CN117398978A - 一种纤维素基复合气凝胶的制备方法 - Google Patents

一种纤维素基复合气凝胶的制备方法 Download PDF

Info

Publication number
CN117398978A
CN117398978A CN202311483665.8A CN202311483665A CN117398978A CN 117398978 A CN117398978 A CN 117398978A CN 202311483665 A CN202311483665 A CN 202311483665A CN 117398978 A CN117398978 A CN 117398978A
Authority
CN
China
Prior art keywords
cellulose
chitosan
washing
beta
feooh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311483665.8A
Other languages
English (en)
Inventor
唐艳军
杨晓雨
陈天影
李飞云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202311483665.8A priority Critical patent/CN117398978A/zh
Publication of CN117398978A publication Critical patent/CN117398978A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及气凝胶制备技术领域,具体涉及一种纤维素基复合气凝胶的制备方法。本发明是以微晶纤维素与壳聚糖为原料,在三水合溴化锂溶液中加热至溶解,自然冷却形成纤维素‑壳聚糖复合水凝胶,在FeCl3水溶液中水浴加热负载β‑FeOOH,冷冻干燥后得到对染料具有吸附和光催化降解作用的纤维素‑壳聚糖/β‑FeOOH复合气凝胶。本发明具有复合气凝胶的制备操作简便、绿色环保的优点,对10mg/L的甲基橙溶液的吸附率可达60%,降解率高达97%,可广泛适用于吸附降解各种阴离子有机染料。

Description

一种纤维素基复合气凝胶的制备方法
技术领域
本发明属于气凝胶制备技术领域,具体涉及一种纤维素-壳聚糖/β-FeOOH复合气凝胶的制备方法。
背景技术
染料废水由于色度高、碱性大、成分复杂、可生化性能差等特点属于比较难处理的工业废水之一。众所周知,吸附法具有成本低、吸附能力高、吸附率高、操作方便等优点,是水污染治理中广泛使用的策略之一。水凝胶具有三维(3D)网络结构,通常由聚合物通过物理和/或化学交联制成。水凝胶的多孔结构和大的表面积使其成为水介质中理想的吸附材料。
直接共混/混合和共溶再生是制备纤维素-壳聚糖复合材料的两种主要技术。熔盐水合物是无机盐的浓缩水溶液,其中水与盐的摩尔比接近盐阳离子的配位数,例如LiBr·3H2O。三水合溴化锂熔盐水合物已被用作许多化学反应和工艺中的溶剂,包括生物质转化,因为它们具有独特的特性,如低粘度、高沸点、无毒或低毒、良好的可回收性,更重要的是,具有溶解纤维素和壳聚糖的能力。
虽然吸附法被认为是一种有效的水处理方法,但危险的水污染物只是通过吸附材料浓缩而不是矿化为无污染物质。它可能会在废水处理中造成二次污染。此外,吸附剂通常难以再生,当达到饱和时需要进行处理以释放污染物。光催化已被广泛用于废水处理,因为光催化剂具有优异的氧化能力,可以分解难降解的有机污染物,并完全矿化大多数有毒化合物。然而,低可见光吸收、光生电子-空穴对的高复合效率和易于团聚等缺点限制了光催化在工业应用中的应用。因此,开发具有污染物吸附富集和光催化降解协同作用的新型光催化材料无疑对水净化具有重要的意义。
发明内容
针对现有技术的不足,本发明提供一种纤维素基复合气凝胶的制备方法。该方法具有操作过程简单,所用熔融盐溶剂绿色环保可回收的优点,制备的纤维素基复合气凝胶可用于有机染料的吸附和降解,以解决目前吸附剂难以再生、光催化剂难以回收等问题。
为实现以上的发明目的,本发明提供了一种纤维素基复合气凝胶的制备方法,包括以下步骤:
(1)将微晶纤维素与壳聚糖以不同比例混合,然后分散在溴化锂溶液中,加热搅拌溶解后得到纤维素-壳聚糖混合溶液,将混合溶液转移至直径为60mm的玻璃皿中,待到纤维素-壳聚糖混合溶液自然冷却,得到纤维素-壳聚糖复合水凝胶;
(2)先用无水乙醇洗涤步骤(1)得到的纤维素-壳聚糖复合水凝胶,之后用叔丁醇、水顺序洗涤置换;
(3)将步骤(2)洗涤结束后的复合水凝胶浸泡在FeCl3水溶液中水浴加热负载β-FeOOH,得到纤维素-壳聚糖/β-FeOOH复合水凝胶;
(4)将步骤(3)制备的纤维素-壳聚糖/β-FeOOH复合水凝胶用水进行洗涤,然后冷冻干燥,即可得到纤维素-壳聚糖/β-FeOOH复合气凝胶。
优选地,所述步骤(1)中溴化锂溶液为三水合溴化锂。
优选地,所述步骤(1)中微晶纤维素与壳聚糖的质量比为9:1-7:3,微晶纤维素和壳聚糖总量与溴化锂溶液的质量比为2:100。
本申请中LiBr溶液中的纤维素加入量(浓度)影响水凝胶的形成、多孔结构和机械强度,当纤维素浓度低于0.45wt%时,不能制备水凝胶;而纤维素加入量(浓度)过高时(≥3wt%),则无法完全溶解。此外,当壳聚糖的比例过高时,溶解液粘度过高,形成的凝胶较为柔性,机械强度差,因为在含有更多壳聚糖的水凝胶中,形成的NH2-NH2氢键比OH-NH2和OH-OH氢键更多,而NH2-NH2氢键的结合强度低于OH-NH2和OH-OH氢键,因此具有更多壳聚糖的水凝胶的整体机械强度较低。
优选地,所述步骤(1)中加热搅拌的温度为110-120℃,搅拌时间为4-5min。提高温度或延长溶解时间可以促进纤维素的溶解,但会引起纤维素的解聚(水解)。解聚对纤维素基水凝胶/气凝胶的结构和强度有害。过度解聚可能导致纤维素水凝胶的制造失败,因为短纤维素链无法形成支撑凝胶结构的坚固骨架。因此,应避免过高的温度和时间来限制纤维素的解聚。
优选地,为了防止水凝胶的多孔网络结构在干燥过程中收缩和坍塌,所述步骤(2)中无水乙醇、叔丁醇、水顺序洗涤置换具体为:先用无水乙醇洗涤,循环洗涤3-4次,每次时间为2-3h;然后用叔丁醇进行洗涤置换,循环洗涤3-4次,每次时间为2-3h;最后用水进行洗涤,置换掉叔丁醇以及去除多余的溴化锂,洗涤完成后用硝酸银溶液检测溴化锂的存在。
优选地,所述步骤(3)中FeCl3水溶液为FeCl3·6H2O水溶液(18mg mL-1)和盐酸的混合溶液,浓度为12mg mL-1,水浴加热温度为60-65℃,加热时间为6-9h。加热时间过长,β-FeOOH负载量过多,纤维素-壳聚糖复合水凝胶中位点被占据过多,对染料的吸附效果将会下降。
优选地,所述步骤(4)中冷冻干燥采用-50℃冷冻干燥48h。
本发明将3D结构水凝胶与光催化剂相结合制备3D多孔水凝胶基复合光催化剂,不仅可以克服吸附材料的吸附饱和和不再生问题,还可以提高粉末光催化剂的吸附性能和分离性能。此外,光催化剂可以均匀分布在3D水凝胶的框架中,大大减少了粉末光催化剂的聚集,暴露出更多的活性位点,有利于吸附和表面光催化反应,从而有效提高水污染物的去除率。
附图说明
图1为纤维素-壳聚糖/β-FeOOH复合气凝胶截面的扫描电镜图;
图2为纤维素-壳聚糖/β-FeOOH复合气凝胶表面的扫描电镜图;
图3-4为纤维素-壳聚糖/β-FeOOH复合气凝胶吸附过程的C/C0-t曲线;
图5为纤维素-壳聚糖/β-FeOOH复合气凝胶降解过程的C/C0-t曲线。
具体实施方式
为了进一步理解本发明,下面将结合实施例和对比例对本发明的实施方案作进一步详细的描述,但是本发明的实施方式并不限于此。
实施例1
将比例为7:3的微晶纤维素和壳聚糖均匀分散在质量分数为60%的溴化锂溶液中,加热至120℃搅拌5min后得到纤维素-壳聚糖混合溶液,然后将纤维素-壳聚糖混合溶液倒入直径为60mm的玻璃皿中,自然冷却,得到纤维素-壳聚糖复合水凝胶。
用乙醇、叔丁醇交叉梯度洗涤得到的纤维素-壳聚糖复合水凝胶,之后水洗涤,并用硝酸银溶液检测溴化锂离子的存在(硝酸银与溴化锂反应生成淡黄色沉淀溴化银,以此检测溴化锂的存在),直至无淡黄色沉淀产生停止水洗涤。
将洗涤结束后的复合水凝胶在FeCl3水溶液中水浴加热9h进行β-FeOOH的负载,取出后采用-50℃冷冻干燥48h,即可得到纤维素-壳聚糖/β-FeOOH复合气凝胶。
实施例2
将比例为7:3的微晶纤维素和壳聚糖均匀分散在质量分数为60%的溴化锂溶液中,加热至120℃搅拌5min后得到纤维素-壳聚糖混合溶液,然后将纤维素-壳聚糖混合溶液倒入直径为60mm的玻璃皿中,自然冷却,得到纤维素-壳聚糖复合水凝胶。
用乙醇、叔丁醇交叉梯度洗涤得到的纤维素-壳聚糖复合水凝胶,之后水洗涤,并用硝酸银溶液检测溴化锂离子的存在(硝酸银与溴化锂反应生成淡黄色沉淀溴化银,以此检测溴化锂的存在),直至无淡黄色沉淀产生停止水洗涤。
将洗涤结束后的复合水凝胶在FeCl3水溶液中水浴加热6h进行β-FeOOH的负载,取出后采用-50℃冷冻干燥48h,即可得到纤维素-壳聚糖/β-FeOOH复合气凝胶。
实施例3
将比例为8:2的微晶纤维素和壳聚糖均匀分散在质量分数为60%的溴化锂溶液中,加热至120℃搅拌4min后得到纤维素-壳聚糖混合溶液,然后将纤维素-壳聚糖混合溶液倒入直径为60mm的玻璃皿中,自然冷却,得到纤维素-壳聚糖复合水凝胶。
用乙醇、叔丁醇交叉梯度洗涤得到的纤维素-壳聚糖复合水凝胶,之后水洗涤,并用硝酸银溶液检测溴化锂离子的存在(硝酸银与溴化锂反应生成淡黄色沉淀溴化银,以此检测溴化锂的存在),直至无淡黄色沉淀产生停止水洗涤。
将洗涤结束后的复合水凝胶在FeCl3水溶液中水浴加热9h进行β-FeOOH的负载,取出后采用-50℃冷冻干燥48h,即可得到纤维素-壳聚糖/β-FeOOH复合气凝胶。
实施例4
将比例为8:2的微晶纤维素和壳聚糖均匀分散在质量分数为60%的溴化锂溶液中,加热至120℃搅拌4min后得到纤维素-壳聚糖混合溶液,然后将纤维素-壳聚糖混合溶液倒入直径为60mm的玻璃皿中,自然冷却,得到纤维素-壳聚糖复合水凝胶。
用乙醇、叔丁醇交叉梯度洗涤得到的纤维素-壳聚糖复合水凝胶,之后水洗涤,并用硝酸银溶液检测溴化锂离子的存在(硝酸银与溴化锂反应生成淡黄色沉淀溴化银,以此检测溴化锂的存在),直至无淡黄色沉淀产生停止水洗涤。
将洗涤结束后的复合水凝胶在FeCl3水溶液中水浴加热6h进行β-FeOOH的负载,取出后采用-50℃冷冻干燥48h,即可得到纤维素-壳聚糖/β-FeOOH复合气凝胶。
实施例5
将比例为9:1的微晶纤维素和壳聚糖均匀分散在质量分数为60%的溴化锂溶液中,加热至110℃搅拌4min后得到纤维素-壳聚糖混合溶液,然后将纤维素-壳聚糖混合溶液倒入直径为60mm的玻璃皿中,自然冷却,得到纤维素-壳聚糖复合水凝胶。
用乙醇、叔丁醇交叉梯度洗涤得到的纤维素-壳聚糖复合水凝胶,之后水洗涤,并用硝酸银溶液检测溴化锂离子的存在(硝酸银与溴化锂反应生成淡黄色沉淀溴化银,以此检测溴化锂的存在),直至无淡黄色沉淀产生停止水洗涤。
将洗涤结束后的复合水凝胶在FeCl3水溶液中水浴加热9h进行β-FeOOH的负载,取出后采用-50℃冷冻干燥48h,即可得到纤维素-壳聚糖/β-FeOOH复合气凝胶。
实施例6
将比例为9:1的微晶纤维素和壳聚糖均匀分散在质量分数为60%的溴化锂溶液中,加热至110℃搅拌4min后得到纤维素-壳聚糖混合溶液,然后将纤维素-壳聚糖混合溶液倒入直径为60mm的玻璃皿中,自然冷却,得到纤维素-壳聚糖复合水凝胶。
用乙醇、叔丁醇交叉梯度洗涤得到的纤维素-壳聚糖复合水凝胶,之后水洗涤,并用硝酸银溶液检测溴化锂离子的存在(硝酸银与溴化锂反应生成淡黄色沉淀溴化银,以此检测溴化锂的存在),直至无淡黄色沉淀产生停止水洗涤。
将洗涤结束后的复合水凝胶在FeCl3水溶液中水浴加热6h进行β-FeOOH的负载,取出后采用-50℃冷冻干燥48h,即可得到纤维素-壳聚糖/β-FeOOH复合气凝胶。
验证例:
本实验例对实施例1-6所得的纤维素-壳聚糖/β-FeOOH复合气凝胶对有机染料的吸附性能进行检测。检测方法为:制备得到的纤维素-壳聚糖复合气凝胶放入40mL浓度为10mg/L的甲基橙染料溶液中,黑暗条件下静置吸附,达到吸附平衡后,用紫外分光光度计在463nm的波长下测定染料溶液的吸光度,计算甲基橙去除率,结果如表1所示。
表1实施例1-6染料吸附结果
对实施例1-6所得的纤维素-壳聚糖/β-FeOOH复合气凝胶对有机染料的降解性能进行检测。检测方法为:制备得到的纤维素-壳聚糖复合气凝胶放入40mL浓度为10mg/L的甲基橙染料溶液中,在黑暗条件进行30min的染料吸附,然后向染料溶液中加入0-2mM 30%H2O2,随后用100W氙灯照射,光源距离染液10cm,光照40min后用紫外分光光度计在463nm的波长下测定染料溶液的吸光度,计算甲基橙去除率,结果如表2所示。
表1实施例1-6染料降解结果
在H2O2加入量为2mM的条件下,进一步评估实施例1的稳定性和可重复使用性。为了评价实施例1的可重复使用性,进行了五次连续光催化降解测试,每次测试后,用去离子水和乙醇清洗复合凝胶并烘干。五次光催化降解测试的光降解率分别为97.75%、96.11%、95.61%、87.30%和80.81%,表明光催化剂在可见光辐照下基本稳定。光降解效率下降的原因可能是在洗涤过程中以及强氧化条件下造成了β-FeOOH的部分损失。
图1的电镜图可以看到纤维素-壳聚糖/β-FeOOH复合气凝胶截面呈现层状结构,且具有大的孔径。从图2可以看到β-FeOOH NPs显示出纺锤形,并在水凝胶表面充分生长。此外,根据SEM结果,β-FeOOH NP的平均长度和直径分别为~278和~98nm。
图3为实施例1、3、5制备的纤维素-壳聚糖/β-FeOOH复合气凝胶吸附过程的C/C0-t曲线,即纤维素-壳聚糖比例分别为7:3、8:2、9:1,β-FeOOH负载时间为9h的复合气凝胶样品在吸附过程中的染料浓度随时间变化的曲线,可以看到复合气凝胶对MO的吸附效率随着壳聚糖比例的增加而增加,这一结果表明,纤维素和壳聚糖之间的协同作用提供了与MO的大量相互作用位点,且随着壳聚糖比例的增加,在酸性条件下壳聚糖上的氨基结合氢离子带正电,MO作为阴离子染料带负电,两者之间除了氢键作用,还存在静电引力作用。因此,吸附不仅依赖于氢键相互作用,还依赖于静电相互作用。
图4为实施例2、4、6制备的纤维素-壳聚糖/β-FeOOH复合气凝胶吸附过程的C/C0-t曲线,即纤维素-壳聚糖比例分别为7:3、8:2、9:1,β-FeOOH负载时间为6h的复合气凝胶样品在吸附过程中的染料浓度随时间变化的曲线,同图3结果一致,复合气凝胶对MO的吸附效率随着壳聚糖比例的增加而增加。
图5为实施例1在H2O2加入量分别为0、1、2mM以及实施例2在H2O2加入量为0mM的条件下降解过程中的染料浓度随时间变化的曲线,可以看到在在H2O2加入量为0mM时,实施例1制备样品对染料的降解效果明显高于实施例2,此外,随着H2O2加入量的增加,实施例1制备样品对染料的降解率逐步提高,其高降解率可归因于芬顿和光催化反应的协同效应,因为H2O2与β-FeOOH发生芬顿反应产生更多活性自由基促进了染料的光催化降解。
综上,本发明以绿色无污染的溴化锂离子液体溶剂体系,采用简单、绿色、易于操作的制备过程得到纤维素-壳聚糖复合水凝胶,然后通过在FeCl3水溶液中水浴加热负载β-FeOOH,所制备的纤维素-壳聚糖/β-FeOOH复合气凝胶有效结合吸附和降解的协同作用,可实现对染料的高效去除。

Claims (7)

1.一种纤维素基复合气凝胶的制备方法,其特征在于,包括以下步骤:
步骤(1)、将微晶纤维素与壳聚糖以不同比例混合,然后分散在溴化锂溶液中,加热搅拌溶解后得到纤维素-壳聚糖混合溶液;
步骤(2)、将步骤(1)制备的纤维素-壳聚糖混合溶液自然冷却,得到纤维素-壳聚糖复合水凝胶;
步骤(3)、用无水乙醇洗涤步骤(2)得到的纤维素-壳聚糖复合水凝胶,再用叔丁醇、水顺序洗涤置换;
步骤(4)、将步骤(3)洗涤结束后的复合水凝胶浸泡在FeCl3水溶液中水浴加热负载β-FeOOH,得到纤维素-壳聚糖/β-FeOOH复合水凝胶;
步骤(5)、将步骤(4)制备的纤维素-壳聚糖/β-FeOOH复合水凝胶用水进行洗涤,然后冷冻干燥,即可得到纤维素-壳聚糖/β-FeOOH复合气凝胶。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述溴化锂溶液为三水合溴化锂。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述微晶纤维素与壳聚糖的质量比为9:1-7:3,所述微晶纤维素和壳聚糖总量与溴化锂溶液的质量比为2:100。
4.根据权利要求2或3所述的制备方法,其特征在于,步骤(1)中加热搅拌的温度为110-120℃,搅拌时间均为4-5min。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)具体是:先用无水乙醇洗涤,循环洗涤3-4次,每次洗涤时间为2-3h;然后用叔丁醇进行洗涤置换,循环洗涤3-4次,每次洗涤时间为2-3h;最后用水进行洗涤置换,直至用硝酸银检测,无沉淀发生。
6.根据权利要求1所述的制备方法,其特征在于,步骤(4)中所述FeCl3水溶液为FeCl3·6H2O和盐酸的混合溶液,水浴加热温度为60-65℃,加热时间为6-9h。
7.根据权利要求6所述的制备方法,其特征在于,FeCl3·6H2O水溶液浓度为18mg mL-1;FeCl3水溶液的浓度为12mg mL-1
CN202311483665.8A 2023-11-09 2023-11-09 一种纤维素基复合气凝胶的制备方法 Pending CN117398978A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311483665.8A CN117398978A (zh) 2023-11-09 2023-11-09 一种纤维素基复合气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311483665.8A CN117398978A (zh) 2023-11-09 2023-11-09 一种纤维素基复合气凝胶的制备方法

Publications (1)

Publication Number Publication Date
CN117398978A true CN117398978A (zh) 2024-01-16

Family

ID=89497891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311483665.8A Pending CN117398978A (zh) 2023-11-09 2023-11-09 一种纤维素基复合气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN117398978A (zh)

Similar Documents

Publication Publication Date Title
CN106179262B (zh) 具有吸附-可见光催化降解协同作用的复合材料及其制备方法和用途
Wang et al. Construction of β-FeOOH@ tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties
CN110776049B (zh) 功能化锆基金属有机骨架/质子化氮化碳复合材料活化过一硫酸盐处理有机废水的方法
CN109772454B (zh) 光催化膜及其制备方法和对消毒副产物前体物的降解应用
Xu et al. Superhydrophilic and polyporous nanofibrous membrane with excellent photocatalytic activity and recyclability for wastewater remediation under visible light irradiation
EP4071184A1 (en) Adsorbent resin for removing perfluorinated pollutants from body of water, preparation therefor, and use thereof
Xu et al. Heterojunction material BiYO3/g-C3N4 modified with cellulose nanofibers for photocatalytic degradation of tetracycline
Anirudhan et al. Photocatalytic Degradation of Eosin Yellow Using Poly (pyrrole‐co‐aniline)‐Coated TiO2/Nanocellulose Composite under Solar Light Irradiation
Ren et al. In-situ structuring a robust cellulose hydrogel with ZnO/SiO2 heterojunctions for efficient photocatalytic degradation
Han et al. Preparation of a hydroxyethyl–titanium dioxide–carboxymethyl cellulose hydrogel cage and its effect on the removal of methylene blue
Sawut et al. Reduced graphene oxide-TiO2/sodium alginate/polyacrylamide composite hydrogel for enhanced adsorption-photocatalytic degradation of methylene blue
CN112619684A (zh) 一种功能化凹凸棒石负载NiO-g-C3N4的光催化-吸附剂和制法
CN112121866A (zh) 一种光催化剂及其制备方法
Liu et al. Self-cleaning and photodegradle PVDF separation membranes modified with self-assembled TiO2-g-CS/CNTs particle
Gao et al. Rapid solute transfer photocatalytic membrane: The combination of host–guest interaction and photocatalyst load
Zheng et al. One-pot hydrothermal synthesis of hierarchical porous manganese silicate microspheres as excellent Fenton-like catalysts for organic dyes degradation
CN117398978A (zh) 一种纤维素基复合气凝胶的制备方法
CN110975626B (zh) 一种光-芬顿催化自清洁性超亲水性pvdf超滤膜的制备方法
CN110871099A (zh) 一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法
D'Angelo et al. Photocatalytic properties of Nafion membranes containing graphene oxide/titania nanocomposites
Shao et al. Electrospinning Fe (III) porphyrin/TiO2/poly (styrene) mixture: formation of a novel nanofiber photocatalyst for the photodegradation of methyl orange
CN103071399A (zh) 一种具有再生能力的复合平板膜及其制备方法
WANG et al. Synthesis of Diatomite/gC 3N4 Composite with Enhanced Visible-light-responsive Photocatalytic Activity
CN104209150A (zh) 改性阳离子交换树脂及其制备方法和应用
CN109879351B (zh) 一种可重复利用、快速、高效净化印染废水的功能粉体及其制备方法和脱色方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination