CN117263712A - 一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其制备方法 - Google Patents

一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其制备方法 Download PDF

Info

Publication number
CN117263712A
CN117263712A CN202311268423.7A CN202311268423A CN117263712A CN 117263712 A CN117263712 A CN 117263712A CN 202311268423 A CN202311268423 A CN 202311268423A CN 117263712 A CN117263712 A CN 117263712A
Authority
CN
China
Prior art keywords
powder
temperature ceramic
sic
high temperature
binary doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311268423.7A
Other languages
English (en)
Inventor
唐雨建
王销彬
刘诗华
江鹏
王艳苹
王春明
白国宇
马琴
刘宝君
刘嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Nuclear Power Engineering Co Ltd
Xian Jiaotong University
Original Assignee
China Nuclear Power Engineering Co Ltd
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Nuclear Power Engineering Co Ltd, Xian Jiaotong University filed Critical China Nuclear Power Engineering Co Ltd
Priority to CN202311268423.7A priority Critical patent/CN117263712A/zh
Publication of CN117263712A publication Critical patent/CN117263712A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,该方法包括:一、分别选择纳米级、微米级双元掺杂超高温陶瓷粉末作为外层、内层粉末;二、选用原料并混匀烘干得到外层粉末和内层粉末;三、将外层粉末填入铺设碳纸的石墨模具中压实后分次填入内层粉末压实,再填入外层粉末压实;四、预压;五、烧结后拆模;六、经粗磨和磨抛得到涂层。本发明采用纳米级双元掺杂超高温陶瓷粉末制备两侧孔隙率小、强度大、耐磨性能好的致密外层,采用微米级双元掺杂超高温陶瓷粉末制备内部孔隙率大、强度较好、隔热性能好的疏松内层,形成梯度孔隙率,发挥各层优点,使得涂层具备承载、隔热、耐磨的特性,适用于核电用隔热材料。

Description

一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其制 备方法
技术领域
本发明属于超高温隔热耐压耐磨涂层材料及其制备技术领域,具体涉及一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其制备方法。
背景技术
发展核电工业是有效改善我国的能源供应结构、减排电力工业污染物、减缓地球温室效应的重要措施,对于保障国家能源安全和经济安全具有重要作用。随着核电堆型不断更新,核电站的相关设计参数不断提高,尤其是核电站的服役温度,在目前国际公认的四代堆中服役温度普遍都已经超过500℃。在长期高温服役状态下,材料的高温疲劳与高温蠕变性能会显著下降,导致其许用限值急剧降低、使用寿命缩短。为保证核级部件的安全性与可靠性,在设计过程中只能通过增加支架厚度、改变布置方案,甚至更换高性能材料等手段来达到要求,不仅设计改进难度大,而且造价极其高昂,造成了人力、物力的浪费。
气冷微堆的堆本体和能量转换系统的设计温度高达600℃,远高于混凝土长期安全运行限值70℃,为了保证混凝土结构的承压能力,需要对压力容器的支撑系统进行降温处理,目前普遍采用的方法有以下两种:(1)加长堆本体与混凝土之间的距离,通过支撑系统自然散热使支撑系统传递到混凝土的温度达到70℃以下;(2)采用独立的支撑冷却系统对支撑系统进行冷却,保证在任何工况下支撑位置的混凝土温度都能满足规范要求。但是以上两种方法,目前还都存在各种不足:上述第一种方法不仅会加大堆本体的尺寸,而且还不利于堆本体和能量转换系统的抗震分析;上述第二种方法采用单独的支撑冷却系统不仅会使堆本体的热量造成不必要的流失,还会增加设计难度和建造成本。
目前,对隔热材料的研究逐渐成为发展方向。材料的隔热性能通常是通过提高孔隙率来实现的,但孔隙率的增加会导致材料力学性能与抗氧化性能的丧失。因此,如何兼容各方面的性能是隔热材料发展与应用的关键。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法。该方法分别采用纳米级双元掺杂超高温陶瓷粉末和微米级双元掺杂超高温陶瓷粉末制备涂层的两侧致密外层和中间疏松内层,形成梯度孔隙率并获得内部疏松外部致密的微观组织结构,充分发挥各层超高温陶瓷材料的优点,使得涂层同时具备承载、隔热、耐磨的特性,解决了材料隔热性能与力学性能难以兼容的难题。
为解决上述技术问题,本发明采用的技术方案为:一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,该方法包括以下步骤:
步骤一、选粉:选择纳米级双元掺杂超高温陶瓷粉末作为外层粉末,选择微米级双元掺杂超高温陶瓷粉末作为内层粉末;
步骤二、配粉:根据步骤一中选择的外层粉末和内层粉末的组成体系,分别选用原料并采用粉体混合机混合均匀后烘干,分别得到外层粉末和内层粉末;
步骤三、填粉:将碳纸铺设在石墨模具的模筒内侧面及下石墨压头表面,选取步骤二中得到的外层粉末填入石墨模具中,并采用上石墨压头压实,然后选取步骤二中得到的内层粉末分次填入压实后的外层粉末上,并采用上石墨压头压实,继续选取步骤二中得到的外层粉末填入压实后的内层粉末上,并采用上石墨压头压实,再将碳纸铺设在上层的压实外层粉末上表面并放置上石墨压头,并在石墨模具外表面包裹碳毡,得到填粉后的石墨模具;
步骤四、预压:对步骤三中得到的填粉后的石墨模具加载10MPa~30MPa的压应力进行预压;
步骤五、烧结:将步骤三中预压后的石墨模具置于真空环境下,然后加载30MPa~60MPa的压应力并进行烧结,拆模后得到烧结体;
步骤六、磨抛:采用60目~400目的金刚石磨盘对步骤五中得到的烧结体的外侧进行粗磨以去除外侧碳纸,然后采用金相砂纸进行磨抛,直至表面达镜面效果,得到双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层。
本发明分别采用纳米级及微米级的双元掺杂超高温陶瓷粉末作为外层及内层粉末,然后按照外层粉末-内层粉末-外层粉末的方式进行填粉,经预压后进行真空环境下的热压烧结,拆模后经磨抛得到具有两侧外层夹杂内层结构的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层。该制备过程中,首先采用超高温陶瓷粉末为制备涂层的原料,保证涂层的耐热性能;然后根据粉末颗粒大小对陶瓷晶粒大小、孔隙和性能的影响,采用纳米级双元掺杂超高温陶瓷粉末制备两侧孔隙率小、强度大、耐磨性能好的致密外层,同时采用微米级双元掺杂超高温陶瓷粉末制备内部孔隙率大、强度较好、隔热性能好的疏松内层,从而形成梯度孔隙率,获得内部疏松外部致密的微观组织结构,充分发挥各层超高温陶瓷材料的优点,即外层耐磨、抗氧化的特性和内层隔热特性,使得涂层同时具备承载、隔热、耐磨的特性,实现了材料与结构的承载-隔热-耐磨一体化设计与制备。
通常,本发明根据目标产物涂层的厚度要求或抗氧化性能要求对涂层中两侧外层及内层的厚度进行限定,一般两侧外层的单侧厚度为0.1mm~1mm。
上述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤一中所述纳米级双元掺杂超高温陶瓷粉末的质量纯度为99%以上,粒径为30nm~100nm;所述微米级双元掺杂超高温陶瓷粉末的质量纯度为99%以上,粒径为1μm~5μm。通常,上述两种粉末的粒径越小、形成的孔隙率越小,对应结构的力学性能越好、耐磨性能越好、隔热性能降低,且价格越高,粒径越大、形成的孔隙率越大,对应结构的力学性能降低、耐磨性能降低、隔热性能越好,且价格越低;综合考虑涂层中内层和两侧外层的性能要求以及成本控制,分别选用上述粒径尺寸的粉末。
上述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤一中所述纳米级双元掺杂超高温陶瓷粉末的双元成分体系为:ZrO2-SiC、ZrB2-SiC、ZrC-SiC、NbB2-SiC、NbC-SiC、HfB2-SiC、HfC-SiC、TaB2-SiC或TaC-SiC;所述微米级双元掺杂超高温陶瓷粉末的双元成分体系为:ZrO2-SiC、ZrB2-SiC、ZrC-SiC、NbB2-SiC、NbC-SiC、HfB2-SiC、HfC-SiC、TaB2-SiC或TaC-SiC。本发明的外层及内层粉末均采用双元掺杂超高温陶瓷粉末,通过控制粉末的主元成分为ZrO2、ZrB2、ZrC、NbB2、NbC、HfB2、HfC、TaB2或TaC,保证其属于超高温陶瓷粉末范畴,进而保证了涂层的耐热性能,同时采用SiC作为烧结助剂发挥改性功能,在烧结过程中有效消除主元成分的晶粒尺寸缺陷,大幅改善材料的力学性能。
上述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤一中所述纳米级双元掺杂超高温陶瓷粉末与微米级双元掺杂超高温陶瓷粉末的双元成分体系相同。本发明通过选择相同的双元成分体系分别作为涂层的两侧外层和内层的成分,以降低涂层中各层的热适配应力,提高了涂层结构的稳定性。
上述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤一中所述纳米级双元掺杂超高温陶瓷粉末与微米级双元掺杂超高温陶瓷粉末的双元成分体系均为ZrC-SiC。该优选的双元成分体系的原料容易获得,性价比高,应用广泛。
上述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,所述纳米级双元掺杂超高温陶瓷粉末与微米级双元掺杂超高温陶瓷粉末的双元成分体系按体积百分比计配比为ZrC-20%SiC、ZrC-15%SiC、ZrC-10%SiC或ZrC-5%SiC。
上述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤二中所述混合的时间为24h,所述烘干的温度为150℃,时间为24h。
上述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤五中所述烧结的过程为:先经10min升温至1000℃并保温5min,然后经10min继续升温至1750℃并保温20min,随炉冷却至150℃后取出。
另外,本发明还公开了一种如上述的方法制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层。
本发明与现有技术相比具有以下优点:
1、本发明采用纳米级双元掺杂超高温陶瓷粉末制备两侧孔隙率小、强度大、耐磨性能好的致密外层,同时采用微米级双元掺杂超高温陶瓷粉末制备内部孔隙率大、强度较好、隔热性能好的疏松内层,形成梯度孔隙率并获得内部疏松外部致密的微观组织结构,充分发挥各层超高温陶瓷材料的优点,使得涂层同时具备承载、隔热、耐磨的特性,适用于核电用隔热材料。
2、本发明通过控制制备两侧外层及内层的双元掺杂超高温陶瓷粉末的粒径,进而控制两侧外层及内层的孔隙率,从而实现对涂层力学性能、耐磨及隔热性能的调节,满足不同场合的应用需求,灵活方便,易于实现。
3、本发明通过选择相同的双元成分体系分别作为涂层的两侧外层和内层的成分,以降低涂层中各层的热适配应力,提高了涂层结构的稳定性。
下面通过附图和实施例对本发明的技术方案作进一步的详细描述。
附图说明
图1为本发明双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备工艺流程图。
图2为本发明填粉的过程示意图。
图3为本发明实施例1制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的实物图。
图4为本发明实施例1制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的压缩应变-压缩应力曲线图。
图5为本发明实施例1制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的隔热性能测试图。
图6为本发明实施例2制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的实物图。
图7a为本发明实施例2制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的扫描电镜图。
图7b为图7a中外层的扫描电镜图。
图7c为图7a中内层的扫描电镜图。
图8为本发明实施例2制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的压缩强度与氧化时长的关系曲线图。
具体实施方式
实施例1
如图1所示,本实施例包括以下步骤:
步骤一、选粉:选择质量纯度为99.9%、粒径为30nm~100nm的纳米级双元掺杂超高温陶瓷粉末作为外层粉末,选择质量纯度为99.9%、粒径为1μm~5μm的微米级双元掺杂超高温陶瓷粉末作为内层粉末;所述纳米级双元掺杂超高温陶瓷粉末的双元成分体系按体积百分比计配比为ZrC-15%SiC,其中ZrC粉末的粒径为100nm,SiC粉末的粒径为30nm;所述微米级双元掺杂超高温陶瓷粉末的双元成分体系按体积百分比计配比为ZrC-15%SiC,其中ZrC粉末的粒径为5μm,SiC粉末的粒径为2μm;
步骤二、配粉:根据步骤一中选择的外层粉末和内层粉末的组成体系,分别选用原料并采用粉体混合机混合均匀24h并在150℃烘干24h,分别得到外层粉末和内层粉末;
步骤三、填粉:如图2所示,将厚度为0.02mm的碳纸铺设在石墨模具的模筒内侧面及下石墨压头表面,选取步骤二中得到的外层粉末填入石墨模具中,并采用上石墨压头压实,然后选取步骤二中得到的内层粉末分次填入压实后的外层粉末上,并采用上石墨压头压实,继续选取步骤二中得到的外层粉末填入压实后的内层粉末上,并采用上石墨压头压实,再将碳纸铺设在上层的压实外层粉末上表面并放置上石墨压头,并在石墨模具外表面包裹碳毡,得到填粉后的石墨模具;
步骤四、预压:对步骤三中得到的填粉后的石墨模具加载20MPa的压应力进行预压;
步骤五、烧结:将步骤三中预压后的石墨模具置于真空环境下,然后加载40MPa的压应力并进行烧结,先经10min升温至1000℃并保温5min,然后经10min继续升温至1750℃并保温20min,随炉冷却至150℃后取出,拆模后得到烧结体;
步骤六、磨抛:采用100目和400目的金刚石磨盘对步骤五中得到的烧结体的外侧进行粗磨,以去除外侧碳纸,然后采用金相砂纸进行磨抛,直至表面达镜面效果,得到双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层,如图3所示;所述双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的外层单侧厚度为0.3mm,内层厚度为2.4mm,总厚度为3mm。
图4为本实施例制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的压缩应变-压缩应力曲线图,从图4可以看出,该涂层的压缩强度高达810MPa。
图5为本实施例制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的隔热性能测试图,该涂层厚度为3mm,对单侧涂层加热至600℃(加热器约为780℃)时,背面温度约为400℃,测试时间为548700s,然后采用K型热电偶测量温度,隔热温度约为220℃,说明该涂层具有优异的隔热性能。
在本实施例制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层上选取试样1~4,分别对各试样的耐磨性能进行测试:测试工况为温度530℃、载荷20MPa、行程±5mm、摩擦时长2h,对磨材料为Q235不锈钢,结果如下表1所示。
表1
从表1可知,未氧化的试样1在频率10Hz时磨损量为1.8mg,氧化7天的试样2在频率10Hz时磨损量为2.4mg,未氧化的试样3在频率20Hz时磨损量为14.0mg,氧化7天的试样4在频率20Hz时磨损量为26.4mg,说明本实施例制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层具有优异的耐磨性能。
本实施例中的纳米级双元掺杂超高温陶瓷粉末的双元成分体系还可替换为ZrO2-SiC、ZrB2-SiC、NbB2-SiC、NbC-SiC、HfB2-SiC、HfC-SiC、TaB2-SiC或TaC-SiC;微米级双元掺杂超高温陶瓷粉末的双元成分体系还可替换为:ZrO2-SiC、ZrB2-SiC、NbB2-SiC、NbC-SiC、HfB2-SiC、HfC-SiC、TaB2-SiC或TaC-SiC。
实施例2
如图1所示,本实施例包括以下步骤:
步骤一、选粉:选择质量纯度为99.9%、粒径为30nm~100nm的纳米级双元掺杂超高温陶瓷粉末作为外层粉末,选择质量纯度为99.9%、粒径为1μm~5μm的微米级双元掺杂超高温陶瓷粉末作为内层粉末;所述纳米级双元掺杂超高温陶瓷粉末的双元成分体系按体积百分比计配比为ZrB2-15%SiC,其中ZrB2粉末的粒径为100nm,SiC粉末的粒径为30nm;所述微米级双元掺杂超高温陶瓷粉末的双元成分体系按体积百分比计配比为ZrB2-15%SiC,其中ZrB2粉末的粒径为5μm,SiC粉末的粒径为2μm;
步骤二、配粉:根据步骤一中选择的外层粉末和内层粉末的组成体系,分别选用原料并采用粉体混合机混合均匀24h并在150℃烘干24h,分别得到外层粉末和内层粉末;
步骤三、填粉:如图2所示,将厚度为0.02mm的碳纸铺设在石墨模具的模筒内侧面及下石墨压头表面,选取步骤二中得到的外层粉末填入石墨模具中,并采用上石墨压头压实,然后选取步骤二中得到的内层粉末分次填入压实后的外层粉末上,并采用上石墨压头压实,继续选取步骤二中得到的外层粉末填入压实后的内层粉末上,并采用上石墨压头压实,再将碳纸铺设在上层的压实外层粉末上表面并放置上石墨压头,并在石墨模具外表面包裹碳毡,得到填粉后的石墨模具;
步骤四、预压:对步骤三中得到的填粉后的石墨模具加载20MPa的压应力进行预压;
步骤五、烧结:将步骤三中预压后的石墨模具置于真空环境下,然后加载40MPa的压应力并进行烧结,先经10min升温至1000℃并保温5min,然后经10min继续升温至1750℃并保温20min,随炉冷却至150℃后取出,拆模后得到烧结体;
步骤六、磨抛:采用100目和400目的金刚石磨盘对步骤五中得到的烧结体的外侧进行粗磨,以去除外侧碳纸,然后采用金相砂纸进行磨抛,直至表面达镜面效果,得到双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层,如图6所示;所述双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的外层单侧厚度为0.68mm,内层厚度为8.64mm,总厚度为10mm。
图7a~图7c为本实施例制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其中外层、内层的扫描电镜图,从图7a~图7c可以看出,该涂层分为内外层,且外层晶粒尺寸较小,内层晶粒尺寸较大。
图8为本实施例制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的压缩强度与氧化时长的关系曲线图,其中氧化的实验条件为氧化0天、1天、7天、15天和30天,常温或高温(530℃保温15min),位移加载,加载速率为0.2mm/min,从图8可以看出,随着氧化时长的增加,该涂层在常温时的压缩强度呈抛物线形增加,随着氧化时长的增加,该涂层在高温时的压缩强度变化较小,说明该涂层在常温或高温下的强度均较高,具有优良的承载特性。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (9)

1.一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,该方法包括以下步骤:
步骤一、选粉:选择纳米级双元掺杂超高温陶瓷粉末作为外层粉末,选择微米级双元掺杂超高温陶瓷粉末作为内层粉末;
步骤二、配粉:根据步骤一中选择的外层粉末和内层粉末的组成体系,分别选用原料并采用粉体混合机混合均匀后烘干,分别得到外层粉末和内层粉末;
步骤三、填粉:将碳纸铺设在石墨模具的模筒内侧面及下石墨压头表面,选取步骤二中得到的外层粉末填入石墨模具中,并采用上石墨压头压实,然后选取步骤二中得到的内层粉末分次填入压实后的外层粉末上,并采用上石墨压头压实,继续选取步骤二中得到的外层粉末填入压实后的内层粉末上,并采用上石墨压头压实,再将碳纸铺设在上层的压实外层粉末上表面并放置上石墨压头,并在石墨模具外表面包裹碳毡,得到填粉后的石墨模具;
步骤四、预压:对步骤三中得到的填粉后的石墨模具加载10MPa~30MPa的压应力进行预压;
步骤五、烧结:将步骤三中预压后的石墨模具置于真空环境下,然后加载30MPa~60MPa的压应力并进行烧结,拆模后得到烧结体;
步骤六、磨抛:采用60目~400目的金刚石磨盘对步骤五中得到的烧结体的外侧进行粗磨以去除外侧碳纸,然后采用金相砂纸进行磨抛,直至表面达镜面效果,得到双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层。
2.根据权利要求1所述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤一中所述纳米级双元掺杂超高温陶瓷粉末的质量纯度为99%以上,粒径为30nm~100nm;所述微米级双元掺杂超高温陶瓷粉末的质量纯度为99%以上,粒径为1μm~5μm。
3.根据权利要求1所述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤一中所述纳米级双元掺杂超高温陶瓷粉末的双元成分体系为:ZrO2-SiC、ZrB2-SiC、ZrC-SiC、NbB2-SiC、NbC-SiC、HfB2-SiC、HfC-SiC、TaB2-SiC或TaC-SiC;所述微米级双元掺杂超高温陶瓷粉末的双元成分体系为:ZrO2-SiC、ZrB2-SiC、ZrC-SiC、NbB2-SiC、NbC-SiC、HfB2-SiC、HfC-SiC、TaB2-SiC或TaC-SiC。
4.根据权利要求1所述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤一中所述纳米级双元掺杂超高温陶瓷粉末与微米级双元掺杂超高温陶瓷粉末的双元成分体系相同。
5.根据权利要求1所述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤一中所述纳米级双元掺杂超高温陶瓷粉末与微米级双元掺杂超高温陶瓷粉末的双元成分体系均为ZrC-SiC。
6.根据权利要求5所述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,所述纳米级双元掺杂超高温陶瓷粉末与微米级双元掺杂超高温陶瓷粉末的双元成分体系按体积百分比计配比为ZrC-20%SiC、ZrC-15%SiC、ZrC-10%SiC或ZrC-5%SiC。
7.根据权利要求1所述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤二中所述混合的时间为24h,所述烘干的温度为150℃,时间为24h。
8.根据权利要求1所述的一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层的制备方法,其特征在于,步骤五中所述烧结的过程为:先经10min升温至1000℃并保温5min,然后经10min继续升温至1750℃并保温20min,随炉冷却至150℃后取出。
9.一种如权利要求1~8任一权利要求所述的方法制备的双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层。
CN202311268423.7A 2023-09-28 2023-09-28 一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其制备方法 Pending CN117263712A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311268423.7A CN117263712A (zh) 2023-09-28 2023-09-28 一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311268423.7A CN117263712A (zh) 2023-09-28 2023-09-28 一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN117263712A true CN117263712A (zh) 2023-12-22

Family

ID=89215731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311268423.7A Pending CN117263712A (zh) 2023-09-28 2023-09-28 一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN117263712A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945023A (zh) * 2015-07-03 2015-09-30 苏州宏久航空防热材料科技有限公司 一种高温抗氧化绝热复合陶瓷涂层
CN105139898A (zh) * 2015-06-30 2015-12-09 清华大学 一种新型包覆燃料颗粒及其制备方法
CN110129709A (zh) * 2019-06-11 2019-08-16 华东理工大学 一种陶瓷层的制备方法以及由此得到的陶瓷层及其热障涂层
CN114347580A (zh) * 2021-12-10 2022-04-15 中国建筑材料科学研究总院有限公司 一种耐高温多层隔热结构及制备方法
CN116751061A (zh) * 2023-06-09 2023-09-15 绍兴文理学院 一种喷气涡流纺用高耐磨陶瓷空心锭子及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105139898A (zh) * 2015-06-30 2015-12-09 清华大学 一种新型包覆燃料颗粒及其制备方法
CN104945023A (zh) * 2015-07-03 2015-09-30 苏州宏久航空防热材料科技有限公司 一种高温抗氧化绝热复合陶瓷涂层
CN110129709A (zh) * 2019-06-11 2019-08-16 华东理工大学 一种陶瓷层的制备方法以及由此得到的陶瓷层及其热障涂层
CN114347580A (zh) * 2021-12-10 2022-04-15 中国建筑材料科学研究总院有限公司 一种耐高温多层隔热结构及制备方法
CN116751061A (zh) * 2023-06-09 2023-09-15 绍兴文理学院 一种喷气涡流纺用高耐磨陶瓷空心锭子及其制备方法

Similar Documents

Publication Publication Date Title
CN102703742B (zh) 一种基体为纳米叠层结构的金属基复合材料及其制备方法
CN106478105A (zh) 一种多步反应烧结法制备低残硅的碳化硅陶瓷材料的方法
CN101747039B (zh) 一种高强高密各向同性炭滑板的制备方法
CN110128146B (zh) 一种具有多功能的碳化硼基复相陶瓷及其反应热压烧结制备方法
CN105967691B (zh) 热压烧结制备SiC/C陶瓷复合材料的方法
US20220135489A1 (en) Method for preparing continuous fiber-reinforced ceramic matrix composite by flash sintering technology
CN102765940B (zh) 一种常压固相烧结微孔碳化硅陶瓷及其制备方法
CN103833403B (zh) 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品
CN103553627B (zh) 一种陶瓷基复合材料及其制备方法和应用
CN112723891B (zh) 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN105801146A (zh) 连续密度梯度化低密度多孔碳粘接复合材料及其制备方法
CN108640663A (zh) 一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法
CN108412924A (zh) 一种多层复合结构陶瓷刹车片材料及其制备方法
Adabi et al. Effect of infiltration parameters on composition of W–ZrC composites produced by displacive compensation of porosity (DCP) method
CN111320476A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备
CN110395988A (zh) 一种高强度氮化硼陶瓷及其制备方法
CN115677364A (zh) 一种多层次碳化锆增强碳基复合材料及其制备方法和应用
CN104131208A (zh) 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法
Zhang et al. Microstructure and properties of silica-based ceramic cores by laser powder bed fusion combined with vacuum infiltration
Sun et al. Cr3C2 assisted ultrafast high-temperature sintering of TiC
CN110698207A (zh) 一种基于氮化硅的层状陶瓷复合材料及其制备方法
Liu et al. Fully ceramic microencapsulated fuels fabricated by tape casting
CN117263712A (zh) 一种双元掺杂梯度多孔超高温陶瓷隔热耐压耐磨涂层及其制备方法
Wang et al. Fabrication of high strength and ductile stainless steel fiber felts by sintering
Sirota et al. Structure and properties of nanoporous ceramic Al 2 O 3 obtained by isostatic pressing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination