 含硅晶界相改性羟基磷灰石陶瓷、骨损伤修复材料及其制备方法
CN105272193A (zh) 一种纳米羟基磷灰石、硅酸三钙复合生物陶瓷及其制备方法和应用
AU6127400A (en) Composites
CN105731990A (zh) 一种可控降解磷酸镁骨水泥及其制备方法和应用
CN105251056A (zh) 一种骨组织工程用多孔复合支架及其制备方法
CN111233457B (zh) 一种基于碳纤维为造孔剂和增强体制备多孔镁掺杂ha基复合材料的方法
CN109880152B (zh) 取向连通多孔生物医用支架的制备方法及其制备的支架和该支架在制备医疗产品中的用途
CN107899088A (zh) 一种用于预防去除内固定物后再骨折的多孔生物支架及其制备
CN114870070A (zh) 一种有机/无机复合三维多孔纳米纤维组织工程支架及其制备方法和应用
KR101816231B1 (ko) β-삼인산칼슘 입자코팅처리를 활용한 고성형성 골이식재의 제조방법
KR101817002B1 (ko) 압축성형 몰드를 이용한 베타-트리칼슘포스페이트계 합성골 웨지의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination