CN117362791A - 一种可生物降解的合成高分子材料及其制备方法 - Google Patents

一种可生物降解的合成高分子材料及其制备方法 Download PDF

Info

Publication number
CN117362791A
CN117362791A CN202210777503.4A CN202210777503A CN117362791A CN 117362791 A CN117362791 A CN 117362791A CN 202210777503 A CN202210777503 A CN 202210777503A CN 117362791 A CN117362791 A CN 117362791A
Authority
CN
China
Prior art keywords
sucrose
biodegradable synthetic
polymer
material according
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210777503.4A
Other languages
English (en)
Inventor
王耀萱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN202210777503.4A priority Critical patent/CN117362791A/zh
Publication of CN117362791A publication Critical patent/CN117362791A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings

Abstract

本发明公开了一种可生物降解的合成高分子材料及其制备方法,该工艺操作简单,无污染,无污染,天然环保、可二次利用了,并且所需原料来源广且经济易得,其提供了以下步骤:(1)使起始单体在通高分子有机化学条件下聚合,直到达到所需的分子量;(2)将得到的聚合物和糖按所需比例混合;(3)继续进行后续处理。

Description

一种可生物降解的合成高分子材料及其制备方法
技术领域
本发明属于可生物降解的绿色的合成高分子材料,可从和本身不可生物降解的聚合物或者合成获得,具体涉及一种可生物降解合成高分子材料及其制备方法。
背景技术
塑料应用范围广、低成本、加工性能优越,在日常生活的各个领域随处可见。此外,也正是由于其化学加工简单被广泛应用在工业,但是它们难以处理,降解需要很长时间,并且燃烧往往导致有毒物质的产生。因此塑料浪费产生了严重的污染问题,其影响程度不断增加。
在以前,人们已经尝试制造出水溶性的塑料材料,并将其注入海洋或暴露于雨水中进行处理。其溶解度性能好,一定程度上解决了污染问题。然而,这种材料适用性较差,与此同时也造成了水道和一般水资源的污染。在研制可光分解塑料材料方面,将其暴露在光下,分解成其单独的成分。然而,这种溶液往往导致更大的污染,因为塑料成分通常是有毒的,并且在也不能控制分解产物在土壤和地下水中的传播。
传统的塑料产品主要是从原油中提取的各类衍生产品,而石油是一种不可再生的能源,因此在石油资源耗尽以前,寻找更好的、更好的替代品已经成为当务之急。另一方面,由于环保观念的提高,只注重产品的品质的年代已一去不复返了,现在对塑胶产品的环保要求越来越高,因此可降解塑胶就出现了。生物可分解性塑胶是一种可以被自然微生物如细菌、霉菌、海藻等微生物所分解的塑胶。目前,可降解的可降解塑料大多采用自然聚合物与不同的聚合物进行共聚或共聚合而成,有的可降解的材料具有可生物可降解的性质,但在生产过程中会涉及到催化剂、交联剂等有毒物质,应用性较差。
发明内容
本发明提出了一种可生物降解的合成高分子材料制备方法,其克服了上述缺点,并且使用了常规合成塑料材料的正常工艺,不会造成成本增加,实现快速完全的降解。通过可生物降解的合成高分子材料实现,其特征在于它是合成获得的聚合物,选用包括聚氯乙烯(PVC)、乙烯醋酸乙烯酯(EVA)、热塑性聚氨酯(TPU)和聚乙烯(PE)与蔗糖的混合。本发明还涉及一种用于生产这些材料的方法。
本发明涉及一种合成高分子材料,其选用的材料混合后,通过加入蔗糖而制成可生物降解材料。蔗糖百分比可以从0.3%到10%,两者都与最终材料的总重量有关,最佳为1%到2.5%,如果蔗糖含量低于0.3%,则生物降解效果几乎可以忽略不计,而如果蔗糖超过10%,则获得的塑料材料具有过度脆化性。在蔗糖添加了淀粉能获得更为理想的效果。淀粉添加量在1%-5%,最适宜为为3 %。淀粉添加降低了蔗糖的吸湿性,改善了它们在聚合物中的分布。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明。
关于本发明的可生物降解高分子材料的制备方法,该工艺提供的步骤是:(1)使起始单体在通常的高分子有机化学条件下聚合,直至达到所需的分子量;(2)将得到的聚合物和蔗糖按所需比例混合;(3)继续进行后续处理。在随后的处理中进行聚合物和蔗糖的分离熔化,以及熔融材料以适当比例混合。
在步骤(2)中,可以以粉末或颗粒形式加入蔗糖,因为它容易造粒,在造粒时可能发生混合。例如,蔗糖粉末可以以所需的量加入到聚合过程中获得的聚合物薄片中,并形成本发明的聚合物材料的颗粒。或者,单独获得聚合物颗粒和蔗糖颗粒,在熔化之前以适当的比例混合,例如在注塑成型或挤出成型之前,以便进行后续加工,
最后,进行聚合物和蔗糖的分离熔化,并在成型时以适当的比例混合熔融材料。蔗糖的熔融温度在180℃至200℃之间,使其在聚合物的标准加工温度下熔化。
本发明的高分子材料可能含有其它添加剂,可含有增塑剂、阻燃剂、增强纤维(如玻璃纤维和碳纤维)、染料、除臭剂、香料、润滑剂、分离剂。还有其它容易使其可生物降解的物质,例如酵母。由于合成聚合物占最终总聚合物材料的90%(在大多数情况下,至少95%),该材料可以被认为是环保的。
实例1:聚乙烯颗粒与蔗糖颗粒混合。蔗糖占总重量的2%。将混合物在180°C下熔化,成型形成本发明的聚乙烯片材。根据ISO标准148551:2005,将得到的高分子材料进行30天的生物降解性试验,最后11.5%的聚乙烯出现降解。
示例2:重复实例1,用乙烯醋酸乙烯酯(EVA)代替聚乙烯,30天后生物降解率为13%。
示例3:重复实例1,但采用聚乙烯热塑聚氨酯代替,30天后降解率为20%。
示例4:重复实例1,但用聚乙烯代替聚氯乙烯33天后降解率为37%。
示例5:重复实例4,采用蔗糖与3%的淀粉进行降解,使降解持续60天,降解率很高。
重复实例5,苯乙烯-丁二烯-苯乙烯共聚物(SBS)代替但聚乙烯,将得到的样品置于所述降解条件下60天,但降解尚未发生。
从上述实例中可以清楚地看出,在所有情况下都存在生物降解活性。
本发明获得高度可生物降解的聚合物,从合成聚合物开始,因此可以从常见的化石来源获得原料,适度添加人类可食用的组分,此外,本发明可获得的材料极其简单。本发明添加蔗糖,与酵母相比,具有以下优点:(1)蔗糖可以造粒,这导致添加剂的格式更欢迎制造商用塑料材料制成的物品;(2)酵母在最终材料中留下难闻的气味,而蔗糖不留气味或者淡淡焦糖气味;(3)蔗糖可以与聚合物颗粒一起熔化;(4)蔗糖不影响成品的颜色和性能。

Claims (10)

1.一种可生物降解的合成高分子材料及其制备方法,其特征在于它是合成获得的聚合物,选聚氯乙烯(PVC)、乙烯醋酸乙烯酯(EVA)、热塑性聚氨酯(TPU)和聚乙烯(PE)组合,再与蔗糖混合。
2.根据权利要求1所述的一种可生物降解的合成高分子材料及其制备方法,其特征在于,其中所含的蔗糖与总重量的百分比在0.3%到10%之间。
3.根据权利要求2所述的一种可生物降解的合成高分子材料及其制备方法,其特征在于,其中所含的蔗糖百分比按重量百分比变化,称为材料最终的总重量。
4.根据权利要求1所述的一种可生物降解的合成高分子材料及其制备方法,其特征在于,所述蔗糖还含有淀粉。
5.根据权利要求4所述的一种可生物降解的合成高分子材料及其制备方法,其特征在于,所述淀粉加入到蔗糖中的量为重量的3%。
6.根据权利要求1所述的一种可生物降解的合成高分子材料及其制备方法,其特征在于,它还含有其它易于使其可生物降解的试剂,如酵母。
7.一种可生物降解的合成高分子材料制备方法,其特征在于以下步骤:(1)在通常的高分子有机化学条件下使起始单体聚合,达到所需的分子量,以获得在包括聚氯乙烯(PVC),乙烯醋酸乙烯酯(EVA),热塑性聚氨酯(TPU)和聚乙烯(PE)组成的聚合物;(2)以所需的比例混合得到的聚合物和蔗糖;(3)继续进行后续处理。
8.根据权利要求7所述的一种可生物降解的合成高分子材料制备方法,其特征在于,步骤(2)在造粒时发生,向聚合过程中得到的聚合物薄片中加入含有一定比例的蔗糖,以形成本发明的高分子材料颗粒。
9.根据权利要求8所述的一种可生物降解的合成高分子材料制备方法,其特征在于,步骤(2)是在熔融前按适当比例进行聚合物颗粒和蔗糖颗粒的混合,进行后续处理。
10.根据权利要求9所述的后续处理,其特征在于,进行聚合物和蔗糖的分离熔化,以及熔融材料以适当比例混合。
CN202210777503.4A 2022-07-04 2022-07-04 一种可生物降解的合成高分子材料及其制备方法 Pending CN117362791A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210777503.4A CN117362791A (zh) 2022-07-04 2022-07-04 一种可生物降解的合成高分子材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210777503.4A CN117362791A (zh) 2022-07-04 2022-07-04 一种可生物降解的合成高分子材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117362791A true CN117362791A (zh) 2024-01-09

Family

ID=89401026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210777503.4A Pending CN117362791A (zh) 2022-07-04 2022-07-04 一种可生物降解的合成高分子材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117362791A (zh)

Similar Documents

Publication Publication Date Title
CN110358264B (zh) 一种生物基环保包装袋及其制备方法
CN109535670B (zh) 一种全降解仿真材料及其制备方法
CN109575536B (zh) 改性聚乙醇酸生物降解地膜及其制备方法
CN102112559A (zh) 树脂组合物及片材
EP4029913A1 (en) Inorganic degradable plastic masterbatch material, and preparation method therefor
CN112538239A (zh) 一种可生物全降解的吸管及其制备方法
CN112940468B (zh) 一种聚乳酸基发泡粒子及其制备方法
CN104693794B (zh) 一种尼龙4与聚乳酸的共混材料的改性方法
JP2023504656A (ja) 生分解性樹脂組成物及びその製造方法
CN101497731B (zh) 环境降解的热塑葡甘聚糖膜及其制备方法
CN104530596A (zh) 一种利用活性污泥生产可降解塑料的方法
CN111748180B (zh) 一种生物降解薄膜原料组合及生物降解薄膜材料
CN117362791A (zh) 一种可生物降解的合成高分子材料及其制备方法
CN1517398A (zh) 用于塑料的热氧化促降解母料及其制备方法
CN107513229A (zh) 一种环保聚苯乙烯复合板材及其制备方法
CN116874828A (zh) 一种降解母料的制备方法、氧化生物降解购物袋及其制备方法
KR100332163B1 (ko) 생분해성 수지 조성물 및 이의 제조방법
US20150353729A1 (en) Biodegradable Synthetic Polymer Material
CN1978512A (zh) 纳米材料改性耐候地膜
JP6840459B2 (ja) 生物分解性或いは生物コンポスタブル或いは生物消化性プラスチックを調製するプロセス
KR102579310B1 (ko) 폴리비닐알코올을 포함하는 생분해성 수지 조성물 및 그 제조방법
CN112280108A (zh) 一种淀粉基可降解安全环保包装盒及制备方法
EP2158269B1 (en) Biodegradable blends based on hydrolysed proteins and funtionalised ethylene copolymers
CN101248126B (zh) 可降解添加剂组合物和其制备方法
CN115109276B (zh) 一种环保型可降解塑料颗粒的生产工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication