CN117349579B - 一种孔隙结构联合表征方法 - Google Patents

一种孔隙结构联合表征方法 Download PDF

Info

Publication number
CN117349579B
CN117349579B CN202311277481.6A CN202311277481A CN117349579B CN 117349579 B CN117349579 B CN 117349579B CN 202311277481 A CN202311277481 A CN 202311277481A CN 117349579 B CN117349579 B CN 117349579B
Authority
CN
China
Prior art keywords
characterization curve
characterization
curve
adsorption
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311277481.6A
Other languages
English (en)
Other versions
CN117349579A (zh
Inventor
王雪莹
张昆
何鑫洋
蒋恕
姜林
宋岩
彭军
李斌
杨雪飞
袁雪皎
韩凤丽
李林涛
刘平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202311277481.6A priority Critical patent/CN117349579B/zh
Publication of CN117349579A publication Critical patent/CN117349579A/zh
Application granted granted Critical
Publication of CN117349579B publication Critical patent/CN117349579B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0886Mercury porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0893Investigating volume, surface area, size or distribution of pores; Porosimetry by measuring weight or volume of sorbed fluid, e.g. B.E.T. method
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种孔隙结构联合表征方法,首先根据实际测量数据绘制CO2表征曲线、N2表征曲线、高压压汞表征曲线;然后对CO2表征曲线和N2表征曲线的重叠区域的两条曲线数据求平均值,拟合得到函数y’i=f(x);计算得到每个孔径xi对应的孔隙体积y’i,以xi为横坐标,y’i为纵坐标绘制曲线,即得到CO2吸附与N2吸附的重叠区域表征曲线;同样的方法对N2表征曲线和高压压汞表征曲线的重叠区域进行数据处理,得到N2吸附与高压压汞的重叠区域表征曲线;将CO2吸附与N2吸附的重叠区域表征曲线和N2吸附与高压压汞的重叠区域表征曲线与原来的CO2表征曲线、N2表征曲线、高压压汞表征曲线进行拼接得到联合表征曲线。

Description

一种孔隙结构联合表征方法
技术领域
本发明属于页岩气田开发技术领域,尤其是一种孔隙结构联合表征方法。
背景技术
页岩气是一种典型的非常规天然气,页岩中的基质孔隙网络是由纳米到微米级别的孔隙组成。在页岩气体系内这些伴生有天然裂缝的孔隙,构成了在开发过程中让气体从泥页岩流动到诱导裂缝中的渗流网络。目前广泛利用纳米CT FIB-SEM、气体吸附法、高压压汞法和核磁共振等先进研究手段来对页岩孔隙结构进行大量的微观观测与分析。微孔指小于2nm的孔隙,中孔指2~50nm的孔隙,宏孔指大于50nm的孔隙。二氧化碳吸附实验能表征小于3nm的孔隙,氮气吸附实验能表征1.6~200nm的孔隙,高压压汞实验能表征20nm~100000nm的孔隙。前人对于二氧化碳吸附实验只取小于2nm的数据,表征微孔;对于氮气吸附实验只取2~50nm之间的数据,表征中孔;对于高压压汞实验只取大于50nm的数据,表征宏孔。而对于三者表征孔径范围重叠的部分,并未进行处理,只是将重叠的部分简单删除,这影响了联合表征结果的准确性。
发明内容
针对当前孔隙结构联合表征中对于微孔、中孔、宏孔三者表征孔径范围重叠的部分进行简单删除,导致孔隙结构联合表征结果误差大的问题,本发明提供一种孔隙结构联合表征方法。
本发明提供的孔隙结构联合表征方法,步骤如下:
S1、分别收集二氧化碳吸附法、氮气吸附法、高压压汞吸附法表征孔径范围的实际测量数据,所述测量数据包括孔径和孔隙体积。二氧化碳吸附取孔径小于3nm的数据,氮气吸附取孔径1.6~200nm数据,高压压汞吸附取孔径20nm~100000nm数据。
S2、以孔径为横坐标,孔隙体积为纵坐标,绘制孔隙表征曲线,分别得到CO2表征曲线、N2表征曲线、高压压汞表征曲线。
S3、对CO2表征曲线和N2表征曲线的孔径重叠区间进行数据处理;方法如下:
S31、对CO2表征曲线和N2表征曲线的孔径重叠区间的孔隙体积数据取平均值,即将相同孔径分别对应的CO2孔隙体积和N2孔隙体积求平均值,将孔径重叠区间的数据组成离散点列[xi,yi],其中xi为孔径,yi为孔隙体积平均值,i表示重叠区间的数据点的个数,i取值≥8。
S32、根据离散点列[xi,yi]拟合一条曲线yi’=f(x)通过所有点列,即得到函数yi’=f(x)。
具体方法如下:
设穿过第一个点(x1,y1)的方程为:
y=y1 (式1)
设穿过第二个点的(x2,y2)的方程为:
y= y1+a0(x-x1) (式2)
将第二个点(x2,y2)代入式2,求出a0
设穿过第三个点(x3,y3)的方程为:
y= y1+a0(x-x1)+a1(x-x1)(x-x2) (式3)
将第三个点(x3,y3)代入式3,求出a1=0.024125;
设穿过第四个点(x4,y4)的方程为:
y= y1+a0(x-x1)+a1(x-x1)(x-x2)+ a2(x-x1)(x-x2)(x-x3) (式4)
将第四个点(x4,y4)代入式4,求出a2
按照上述方法,依次求出a3、a4、a5…ai-2
根据求出的a0、a1、a2…ai-2,得到CO2吸附、N2吸附重叠区间拟合后的最终函数yi’=f(x)如下:
y、=y1+a0(x-x1)+a1(x-x1)(x-x2)+a2(x-x1)(x-x2)(x-x3)+a3(x-x1)(x-x2)(x-x3)(x-x4)+…+ai-2(x-x1)(x-x2)(x-x3)(x-x4)…(x-xi-2)(x-xi-1);(式5)。
S33、将每个孔径xi代入函数yi’=f(x),计算得到每个孔径xi对应的孔隙体积yi’,以xi为横坐标,yi’为纵坐标绘制曲线,即得到CO2表征曲线和N2表征曲线的孔径重叠区间的表征曲线。
S4、对N2表征曲线和高压压汞表征曲线的孔径重叠区间进行数据处理;处理方法同S31-S33,得到N2表征曲线与高压压汞表征曲线的孔径重叠区间的表征曲线。
S5、将CO2表征曲线和N2表征曲线的孔径重叠区间的表征曲线、N2表征曲线与高压压汞表征曲线的孔径重叠区间的表征曲线,以及原来的CO2表征曲线、N2表征曲线、高压压汞表征曲线进行拼接组合,得到基于CO2、N2、高压压汞的吸附结果的孔隙结构联合表征曲线。
与现有技术相比,本发明的有益之处在于:
(1)现有技术中对CO2、N2、高压压汞的吸附三者表征孔径范围重叠的部分,并未进行处理,只是将重叠的部分简单删除,这影响了联合表征结果的准确性。本发明的数据处理方法将CO2表征曲线和N2表征曲线重叠部分的两条曲线拟合变成一条曲线,将N2表征曲线和高压压汞表征曲线的重叠部分的两条曲线拟合成为一条曲线。通过本发明的数据处理方法可以对CO2、N2、高压压汞的吸附三者表征孔径范围重叠部分进行处理,以提高准确性。
(2)本发明利用数学方法表征页岩孔隙结构,用于预测页岩气田产量,提高对已开发区块的认识,并可以根据预测及时调整气田整体开发水平与开发效果。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1、根据CO2吸附的实际数据绘制出的CO2表征曲线。
图2、根据N2吸附的实际数据绘制出的N2表征曲线。
图3、根据高压压汞吸附的实际数据绘制出的高压压汞表征曲线。
图4、CO2吸附与N2吸附实验联合表征1.6nm~3nm孔径区间的表征曲线。
图5、N2吸附与高压压汞吸附实验联合表征20nm~200nm孔径区间的表征曲线。
图6、CO2吸附实验、N2吸附实验与高压压汞实验联合表征全孔径区间的表征曲线。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
本发明的方法中,首先收集二氧化碳吸附实验、氮气吸附实验、高压压汞实验这三者表征孔径范围的实际测量资料。CO2、N2、高压压汞的孔径是核心数据。二氧化碳吸附表征的孔径范围是小于3nm,氮气吸附表征的孔径范围是1.6~200nm数据,高压压汞吸附表征的孔径范围是20nm~100000nm数据。可以看出,CO2与N2重合孔径范围是1.6nm~3nm,N2与高压压汞的重合孔径范围是20nm~200nm。CO2、N2、高压压汞实验测量表征的孔隙体积与孔径一一对应,以孔径为横坐标,孔隙体积为y坐标绘制曲线。分别得到CO2表征曲线、N2表征曲线、高压压汞表征曲线。
图1是本实施例根据CO2吸附的实际数据,绘制出的CO2表征曲线,其孔径范围是从0.25nm~3nm,其变化规律是随着孔径的增加其孔隙体积随之增加,得到CO2的吸附表征孔隙体积结果。
图2是本实施例根据N2的吸附的实际数据,绘制出的N2表征曲线,其孔径范围是从1.6nm~200nm,其变化规律是随着孔径的增加其孔隙体积随之增加,得到N2的吸附表征孔隙体积结果。
图3是本实施例根据高压压汞的吸附的实际数据,绘制出的高压压汞表征曲线,其孔径范围是从20nm~100000nm,其变化规律是随着孔径的增加其孔隙体积随之增加,得到高压压汞的吸附表征孔隙体积结果。
对图1的CO2表征曲线和图2的N2表征曲线的孔径重叠区间进行数据处理。
取重合区间孔径范围1.6nm~3nm,将相同孔径分别对应的CO2孔隙体积和N2孔隙体积求平均值,将孔径重叠区间的数据组成离散点列[xi,yi],其中xi为孔径,yi为孔隙体积平均值,i表示重叠区间的数据点的个数,i=8。离散点列[xi,yi]的具体数据如表1所示。
表1、CO2表征曲线和N2表征曲线的孔径重叠区间的离散点列[xi,yi]数据
孔径xi(nm) 孔隙体积yi(μL/g) 孔径xi(nm) 孔隙体积yi(μL/g)
1.6 0.00745 2.4 0.02366
1.8 0.00736 2.6 0.02801
2.0 0.00920 2.8 0.03200
2.2 0.02010 3.0 0.03823
①设穿过第一个点(x1,y1)=(1.6,0.00745)的方程为:
y=y1 (式1)
②设穿过第二个点的(x2,y2)=(1.8,0.00736)的方程为:
y=y1+a0(x-x1) (式2)
将第二个点(x2,y2)=(1.8,0.00736)代入式2,求出a0=-0.00045;
③设穿过第三个点(x3,y3)=(2.0,0.00920)的方程为:
y=y1+a0(x-x1)+a1(x-x1)(x-x2) (式3)
将第三个点(x3,y3)=(2.0,0.00920)代入式3,求出a1=0.024125;
④设穿过第四个点(x4,y4)=(2.2,0.02010)的方程为:
y=y1+a0(x-x1)+a1(x-x1)(x-x2)+a2(x-x1)(x-x2)(x-x3) (式4)
将第四个点(x4,y4)=(2.2,0.02010)代入式4,求出a2=0.14854;
⑤设穿过第五个点(x5,y5)=(2.4,0.02366)的方程为:
y=y1+a0(x-x1)+a1(x-x1)(x-x2)+a2(x-x1)(x-x2)(x-x3)+a3(x-x1)(x-x2)(x-x3)(x-x4) (式5)
将第五个点(x5,y5)=(2.4,0.02366)代入式5,求出a3=-0.61275;
⑥设穿过第六个点(x6,y6)=(2.6,0.02801)的方程为:
y=y1+a0(x-x1)+a1(x-x1)(x-x2)+a2(x-x1)(x-x2)(x-x3)+a3(x-x1)(x-x2)(x-x3)(x-x4)+a4(x-x1)(x-x2)(x-x3)(x-x4)(x-x5) (式6)
将第六个点(x6,y6)=(2.6,0.02801)代入式6,求出a4=1.25153;
⑦设穿过第七个点(x7,y7)=(2.8,0.03200)的方程为:
y=y1+a0(x-x1)+a1(x-x1)(x-x2)+a2(x-x1)(x-x2)(x-x3)+a3(x-x1)(x-x2)(x-x3)(x-x4)+a4(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)+a5(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)(x-x6)(式7)
将第七个点(x7,y7)=(2.8,0.03200)代入式7,求出a5=-1.77663;
⑧设穿过第八个点(x8,y8)=(3.0,0.03823)方程为:
y=y1+a0(x-x1)+a1(x-x1)(x-x2)+a2(x-x1)(x-x2)(x-x3)+a3(x-x1)(x-x2)(x-x3)(x-x4)+a4(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)+a5(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)(x-x6)+a6(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)(x-x6)(x-x7) (式8)
将第八个点(x8,y8)=(3.0,0.03823)式8,求出a6=1.99459。
由此整理得到CO2吸附、N2吸附重叠部分拟合后的最终函数关系式yi’=f(x)如下:
y`=0.00745-0.00045(x-1.6)+0.24125(x-1.6)(x-1.8)-0.93708(x-1.6)(x-1.8)(x-2.0)+2.10089(x-1.6)(x-1.8)(x-2.0)(x-2.2)-3.26986(x-1.6)(x-1.8)(x-2.0)(x-2.2)(x-2.4)+3.87261(x-1.6)(x-1.8)(x-2.0)(x-2.2)(x-2.4)(x-2.6)-3.65096(x-1.6)(x-1.8)(x-2.0)(x-2.2)(x-2.4)(x-2.6)(x-2.8) (式9)
将CO2吸附、N2吸附重合区间1.6nm~3nm的每个孔径值代入式9,计算得到CO2吸附与N2吸附的重叠部分的最终孔隙体积,如表2所示。
表2、CO2表征曲线和N2表征曲线的孔径重叠区间的孔径和孔隙体积数据
孔径(nm) 孔隙体积(μL/g) 孔径(nm) 孔隙体积(μL/g)
1.6 0.00745 2.4 0.02366
1.7 0.0136 2.5 0.02520
1.8 0.00736 2.6 0.02801
1.9 0.00535 2.7 0.03101
2.0 0.00920 2.8 0.03200
2.1 0.01527 2.9 0.03113
2.2 0.02010 3.0 0.03823
2.3 0.02255
以表2中数据绘制CO2吸附与N2吸附的重叠部分表征曲线,见图4。
采用相同的数据方法对N2表征曲线和高压压汞表征曲线的孔径重叠区间进行数据处理。
N2吸附实验与高压压汞实验重合区间孔径范围为20nm~200nm,将相同孔径分别对应的N2孔隙体积和高压压汞孔隙体积求平均值,将孔径重叠区间的数据组成离散点列[ui,vi],其中ui为孔径,vi为平均孔隙体积。离散点列[ui,vi]的具体数据如表3所示。
表3、N2表征曲线和高压压汞表征曲线的孔径重叠区间的离散点列[ui,vi]数据
孔径ui(nm) 孔隙体积vi(μL/g) 孔径ui(nm) 孔隙体积vi(μL/g)
20 0.42653 120 0.69838
40 0.48291 140 0.76387
60 0.51302 160 0.81548
80 0.54216 180 0.88295
100 0.62865 200 0.90359
①设穿过第一个点(u1,v1)=(20,0.42653)的方程为:
v=v1 (式10)
②设穿过第二个点的(u2,v2)=(40,0.48291)的方程为:
v=v1+b0(u-u1) (式11)
将第二个点(u2,v2)=(40,0.48291)代入式11,求出b0=0.00282;
③设穿过第三个点(u3,v3)=(60,0.51302)的方程为:
v=v1+b0(u-u1)+b1(u-u1)(u-u2) (式12)
将第三个点(u3,v3)=(60,0.51302)代入式12,求出b1=-3.28375×10-5
④设穿过第四个点(u4,v4)=(80,0.54216)的方程为:
v=v1+b0(u-u1)+b1(u-u1)(u-u2)+b2(u-u1)(u-u2)(u-u3) (式13)
将第四个点(u4,v4)=(80,0.54216)代入式13,求出b2=5.27083×10-7
⑤设穿过第五个点(u5,v5)=(100,0.62865)的方程为:
v=v1+b0(u-u1)+b1(u-u1)(u-u2)+b2(u-u1)(u-u2)(u-u3)+b3(u-u1)(u-u2)(u-u3)(u-u4) (式14)
将第五个点(u5,v5)=(100,0.62865)代入式14,求出b3=8.59895×10-9
⑥设穿过第六个点(u6,v6)=(120,0.69838)的方程为:
v=v1+b0(u-u1)+b1(u-u1)(u-u2)+b2(u-u1)(u-u2)(u-u3)+b3(u-u1)(u-u2)(u-u3)(u-u4)+b4(u-u1)(u-u2)(u-u3)(u-u4)(u-u5) (式15)
将第六个点(u6,v6)=(120,0.69838)代入式15,求出b4=-4.30859×10-10
⑦设穿过第七个点(u7,v7)=(140,0.76387)的方程为:
v=v1+b0(u-u1)+b1(u-u1)(u-u2)+b2(u-u1)(u-u2)(u-u3)+b3(u-u1)(u-u2)(u-u3)(u-u4)+b4(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)+b5(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)(式16)
将第七个点(u7,v7)=(140,0.76387)代入式16,求出b5=8.34440×10-12
⑧设穿过第八个点(u8,v8)=(160,0.81548)方程为:
v=v1+b0(u-u1)+b1(u-u1)(u-u2)+b2(u-u1)(u-u2)(u-u3)+b3(u-u1)(u-u2)(u-u3)(u-u4)+b4(u-u1)(u-u2)(u
-u3)(u-u4)(u-u5)+b5(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)+b6(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)(u-u7)(式17)
将第八个点(u8,v8)=(160,0.81548)式17,求出b6=-1.10423×10-13
⑨设穿过第九个点(u9,v9)=(180,0.88295)方程为:
v=v1+b0(u-u1)+b1(u-u1)(u-u2)+b2(u-u1)(u-u2)(u-u3)+b3(u-u1)(u-u2)(u-u3)(u-u4)+b4(u-u1)(u-u2)(u
-u3)(u-u4)(u-u5)+b5(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)+b6(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)(u-u7)+b7(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)(u-u7)(u-u8)(式18)
将第九个点(u9,v9)=(180,0.88295)式18,求出b7=1.17279×10-15
⑩设穿过第十个点(u10,v10)=(200,0.90359)方程为:
v=v1+b0(u-u1)+b1(u-u1)(u-u2)+b2(u-u1)(u-u2)(u-u3)+b3(u-u1)(u-u2)(u-u3)(u-u4)+b4(u-u1)(u-u2)(u
-u3)(u-u4)(u-u5)+8.344401×10-12(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)+b6(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)(u-u7)+b7(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)(u-u7)(u-u8)+b8(u-u1)(u-u2)(u-u3)(u-u4)(u-u5)(u-u6)(u-u7)(u-u8)(u-u9)(式19)
将第10个点(u10,v10)=(200,0.90359)式19,求出b8=-1.11543×10-17
由此整理得到N2吸附、高压压汞吸附重叠部分拟合后的最终函数vi’=f(u):
v’=0.42653+0.00282(u-20)-3.28375×10-5(u-20)(u-40)+5.27083×10-7(u-20)(u-40)(u-60)+8.59895×10-9(u-20)(u-40)(u-60)(u-80)-4.30859×10-10(u-20)(u-40)(u-60)(u-80)(u-100)+8.34440×10-12(u-20)(u-40)(u-60)(u-80)(u-100)(u-120)-1.10423×10-13(u-20)(u-40)(u-60)(u-80)(u-100)(u-120)(u-140)+1.17279×10-15(u-20)(u-40)(u-60)(u-80)(u-100)(u-120)(u-140)(u-160)-1.11543×10-17(u-20)(u-40)(u-60)(u-80)(u-100)(u-120)(u-140)(u-160)(u-180)(式20)
将N2吸附、高压压汞重合区间20~200nm的每个孔径值代入式20,计算得到N2吸附和高压压汞吸附的重叠部分的最终孔隙体积,如表4所示。
表4、N2表征曲线和高压压汞表征曲线的孔径重叠区间的孔径和孔隙体积数据
以表4中数据绘制N2吸附和高压压汞的重叠部分表征曲线,见图5。
最后,将图4所示的CO2表征曲线和N2表征曲线的孔径重叠区间的表征曲线、图5所示的N2表征曲线与高压压汞表征曲线的孔径重叠区间的表征曲线,以及原来的CO2表征曲线(图1)、N2表征曲线(图2)、高压压汞表征曲线(3)进行拼接组合,最终形成基于CO2、N2、高压压汞的吸附结果的孔隙结构联合表征曲线,如图6所示。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (1)

1.一种孔隙结构联合表征方法,其特征在于,步骤如下:
S1、分别收集二氧化碳吸附法、氮气吸附法、高压压汞吸附法表征孔径范围的实际测量数据,所述测量数据包括孔径和孔隙体积;二氧化碳吸附取孔径小于3nm的数据,氮气吸附取孔径1.6~200nm数据,高压压汞吸附取孔径20nm~100000nm数据;
S2、以孔径为横坐标,孔隙体积为纵坐标,绘制孔隙表征曲线,分别得到CO2表征曲线、N2表征曲线、高压压汞表征曲线;
S3、对CO2表征曲线和N2表征曲线的孔径重叠区间进行数据处理,重叠区域孔径范围是1.6nm~3nm;方法如下:
S31、对CO2表征曲线和N2表征曲线的孔径重叠区间的孔隙体积数据取平均值,即将相同孔径分别对应的CO2孔隙体积和N2孔隙体积求平均值,将孔径重叠区间的数据组成离散点列[xi,yi],其中xi为孔径,yi为孔隙体积平均值,i表示重叠区间的数据点的个数,i取值≥8;
S32、根据离散点列[xi,yi]拟合一条曲线y’i=f(x)通过所有点列,即得到函数y’i=f(x);
具体方法如下:
设穿过第一个点(x1,y1)的方程为:
y=y1(式1)
设穿过第二个点的(x2,y2)的方程为:
y=y1+a0(x-x1)(式2)
将第二个点(x2,y2)代入式2,求出a0
设穿过第三个点(x3,y3)的方程为:
y=y1+a0(x-x1)+a1(x-x1)(x-x2)(式3)
将第三个点(x3,y3)代入式3,求出a1
设穿过第四个点(x4,y4)的方程为:
y=y1+a0(x-x1)+a1(x-x1)(x-x2)+a2(x-x1)(x-x2)(x-x3)(式4)
将第四个点(x4,y4)代入式4,求出a2
按照上述方法,依次求出a3、a4、a5…ai-2
根据求出的a0、a1、a2…ai-2,得到CO2吸附、N2吸附重叠区间拟合后的最终函数y’i=f(x)如下:
y’i=y1+a0(x-x1)+a1(x-x1)(x-x2)+a2(x-x1)(x-x2)(x-x3)+a3(x-x1)(x-x2)(x-x3)(x-x4)+…+ai-2(x-x1)(x-x2)(x-x3)(x-x4)…(x-xi-2)(x-xi-1)(式5);
S33、将每个孔径xi代入函数yi’=f(x),计算得到每个孔径xi对应的孔隙体积yi’,以xi为横坐标,yi’为纵坐标绘制曲线,即得到CO2表征曲线和N2表征曲线的孔径重叠区间的表征曲线;
S4、对N2表征曲线和高压压汞表征曲线的孔径重叠区间进行数据处理,重叠区域孔径范围是20nm~200nm;处理方法同S31-S33,得到N2表征曲线与高压压汞表征曲线的孔径重叠区间的表征曲线;
S5、将CO2表征曲线和N2表征曲线的孔径重叠区间的表征曲线、N2表征曲线与高压压汞表征曲线的孔径重叠区间的表征曲线,以及原来的CO2表征曲线、N2表征曲线、高压压汞表征曲线进行拼接组合,得到基于CO2、N2、高压压汞的吸附结果的孔隙结构联合表征曲线。
CN202311277481.6A 2023-09-28 2023-09-28 一种孔隙结构联合表征方法 Active CN117349579B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311277481.6A CN117349579B (zh) 2023-09-28 2023-09-28 一种孔隙结构联合表征方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311277481.6A CN117349579B (zh) 2023-09-28 2023-09-28 一种孔隙结构联合表征方法

Publications (2)

Publication Number Publication Date
CN117349579A CN117349579A (zh) 2024-01-05
CN117349579B true CN117349579B (zh) 2024-05-14

Family

ID=89360524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311277481.6A Active CN117349579B (zh) 2023-09-28 2023-09-28 一种孔隙结构联合表征方法

Country Status (1)

Country Link
CN (1) CN117349579B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445161A (zh) * 2015-11-16 2016-03-30 中国石油大学(北京) 页岩全孔径孔隙体积的表征方法
CN108106929A (zh) * 2017-11-17 2018-06-01 中国石油天然气股份有限公司 用于微米ct观测的岩心夹持器及其实验方法
CN109060623A (zh) * 2018-06-30 2018-12-21 西南石油大学 致密砂岩孔隙大小分布联合表征方法
CN110414723A (zh) * 2019-07-09 2019-11-05 中国石油大学(北京) 基于微震事件的裂缝油气藏历史拟合的方法、装置及系统
CN111521539A (zh) * 2020-05-14 2020-08-11 中国地质大学(武汉) 一种致密砂砾岩储层中不同类型孔隙结构定量表征方法
CN113850689A (zh) * 2021-09-24 2021-12-28 西南石油大学 基于最小二乘法的孔隙结构联合表征方法及数据处理方法
CN115876659A (zh) * 2021-09-28 2023-03-31 中国石油化工股份有限公司 一种获取页岩孔隙和裂缝体积的方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445161A (zh) * 2015-11-16 2016-03-30 中国石油大学(北京) 页岩全孔径孔隙体积的表征方法
CN108106929A (zh) * 2017-11-17 2018-06-01 中国石油天然气股份有限公司 用于微米ct观测的岩心夹持器及其实验方法
CN109060623A (zh) * 2018-06-30 2018-12-21 西南石油大学 致密砂岩孔隙大小分布联合表征方法
CN110414723A (zh) * 2019-07-09 2019-11-05 中国石油大学(北京) 基于微震事件的裂缝油气藏历史拟合的方法、装置及系统
CN111521539A (zh) * 2020-05-14 2020-08-11 中国地质大学(武汉) 一种致密砂砾岩储层中不同类型孔隙结构定量表征方法
CN113850689A (zh) * 2021-09-24 2021-12-28 西南石油大学 基于最小二乘法的孔隙结构联合表征方法及数据处理方法
CN115876659A (zh) * 2021-09-28 2023-03-31 中国石油化工股份有限公司 一种获取页岩孔隙和裂缝体积的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
东营凹陷南坡低渗透储层孔隙结构及有效性分析;闫建平;张帆;胡钦红;王军;耿斌;唐洪明;董政;;中国矿业大学学报;20170901(第02期);全文 *
联合压汞法表征致密油储层孔隙结构;宋磊;宁正福;孙一丹;丁冠阳;杜华明;;石油实验地质;20170928(第05期);全文 *

Also Published As

Publication number Publication date
CN117349579A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
Balakrishnan et al. Determination of sulfonamide antibiotics in wastewater: A comparison of solid phase microextraction and solid phase extraction methods
Anumol et al. Ultra high performance liquid chromatography tandem mass spectrometry for rapid analysis of trace organic contaminants in water
Field et al. Direct determination of 10 trace metals in 50 mL samples of coastal seawater using desolvating micronebulization sector field ICP-MS
Ling et al. Accuracy of matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of clinical pathogenic fungi: a meta-analysis
El-Sheikh et al. Effect of oxidation and geometrical dimensions of carbon nanotubes on Hg (II) sorption and preconcentration from real waters
Horstmann et al. Determination of gadolinium MRI contrast agents in fresh and oceanic waters of Australia employing micro-solid phase extraction, HILIC-ICP-MS and bandpass mass filtering
WO2011157781A1 (de) Verfahren für die ionenmobilitätsspektrometrie
CN117349579B (zh) 一种孔隙结构联合表征方法
JP2009540274A5 (zh)
WO2017103819A1 (de) Verwendung einer ionisierungsvorrichtung, vorrichtung und verfahren zur ionisation eines gasförmigen stoffes sowie vorrichtung und verfahren zur analyse eines gasförmigen ionisierten stoffes
Wang et al. Magnetic mixed hemimicelles solid‐phase extraction coupled with high‐performance liquid chromatography for the extraction and rapid determination of six fluoroquinolones in environmental water samples
CN106841440A (zh) 一种环境中有机酸的检测方法
Hawkes Aberrations
CN116148400B (zh) 基于污染源和污染受体高分辨质谱数据的定量源解析方法
Maciel et al. Multidimensional liquid chromatography employing a graphene oxide capillary column as the first dimension: determination of antidepressant and antiepileptic drugs in urine
CN116263444B (zh) 高分辨质谱非靶向分析水体污染源识别与溯源方法
US6992289B2 (en) Method for performing focusing in a particle-optical device with the aid of astigmatism in the particle beam
Mo et al. Perturbation theory for molecular fluids using a nonspherical reference potential
Xiao et al. Misidentification of a rare species, Cryptococcus laurentii, by commonly used commercial biochemical methods and matrix-assisted laser desorption ionization–time of flight mass spectrometry systems: challenges for clinical mycology laboratories
CN112345682B (zh) 一种苯系挥发性有机组分的检测方法及其应用
CN108169019B (zh) 一种准静态塑性压缩应力应变参量的识别方法
Sun et al. Determination of triazole fungicides in environmental water by magnetic solid-phase extraction coupled with UHPLC-MS/MS
Jurado‐Sánchez et al. Evaluation of stationary phases and gas chromatographic detectors for determination of amines in water
Soleimani et al. Rapid analysis of trans, trans-muconic acid in urine using microextraction by packed sorbent
Yang et al. Improved liquid–liquid extraction by modified magnetic nanoparticles for the detection of eight drugs in human blood by HPLC-MS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant