CN117327939A - 一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法 - Google Patents

一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法 Download PDF

Info

Publication number
CN117327939A
CN117327939A CN202311513659.2A CN202311513659A CN117327939A CN 117327939 A CN117327939 A CN 117327939A CN 202311513659 A CN202311513659 A CN 202311513659A CN 117327939 A CN117327939 A CN 117327939A
Authority
CN
China
Prior art keywords
copper
powder
based composite
composite material
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311513659.2A
Other languages
English (en)
Inventor
刘家琴
马冰
许杰
吴玉程
罗来马
周宇生
陈锦文
丁文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Hengjun Powder Metallurgy Technology Co ltd
Hefei University of Technology
Original Assignee
Anhui Hengjun Powder Metallurgy Technology Co ltd
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Hengjun Powder Metallurgy Technology Co ltd, Hefei University of Technology filed Critical Anhui Hengjun Powder Metallurgy Technology Co ltd
Priority to CN202311513659.2A priority Critical patent/CN117327939A/zh
Publication of CN117327939A publication Critical patent/CN117327939A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法,涉及高强高导铜基复合材料的制备技术领域。将硝酸铋和硝酸钇通过机械合金化法制得Cu‑Bi(NO3)3/Y(NO3)3前驱体粉末,然后通过还原气氛中煅烧还原制备得到Bi2O3/Y2O3颗粒弥散强化铜基复合粉末,最后通过放电等离子烧结制备得到Bi2O3/Y2O3颗粒弥散强化铜基复合材料。本发明解决了传统氧化物陶瓷颗粒导电性能极低从而导致铜基复合材料的性能降低的技术缺陷,利用Y盐和Bi盐作为氧化物的来源,利用原位反应以及机械合金化工艺来防止弥散相在铜基体中的团聚,使弥散相分布均匀,提高铜基材料的导电导热性能和力学性能。

Description

一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法
技术领域
本发明涉及高强高导铜基复合材料的制备技术领域,具体是涉及一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法。
背景技术
高性能铜合金不仅具有优异的导电性,还具备较高的强度和一定的耐蚀性,广泛应用于集成电路、引线框架和电接触材料等领域。但技术的发展对传统铜及其合金的综合性能提出更高要求,在保证导电率的同时提高强度硬度是解决问题的关键。为获得综合性能更好的铜合金材料,可使用少量纳米氧化物颗粒弥散在铜基体中阻碍晶界内位错的移动,得到高强度高导电性的铜基复合材料。
现有研究表明,添加单一弥散相氧化物颗粒其含量存在上限,进一步增加弥散相含量会使其偏聚在晶界处,影响材料的强度硬度和导电性能。因此可在铜基体中添加另一种弥散相,避免氧化物含量提高而造成的铜基体强度硬度和导电性的下降。此外两种弥散相在铜基体中可以有效抑制弥散相颗粒的长大与粗化,小的晶粒尺寸代表铜基体拥有更好的机械性能和力学性能。
目前氧化物的选择大多为Al2O3、Y2O3和Ti2O3等陶瓷颗粒,弥散相颗粒的导电率等物理性能也是决定铜合金性能的因素之一。一般的陶瓷相电导率很低,如最常用的Al2O3弥散相其电导率接近为零,因此对于基体的电导率会有一定的影响。
针对上述现象,本发明通过机械合金化,采用Bi盐和Y盐制备高强高导的铜基复合材料,通过改善弥散相的导电性,解决在提升铜基体力学性能的同时导电率大幅降低的技术缺陷。
发明内容
本发明提出了一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法,主要解决的是传统氧化物陶瓷颗粒导电性能极低从而导致铜基复合材料性能降低的技术缺陷,利用Y2O3能够在烧结过程中与Bi2O3固溶形成高导电相-Bi2O3,利用机械合金化法将弥散相均匀的分布在铜基体中,同时提高铜基材料的导电导热性能和力学性能。
为了实现上述目的,本发明所采用的技术方案为:
一种Bi2O3/Y2O3颗粒复相强化铜基复合材料,铜基体中Bi2O3弥散相与Y2O3颗粒固溶得到的高导电相-Bi2O3能够增强铜基体力学性能的同时增强其导电性能。
作为本发明的优选技术方案,复合材料中,Bi2O3、Y2O3的质量比为0.1~1:0.1~1,Bi2O3与Y2O3的总质量占比为0.1~5。
本发明还提出了这种Bi2O3/Y2O3颗粒复相强化铜基复合材料的制备方法,首先通过机械合金化法将Bi(NO3)3和Y(NO3)3均匀掺入进铜基体中,得到Cu-Bi(NO3)3/Y(NO3)3前驱体粉末,再使用管式炉煅烧还原得到Cu-Bi2O3/Y2O3复合粉末,最后通过放电等离子烧结制备得到Bi2O3/Y2O3颗粒复相强化铜基复合材料。
作为本发明的优选技术方案,制备方法具体包括如下步骤:
(一)机械合金化
将Y(NO3)3·6H2O、Bi(NO3)3·5H2O和Cu粉置于球磨罐中,在氩气气氛下完成球磨罐的装配,放入行星式球磨机中球磨,结束后取出研磨,得到Cu-Bi(NO3)3/Y(NO3)3前驱体粉末;
(二)煅烧还原
将上述前驱体粉末置于管式炉中,首先以10℃/min升温速率提高温度至200℃,保温30min,随后以10℃/min升温速率提高温度至600℃,保温2h,最后以5℃/min降温速率降低至500℃后随炉冷却,得到Bi2O3/Y2O3颗粒复相强化铜基复合粉末;
(三)放电等离子烧结
(1)装粉:将步骤(二)中所得的复合粉末用碳纸包裹装入石墨模具中,进行预压后将模具放入放电等离子烧炉,在室温下将炉腔抽至真空;
(2)排气:设置预压压强为10MPa,升温速率为100℃/min,将其升温至600℃保温5min,排出粉体材料中的气体;
(3)烧结成型:继续将温度提高至900℃保温5min,在提高温度的过程中均匀加压至最终压强50Mpa,在保温结束后随炉冷却降至室温,得到Bi2O3/Y2O3颗粒复相强化铜基复合材料。
进一步优选的是,所述步骤(一)中Bi(NO3)3·5H2O、Y(NO3)3·6H2O和Cu粉的质量比为0.51~1.54:0.84~2.49:97~97.62。球料比为2~4:1,球磨转速为250~350rpm,球磨时间为24~32h。
与现有技术相比,本发明的有益效果主要表现在:
第一,弥散相颗粒的导电率等物理性能也是决定铜合金性能的因素之一。目前氧化物弥散相的选择大多为Al2O3、Y2O3和Ti2O3等陶瓷颗粒,一般的陶瓷相电导率很低,如最常用的Al2O3弥散相其电导率接近为零,在提升基体力学性能的同时对其的电导率会有一定的影响。Y2O3能够与Bi2O3固溶形成高导电相-Bi2O3,在不考虑第二相粒子电子散射的前提下,拥有更高导电性能的弥散相颗粒在制备铜基复合材料方面具有更大优势。
第二,机械合金化工艺可以将传统熔炼方法无法制备的材料结合起来,使用合适的粉末处理条件,可以在基体中获得分散良好的第二相。同时机械合金化可使粉末具有较大的表面活性,促进元素扩散,由于Y盐和Bi盐不与Cu粉发生反应,在球磨过程中无杂质生成,且Y盐和Bi盐为结晶态,脆性大硬度低,在球磨过程中容易破碎从而起到均匀分散的效果,在不添加过程控制剂时,球磨颗粒仍保持微米级别,使得弥散相颗粒更小,分布更加均匀。
第三,基于单一增强相对铜基复合材料性能的提高有限、氧化物含量存在上限等问题,采用Bi2O3/Y2O3复合强化铜基复合材料,两种弥散相可改善弥散相在晶界处团聚等现象,使得其分布更加均匀,避免氧化物含量提高而造成的铜基体强度硬度和导电性的下降。
附图说明
图1是实施例3所制得复合材料的XRD图谱。
图2是实施例3所制得前驱体粉末的SEM图谱。
图3是实施例3所制得复合材料的拉伸曲线。
图4是对比例1所制得复合材料的拉伸曲线。
具体实施方式
下面结合对本发明的较佳实施例和对比实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
实施例1
本实施例中的Cu-Bi2O3/Y2O3复合材料,是由机械合金化、煅烧还原和放电等离子烧结加工制成。其中,Cu粉的纯度为99.5%,添加硝酸铋(Bi(NO3)3·5H2O)的质量分数为0.51%,添加硝酸钇(Y(NO3)3·6H2O)的质量分数为2.49%。制备方法如下:
(1)机械合金化:将0.2602g硝酸铋(Bi(NO3)3·5H2O)、1.2718g硝酸钇(Y(NO3)3·6H2O)和49.5g铜粉置于球磨罐中,在氩气气氛下完成球磨罐的装配,装配完成后放入行星式球磨机中球磨。球磨转速(自转速度)为350rpm,球磨时间为24h,球料比为3:1,结束后取出研磨,得到Cu-Bi(NO3)3/Y(NO3)3前驱体粉末。
(2)煅烧还原:将上述前驱体粉末置于管式炉中,首先以10℃/min升温速率提高温度至200℃,保温30min,随后以10℃/min升温速率提高温度至600℃,保温2h,最后以5℃/min降温速率降低至500℃后随炉冷却,得到Bi2O3/Y2O3颗粒复相强化铜基复合粉末。
(3)放电等离子烧结:将18g Cu-Bi2O3/Y2O3复合粉末用碳纸包裹装入石墨模具中,进行预压后再将模具放入放电等离子烧炉,在室温下将炉腔抽至真空。设置预压压强为10MPa,升温速率为100℃/min,将其升温至600℃保温5min,随后继续提高温度,升温至900℃保温5min,在提高温度的过程中不断加压至最终压强50Mpa,保温结束后随炉冷却降至室温,得到Cu-Bi2O3/Y2O3复合材料,其中Bi2O3质量分数为0.25%,Y2O3质量分数为0.75%。
实施例2
本实施例中的Cu-Bi2O3/Y2O3复合材料,是由机械合金化、煅烧还原和放电等离子烧结加工制成。其中,Cu粉的纯度为99.5%,添加硝酸铋(Bi(NO3)3·5H2O)的质量分数为1.02%,添加硝酸钇(Y(NO3)3·6H2O)的质量分数为1.67%。制备方法如下:
(1)机械合金化:将0.5204g硝酸铋(Bi(NO3)3·5H2O)、0.8479g硝酸钇(Y(NO3)3·6H2O)和49.5g铜粉置于球磨罐中,在氩气气氛下完成球磨罐的装配,装配完成后放入行星式球磨机中球磨。球磨转速(自转速度)为350rpm,球磨时间为24h,球料比为3:1,结束后取出研磨,得到Cu-Bi(NO3)3/Y(NO3)3前驱体粉末。
(2)煅烧还原:将上述前驱体粉末置于管式炉中,首先以10℃/min升温速率提高温度至200℃,保温30min,随后以10℃/min升温速率提高温度至600℃,保温2h,最后以5℃/min降温速率降低至500℃后随炉冷却,得到Bi2O3/Y2O3颗粒复相强化铜基复合粉末。
(3)放电等离子烧结:将18g Cu-Bi2O3/Y2O3复合粉末用碳纸包裹装入石墨模具中,进行预压后再将模具放入放电等离子烧炉,在室温下将炉腔抽至真空。设置预压压强为10MPa,升温速率为100℃/min,将其升温至600℃保温5min,随后继续提高温度,升温至900℃保温5min,在提高温度的过程中不断加压至最终压强50Mpa,保温结束后随炉冷却降至室温,得到Cu-Bi2O3/Y2O3复合材料,其中Bi2O3质量分数为0.5%,Y2O3质量分数为0.5%。
实施例3
本实施例中的Cu-Bi2O3/Y2O3复合材料,是由机械合金化、煅烧还原和放电等离子烧结加工制成。其中,Cu粉的纯度为99.5%,添加硝酸铋(Bi(NO3)3·5H2O)的质量分数为1.54%,添加硝酸钇(Y(NO3)3·6H2O)的质量分数为0.84%。制备方法如下:
(1)机械合金化:将0.7806g硝酸铋(Bi(NO3)3·5H2O)、0.4239g硝酸钇(Y(NO3)3·6H2O)和49.5g铜粉置于球磨罐中,在氩气气氛下完成球磨罐的装配,装配完成后放入行星式球磨机中球磨。球磨转速(自转速度)为350rpm,球磨时间为24h,球料比为3:1,结束后取出研磨,得到Cu-Bi(NO3)3/Y(NO3)3前驱体粉末。
(2)煅烧还原:将上述前驱体粉末置于管式炉中,首先以10℃/min升温速率提高温度至200℃,保温30min,随后以10℃/min升温速率提高温度至600℃,保温2h,最后以5℃/min降温速率降低至500℃后随炉冷却,得到Bi2O3/Y2O3颗粒复相强化铜基复合粉末。
(3)放电等离子烧结:将18g Cu-Bi2O3/Y2O3复合粉末用碳纸包裹装入石墨模具中,进行预压后再将模具放入放电等离子烧炉,在室温下将炉腔抽至真空。设置预压压强为10MPa,升温速率为100℃/min,将其升温至600℃保温5min,随后继续提高温度,升温至900℃保温5min,在提高温度的过程中不断加压至最终压强50Mpa,保温结束后随炉冷却降至室温,得到Cu-Bi2O3/Y2O3复合材料,其中Bi2O3质量分数为0.75%,Y2O3质量分数为0.25%。
对比例1
本对比例中的Cu-Y2O3复合材料,是由机械合金化、煅烧还原和放电等离子烧结加工制成。其中,Cu粉的纯度为99.5%,添加硝酸钇(Y(NO3)3·6H2O)的质量分数为3.31%。
(1)机械合金化:将1.6958g硝酸钇(Y(NO3)3·6H2O)和49.5g铜粉置于球磨罐中,在氩气气氛下完成球磨罐的装配,装配完成后放入行星式球磨机中球磨。球磨转速(自转速度)为350rpm,球磨时间为24h,球料比为3:1,结束后取出研磨,得到Cu-Y(NO3)3前驱体粉末。
(2)煅烧还原:将上述前驱体粉末置于管式炉中,首先以10℃/min升温速率提高温度至200℃,保温30min,随后以10℃/min升温速率提高温度至600℃,保温2h,最后以5℃/min降温速率降低至500℃后随炉冷却,得到Y2O3颗粒强化铜基复合粉末。
(3)放电等离子烧结:将18g Cu-Y2O3复合粉末用碳纸包裹装入石墨模具中,进行预压后再将模具放入放电等离子烧炉,在室温下将炉腔抽至真空。设置预压压强为10MPa,升温速率为100℃/min,将其升温至600℃保温5min,随后继续提高温度,升温至900℃保温5min,在提高温度的过程中不断加压至最终压强50Mpa,保温结束后随炉冷却降至室温,得到Cu-Y2O3复合材料,其中Y2O3质量分数为1%。
表1实施例1~3以及对比例1制备复合材料的性能测试。
由表1可以看出,与对比例1相比,实施例1、2、3使用Bi盐和Y盐与Cu粉进行机械合金化制取的复合材料具有更加优异的导电率,其综合性能也更加优异。
由图1和图2可以看出,使用Bi盐和Y盐与Cu粉进行机械合金化后其粉末颗粒细小,且煅烧还原后无杂质残留。
由图3和图4对比可以看出,Bi2O3/Y2O3颗粒复相强化铜基复合材料具有更加优异的力学性能。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (6)

1.一种Bi2O3/Y2O3颗粒复相强化铜基复合材料,其特征在于,铜基体中Bi2O3弥散相与Y2O3颗粒固溶得到的高导电相-Bi2O3能够增强铜基体力学性能的同时增强其导电性能。
2.如权利要求1所述的Bi2O3/Y2O3颗粒复相强化铜基复合材料,其特征在于,复合材料中,Bi2O3、Y2O3的质量比为0.1~1:0.1~1,Bi2O3与Y2O3的总质量占比为0.1~5。
3.一种制备如权利要求1或2所述Bi2O3/Y2O3颗粒复相强化铜基复合材料的方法,其特征在于,首先通过机械合金化法将Bi(NO3)3和Y(NO3)3均匀掺入进铜基体中,得到Cu-Bi(NO3)3/Y(NO3)3前驱体粉末,再使用管式炉煅烧还原得到Cu-Bi2O3/Y2O3复合粉末,最后通过放电等离子烧结制备得到Bi2O3/Y2O3颗粒复相强化铜基复合材料。
4.如权利要求3所述的方法,其特征在于,具体包括如下步骤:
(一)机械合金化
将Y(NO3)3·6H2O、Bi(NO3)3·5H2O和Cu粉置于球磨罐中,在氩气气氛下完成球磨罐的装配,放入行星式球磨机中球磨,结束后取出研磨,得到Cu-Bi(NO3)3/Y(NO3)3前驱体粉末;
(二)煅烧还原
将上述前驱体粉末置于管式炉中,首先以10℃/min升温速率提高温度至200℃,保温30min,随后以10℃/min升温速率提高温度至600℃,保温2h,最后以5℃/min降温速率降低至500℃后随炉冷却,得到Bi2O3/Y2O3颗粒复相强化铜基复合粉末;
(三)放电等离子烧结
(1)装粉:将步骤(二)中所得的复合粉末用碳纸包裹装入石墨模具中,进行预压后将模具放入放电等离子烧炉,在室温下将炉腔抽至真空;
(2)排气:设置预压压强为10MPa,升温速率为100℃/min,将其升温至600℃保温5min,排出粉体材料中的气体;
(3)烧结成型:继续将温度提高至900℃保温5min,在提高温度的过程中均匀加压至最终压强50Mpa,在保温结束后随炉冷却降至室温,得到Bi2O3/Y2O3颗粒复相强化铜基复合材料。
5.如权利要求4所述的方法,其特征在于,所述步骤(一)中Bi(NO3)3·5H2O、Y(NO3)3·6H2O和Cu粉的质量比为0.51~1.54:0.84~2.49:97~97.62。
6.如权利要求4所述的方法,其特征在于,所述步骤(一)中球料比为2~4:1,球磨转速为250~350rpm,球磨时间为24~32h。
CN202311513659.2A 2023-11-14 2023-11-14 一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法 Pending CN117327939A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311513659.2A CN117327939A (zh) 2023-11-14 2023-11-14 一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311513659.2A CN117327939A (zh) 2023-11-14 2023-11-14 一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117327939A true CN117327939A (zh) 2024-01-02

Family

ID=89290543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311513659.2A Pending CN117327939A (zh) 2023-11-14 2023-11-14 一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117327939A (zh)

Similar Documents

Publication Publication Date Title
CN101956094B (zh) 一种高强高导弥散强化铜合金的制备方法
CN107604186B (zh) 一种复合稀土氧化物强化钨基高比重合金复合材料及其制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN113122747B (zh) 一种具有优异力学性能的Cu-(WC-Y2O3)复合材料制备方法
CN114107716B (zh) 一种电触头用铜基复合材料的制备方法
CN108220642A (zh) 一种CoCrCuFeMoNi高熵合金颗粒增强铜基复合材料的制备方法
CN111206164B (zh) 一种高性能超细晶钼镧合金的制备方法
CN112222419A (zh) 一种调控形核和生长过程制备纳米钼粉的方法及应用
CN111408714A (zh) 双尺度结构原位生长石墨烯增强铜基复合材料的制备方法
CN114752838A (zh) 铜基氧化物弥散强化的Cu-Y2O3复合材料制备方法
CN114574728A (zh) 一种具有优异综合性能的Cu-Y3Zr4O12复合材料制备方法
CN108441668B (zh) 一种银钨电接触材料及其制备方法
CN107217171B (zh) 一种液液掺杂稀土氧化物铜基复合材料及其制备方法
CN115094265B (zh) 一种钨/金属氧化物颗粒复相强化铜基复合材料及其制备方法
CN117327939A (zh) 一种Bi2O3/Y2O3颗粒复相强化铜基复合材料及其制备方法
CN117385223A (zh) 一种具有优异综合性能的Cu-(Si3N4-Y2O3)复合材料制备方法
CN115341112B (zh) 一种高强度超细晶的钨钽镍铁铜合金及其制备方法和应用
CN115896517B (zh) 铼和碳化铪复合钨渗铜耐烧蚀材料的制备方法
CN117488132A (zh) 一种原位反应制备y2o3/w复相强化铜基复合材料的方法
CN115386763B (zh) 一种TiC-Y2O3复合增强石墨烯包覆铜基触头材料及其制备方法
CN116479277A (zh) 一种利用金属钇盐制备y2o3颗粒弥散强化铜基复合材料的方法
CN117983804A (zh) 高强度耐烧蚀钨渗铜材料及其低温制备方法
CN118256767A (zh) 一种基于溶胶凝胶法制备y2o3弥散强化铜合金的工艺
JPH06128604A (ja) 金属材料の製造方法
JP2735936B2 (ja) 焼結性に優れた分散強化Ni合金粉末およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination