CN117256208A - 发光装置及电子设备 - Google Patents

发光装置及电子设备 Download PDF

Info

Publication number
CN117256208A
CN117256208A CN202280029532.0A CN202280029532A CN117256208A CN 117256208 A CN117256208 A CN 117256208A CN 202280029532 A CN202280029532 A CN 202280029532A CN 117256208 A CN117256208 A CN 117256208A
Authority
CN
China
Prior art keywords
layer
light
emitting device
light emitting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280029532.0A
Other languages
English (en)
Inventor
铃木恒德
大泽信晴
濑尾哲史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN117256208A publication Critical patent/CN117256208A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/771Integrated devices comprising a common active layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种清晰度高且特性良好的发光器件,该发光器件使用光刻法而制造。发光装置包括第一及第二发光器件,所述第一发光器件与所述第二发光器件相邻,所述第一发光器件包括第一EL层A及第二EL层,所述第二发光器件包括第一EL层B及所述第二EL层,所述第一EL层A与所述第一EL层B相互独立,所述第二EL层由所述第一及第二发光器件共享,所述第一EL层A的所述第一EL层B一侧的端面与所述第一EL层B的所述第一EL层A一侧的端面相对,所述第一EL层A包括发光层,所述发光层包含发光材料、第一及第二有机化合物,所述第一有机化合物为具有电子传输性的有机化合物,并且所述第二有机化合物为具有空穴传输性的有机化合物。

Description

发光装置及电子设备
技术领域
本发明的一个方式涉及一种有机化合物、发光元件、发光器件、显示模块、照明模块、显示装置、发光装置、电子设备、照明装置及电子器件。注意,本发明的一个方式不局限于上述技术领域。本说明书等所公开的发明的一个方式的技术领域涉及一种物体、方法或制造方法。此外,本发明的一个方式涉及一种工序(process)、机器(machine)、产品(manufacture)或者组合物(composition of matter)。因此,具体而言,作为本说明书所公开的本发明的一个方式的技术领域的例子,可以举出半导体装置、显示装置、液晶显示装置、发光装置、照明装置、蓄电装置、存储装置、摄像装置、它们的驱动方法以及它们的制造方法。
背景技术
使用有机化合物且利用电致发光(EL:Electroluminescence)的发光器件(有机EL器件)的实用化非常活跃。在这些发光器件的基本结构中,在一对电极之间夹有包含发光材料的有机化合物层(EL层)。通过对该器件施加电压,注入载流子,利用该载流子的复合能量,可以获得来自发光材料的发光。
因为这种发光器件是自发光型发光器件,所以当用于显示器的像素时比起液晶有可见度更高、不需要背光源等优势,特别适合于平板显示器。此外,使用这种发光器件的显示器可以被制造成薄且轻,这也是极大的优点。而且,非常快的响应速度也是其特征之一。
此外,因为这种发光器件的发光层可以在二维上连续地形成,所以可以获得面发光。因为这是在以白炽灯及LED为代表的点光源或者以荧光灯为代表的线光源中难以得到的特征,所以作为可用于照明等的面光源,上述发光器件的利用价值也高。
如上所述,使用发光器件的发光装置适合用于各种各样的电子设备,但为了追求具有更良好的特性的发光器件,其研究开发日益活跃。
为了得到使用有机EL器件的更高清晰发光装置,使用利用光致抗蚀剂等的光刻法代替利用金属掩模的蒸镀法以对有机层进行图案化的技术已在被研究。通过使用光刻法,可以得到EL层的间隔为数μm的高清晰发光装置(例如参照专利文献1)。
[先行技术文献]
[专利文献]
[专利文献1]日本PCT国际申请翻译第2018-521459号公报
发明内容
发明所要解决的技术问题
当使用光刻法进行图案化时,EL层因在制造光掩模时被加热或者在去除掩模时暴露于药液或蚀刻气体等而受各种应力。尤其是,当发光层表面暴露于这些应力时,发光器件的使用寿命有时大幅度恶化。
鉴于此,本发明的一个方式的目的是提供一种使用光刻法而制造的发光装置,其中发光器件的使用寿命缩短得到抑制。
解决技术问题的手段
于是,本发明的一个方式提供一种使用光刻法形成的发光装置,其中发光器件的发光层中的主体材料至少由两个有机化合物构成。
也就是说,本发明的一个方式是一种发光装置,该发光装置包括第一发光器件及第二发光器件,所述第一发光器件与所述第二发光器件的位置相邻,所述第一发光器件包括第一EL层A及第二EL层,所述第二发光器件包括第一EL层B及所述第二EL层,所述第一EL层A与所述第一EL层B相互独立,所述第二EL层由所述第一发光器件及所述第二发光器件共享,所述第一EL层A的所述第一EL层B一侧的端面与所述第一EL层B的所述第一EL层A一侧的端面相对,所述EL层A包括发光层,所述发光层包含发光材料、第一有机化合物以及第二有机化合物,所述第一有机化合物为具有电子传输性的有机化合物,并且所述第二有机化合物为具有空穴传输性的有机化合物。
此外,本发明的另一个方式是具有上述结构的发光装置,其中所述发光层中的电子迁移率高于空穴迁移率。
此外,本发明的另一个方式是具有上述结构的发光装置,其中所述第一有机化合物包含缺π电子杂芳环骨架,并且所述第二有机化合物包含富π电子杂芳环骨架。
此外,本发明的另一个方式是具有上述结构的发光装置,其中所述第一有机化合物包含萘并呋喃并吡嗪骨架。
此外,本发明的另一个方式是具有上述结构的发光装置,其中所述第二有机化合物包含咔唑骨架。
此外,本发明的另一个方式是具有上述结构的发光装置,其中所述第一EL层A及所述第一EL层B包括发光层。
此外,本发明的另一个方式是具有上述结构的发光装置,其中所述发光层位于所述第一EL层A及所述第一EL层B中的最靠近第二EL层一侧。
此外,本发明的另一个方式是具有上述结构的发光装置,其中所述第二EL层包括空穴阻挡层、电子传输层以及电子注入层中的任一个或多个。
此外,本发明的另一个方式是一种电子设备,包括上述任意发光装置、传感器、操作按钮以及扬声器或麦克风。
在本说明书中,发光装置包括使用发光器件的图像显示器件。此外,发光装置有时还包括如下模块:发光器件安装有连接器诸如各向异性导电膜或TCP(Tape CarrierPackage:带载封装)的模块;在TCP的端部设置有印刷线路板的模块;或者通过COG(Chip OnGlass:玻璃覆晶封装)方式在发光器件上直接安装有IC(集成电路)的模块。而且,照明装置等有时包括发光装置。
发明效果
由此,本发明的一个方式可以提供一种发光装置,其中使用光刻法而制造的发光器件的使用寿命缩短得到抑制。
注意,这个效果的记载不妨碍其他效果的存在。此外,本发明的一个方式并不需要具有所有上述效果。此外,说明书、附图以及权利要求书等的记载中显然看出上述效果以外的效果,可以从说明书、附图以及权利要求书等的记载中获得上述效果以外的效果。
附图简要说明
图1A至图1C是表示发光器件的图。
图2A至图2H是表示发光器件的制造方法的图。
图3A至图3G是表示发光器件的制造方法的图。
图4是示出显示装置的结构例子的图。
图5A至图5D是示出显示装置的结构例子的图。
图6A至图6F是示出显示装置的制造方法例子的图。
图7A至图7F是示出显示装置的制造方法例子的图。
图8是示出显示装置的一个例子的立体图。
图9A及图9B是示出显示装置的一个例子的截面图。
图10A是示出显示装置的一个例子的截面图,图10B是示出晶体管的一个例子的截面图。
图11A及图11B是示出显示模块的一个例子的立体图。
图12是示出显示装置的一个例子的截面图。
图13是示出显示装置的一个例子的截面图。
图14是示出显示装置的一个例子的截面图。
图15是示出显示装置的结构例子的图。
图16A及图16B是示出电子设备的一个例子的图。
图17A至图17D是示出电子设备的一个例子的图。
图18A至图18F是示出电子设备的一个例子的图。
图19A至图19F是示出电子设备的一个例子的图。
图20A至图20C是表示发光器件1-1至发光器件1-3的归一化亮度-时间变化特性的图。
图21是表示发光器件2的归一化亮度-时间变化特性的图。
实施发明的方式
以下,参照附图详细说明本发明的实施方式。注意,本发明不局限于以下说明,而所属技术领域的普通技术人员可以很容易地理解一个事实就是其方式及详细内容在不脱离本发明的宗旨及其范围的情况下可以被变换为各种各样的形式。因此,本发明不应该被解释为仅局限在以下所示的实施方式所记载的内容中。
注意,在本说明书等中,有时将使用金属掩模或FMM(Fine Metal Mask,高精细金属掩模)制造的器件称为MM(Metal Mask)结构的器件。此外,在本说明书等中,有时将不使用金属掩模或FMM制造的器件称为具有MML(Metal Mask Less)结构的器件。
(实施方式1)
图1A至图1C示出本发明的一个方式的发光装置中的发光器件110。衬底100上隔着具有绝缘表面的绝缘层120设置有该发光器件110,图1示出由阳极101、EL层(空穴注入层111、空穴传输层112、发光层113、电子传输层114、电子注入层115)及阴极102构成的例子。注意,它们只是一个例子,发光层113以外的层既可设置又可不设置,也可以代替形成兼具多个功能的层。作为它们以外的层,可以举出载流子阻挡层、激子阻挡层等。此外,在绝缘层120与衬底100之间还可以设置用来驱动发光器件的晶体管及电容、布线等。
在图1A中,阳极101的端部被绝缘层121覆盖。
此外,该发光器件是利用光刻法对有机层进行蚀刻及图案化来制造的。由于在形成发光层113之后且形成电子传输层114之前进行图案化及蚀刻,所以空穴注入层111、空穴传输层112以及发光层113的端部大致对齐。这意味着:在从垂直于上述衬底或形成在其上的绝缘层120的方向看时,其端部大致对齐。
此外,在对空穴注入层111、空穴传输层112以及发光层113进行蚀刻及图案化之后形成电子传输层114、电子注入层115以及阴极102,由此电子传输层114、电子注入层115以及阴极102覆盖空穴注入层111、空穴传输层112以及第一发光层113的端部。
图1B示出没有形成图1A中的绝缘层121的结构。因为不存在绝缘层120,所以可以制造更高清晰且高开口率的发光装置。此外,图1C示出在制造阴极102之后也进行图案化及蚀刻而按发光器件分离阴极102、电子注入层115及电子传输层114的结构。在本结构中,由于发光器件彼此分离,所以容易抑制短路、串扰等不良现象的发生。
在此,在本发明的一个方式的发光装置的发光器件110中,在形成发光层113之后进行图案化及蚀刻。利用光刻法的图案化及蚀刻通常不在真空下进行,由此发光层113的表面暴露于常压气氛。再者,发光层113的阴极一侧表面因在制造光掩模时被加热或者在去除掩模时暴露于药液或蚀刻气体等而受各种应力。当发光层表面暴露于这些应力时,有时发光器件的使用寿命大幅度恶化。这被认为是因为发光层的阴极一侧表面接受这些应力而受到某种影响的缘故。
鉴于此,本发明人发现:通过使发光层113中的再结合区域远离上述发光层的阴极一侧表面,可以抑制起因于该应力的可靠性下降;为此,可以使用空穴传输材料与电子传输材料的混合材料作为发光层的主体材料来制造发光器件。
于是,本发明的一个方式是一种使用光刻法而制造的发光装置,其中发光器件的发光层中的主体材料为空穴传输材料与电子传输材料的混合材料。在具有这种结构的发光器件中,通过改变主体材料中的空穴传输材料与电子传输材料的混合比,可以使再结合区域远离发光层的阴极一侧表面。其结果是,可以在保持该发光器件的良好特性的同时抑制由暴露于高真空气氛外导致的可靠性下降,具体而言,受到大气暴露、氮气氛暴露、图案化、蚀刻等影响所造成的可靠性下降。为了使再结合区域远离发光层的阴极一侧表面,优选以发光层的电子传输性高于空穴传输性的方式决定混合比。
此外,上述空穴传输材料优选为包含富π电子杂芳环骨架的有机化合物,具体而言,包含咔唑骨架的有机化合物、包含二苯并呋喃骨架的有机化合物、包含二苯并噻吩骨架的有机化合物及包含蒽骨架的有机化合物,尤其是,优选为包含咔唑骨架的有机化合物。此外,上述电子传输材料优选为包含缺π电子杂芳环骨架的有机化合物,具体而言,包含吡啶骨架的有机化合物、包含二嗪骨架(嘧啶骨架、吡嗪骨架、哒嗪骨架)的有机化合物及包含三嗪骨架的有机化合物,更优选为包含萘并呋喃并吡嗪骨架的有机化合物。
注意,在本发明的一个方式的发光装置中,通过利用光刻法对发光器件进行图案化,可以缩小相邻的发光器件之间的间隔。在使用金属掩模制造的发光装置中,难以将邻接的发光器件所包括的EL层之间的间隔缩小到小于10μm的间隔,但是在本发明的一个方式的发光装置中,可以将该间隔缩小到5μm以下、3μm以下、2μm以下或1μm以下。例如,通过使用面向LSI的曝光装置,也可以将该间隔缩小到500nm以下、200nm以下、100nm以下、甚至为50nm以下。因此,可以大幅度地缩小有可能存在于邻接的两个发光器件间的非发光区域的面积。例如,也可以实现50%以上、60%以上、70%以上、80%以上、甚至为90%以上的开口率。
此外,本发明的发光装置中设置有与发光器件110相邻的第二器件,该第二发光器件也具有与发光器件110类似或相同的结构。
此外,该第二发光器件也通过利用光刻法对有机层进行图案化及蚀刻而制造,由此空穴注入层、空穴传输层以及发光层的端部大致对齐。
此外,第二发光器件中的发光层所包含的主体材料也是空穴传输材料与电子传输材料的混合材料。由此,可以抑制发光层的阴极一侧表面因光刻工序而受到应力所造成的可靠性下降。
图4是包括位置相邻的两个发光器件(第一发光器件110_1、第二发光器件110_2)的发光装置的截面图。
第一发光器件110_1包括设置在衬底100上的阳极101_1与阴极102间的第一EL层103A及EL层515。此外,第二发光器件110_2包括阳极101_2与阴极102间的第一EL层103B及EL层515。此外,图4所示的第一发光器件110_1与第二发光器件110_2呈现不同的发光颜色。
第一EL层103A至少包括发光层113A,在形成发光层113A之后利用光刻法进行图案化及蚀刻。第一EL层103B至少包括发光层113B,在形成发光层113B之后利用光刻法进行图案化及蚀刻。由此,第一EL层103A的一个端面与第一EL层103B的一个端面相对。
此外,也可以以至少覆盖第一EL层103A、103B的侧面的一部分的方式设置绝缘层516a及绝缘层516b中的一个或两个。
通过设置绝缘层516a,可以抑制氧、水及其他带来负面影响的成分进入到第一EL层103A、103B。绝缘层516a可以为包含无机材料的绝缘层。作为绝缘层516a,可以使用氧化铝、氧化镁、氧化铪、氧化镓、铟镓锌氧化物、氧化硅、氧氮化硅、氮化硅或氮氧化硅等的单层或叠层。尤其是,优选使用氧化铝,由此蚀刻中的氧化铝与第一EL层103A、103B的选择比高。
绝缘层516b具有嵌入第一EL层103A与第一EL层103B间来实现平坦化的功能。通过使用绝缘层516b,后面形成的EL层515、阴极102的覆盖性提高,由此可以抑制产生断裂等缺陷。作为绝缘层516b,优选使用有机绝缘膜,可以使用丙烯酸树脂、聚酰亚胺树脂、环氧树脂、聚酰胺树脂、聚酰亚胺酰胺树脂、硅氧烷树脂、苯并环丁烯类树脂、酚醛树脂及上述树脂的前体等。此外,作为绝缘层516b,可以使用光敏树脂。作为光敏树脂,可以使用正型材料或负型材料。
如图4所示,第一发光器件110_1的第一EL层103A与第二发光器件110_2的第一EL层103B相互独立。如此,由于在相邻的发光器件之间EL层独立,所以即使发光装置的清晰度高,也可以提供高质量图像而不容易发生泄漏。
第一EL层103A及第一EL层103B也可以在发光层与阳极之间设置有空穴注入层、空穴传输层及电子阻挡层等。图4示出设置有空穴注入层111A、111B、空穴传输层112A、112B的结构。
在此,像上述发光器件110中的发光层113那样,发光层113A使用空穴传输材料与电子传输材料的混合材料作为主体材料。在具有这种结构的第一发光器件110_1中,通过改变主体材料中的空穴传输材料与电子传输材料的混合比,可以使再结合区域远离发光层的阴极一侧表面。其结果是,可以在保持该发光器件的良好特性的同时抑制由暴露于高真空气氛外导致的可靠性下降,具体而言,受到大气暴露、氮气氛暴露、图案化、蚀刻等影响所造成的可靠性下降。为了使再结合区域远离发光层的阴极一侧表面,优选以发光层的电子传输性高于空穴传输性的方式是决定混合比。此外,发光层113B也优选具有同样结构。
EL层515及阴极102在第一发光器件110_1与第二发光器件110_2间连续设置。通过使用光刻法形成根据每个发光颜色而需要不同结构的EL层且共同设置EL层515及阴极102,可以实现一种发光装置,其中在得到高清晰及高质量图像的同时提高成品率来降低成本。
接着,说明这些发光器件的制造方法。图1A所示的发光器件可以如图2A至图2H那样制造。
首先,在衬底100上形成具有绝缘平面的绝缘层120及成为阳极101的导电膜101b(图2A、图2B)。
接着,对导电膜101b进行图案化及蚀刻来形成阳极101(图2C)。以覆盖阳极101的方式沉积成为绝缘层121的绝缘膜121b(图2D)。在绝缘膜121b中形成开口来形成绝缘层121(图2E)。
然后,利用蒸镀法形成成为空穴注入层111、空穴传输层112以及发光层113的有机层111b、112b、113b(图2F)。
接着,通过利用光刻法对有机层111b、112b、113b进行图案化及蚀刻,形成空穴注入层111、空穴传输层112以及发光层113(图2G)。
此外,也可以在涂敷光抗蚀剂之前将用来减轻溶剂等所造成的损伤的保护层或牺牲层形成在有机层113b上。因此,发光层113受到的损伤得到减轻,可以得到特性更良好的发光装置。
最后,可以形成电子传输层114、电子注入层115和阴极102来制造图1A所示的发光器件(图2H)。
接着,参照图3A至图3F说明图1B所示的发光器件的制造方法。首先,直到形成阳极101为止与图2A至图2C同样(图3A至图3C)。
接着,利用蒸镀法形成成为空穴注入层111、空穴传输层112以及发光层113的有机层111b、112b、113b(图3D)。发光层113包含发光材料,使用空穴传输材料与电子传输材料的混合材料作为主体材料。
接着,通过利用光刻法对有机层111b、112b、113b进行图案化及蚀刻,形成空穴注入层111、空穴传输层112以及发光层113(图3E)。此时,发光层113使用空穴传输材料与电子传输材料的混合材料作为主体材料,由此通过改变主体材料中的空穴传输材料与电子传输材料的混合比,可以使电子传输性占优势,使得再结合区域远离发光层113的表面,因此可以得到可靠性下降得到抑制的发光装置。
此外,也可以在涂敷光抗蚀剂之前将用来减轻溶剂等所造成的损伤的保护层或牺牲层形成在有机层113b上。因此,发光层113受到的损伤得到减轻,可以得到特性更良好的发光装置。
最后,可以形成电子传输层114、电子注入层115和阴极102来制造图1B所示的发光器件(图3F)。注意,通过之后进行利用光刻法的图案化及蚀刻,也可以制造具有如图3G(图1C)那样的形状的发光器件。
[发光装置]
以下说明使用上述发光器件的本发明的一个方式的发光装置的一个例子。
图5A示出本发明的一个方式的发光装置400的俯视示意图。发光装置400包括多个发射红色的发光器件110R、多个发射绿色的发光器件110G及多个发射蓝色的发光器件110B。在图5A中,为了简单地区别各发光器件而对各发光器件的发光区域内附上R、G、B的符号。
发光器件110R、发光器件110G以及发光器件110B都以矩阵状排列。图5A示出同一颜色的发光器件在一个方向上排列的所谓条纹排列。注意,发光器件的排列方法不局限于此,既可以采用三角状排列、之字形状等的排列方法,又可以采用Pentile排列。
发光器件110R、发光器件110G以及发光器件110B在X方向上排列。此外,在与X方向交叉的Y方向上,同一颜色的发光器件排列。
发光器件110R、发光器件110G以及发光器件110B是具有上述结构的发光器件。
图5B是对应于图5A中的点划线A1-A2的截面示意图,图5C是对应于点划线B1-B2的截面示意图。
图5B示出发光器件110R、发光器件110G以及发光器件110B的截面。发光器件110R包括阳极101R、第一EL层103R、EL层515及阴极102。发光器件110G包括阳极101G、第一EL层103G、EL层515及阴极102。发光器件110B包括阳极101B、第一EL层103B、EL层515及阴极102。发光器件110R、发光器件110G以及发光器件110B共享EL层515及阴极102。EL层515也可以被称为公共层。
发光器件110R所包括的第一EL层103R至少包含发射在红色的波长区域具有强度的光的发光性的有机化合物。发光器件110G所包括的第一EL层103G至少包含发射在绿色的波长区域具有强度的光的发光性的有机化合物。发光器件110B所包括的第一EL层103B至少包含发射在蓝色的波长区域具有强度的光的发光性的有机化合物。
相邻的第一发光器件及第二发光器件例如相当于图5B中的发光器件110R及发光器件110G、发光器件110G及发光器件110B等。此外,也可以将图5A中纵向排列的同色发光器件称为相邻的发光器件。
第一EL层103R、第一EL层103G及第一EL层103B除了包含发光性有机化合物的层(发光层)以外还可以各自包括空穴注入层、空穴传输层、载流子阻挡层和激子阻挡层等中的一个或两个以上。EL层515具有不包括发光层的结构。在本发明的一个方式的发光装置中,EL层515优选为电子传输层及电子注入层。
阳极101R、阳极101G以及阳极101B各自被设置在不同的发光器件中。此外,阴极102及EL层515作为各发光器件共通使用的连续的层而设置。各像素电极和阴极102的任一方使用对可见光具有透光性的导电膜且另一方使用具有反射性的导电膜。通过使各像素电极具有透光性且使阴极102具有反射性可以实现底面发射型(底部发射结构)的显示装置,与此相反,通过使各像素电极具有反射性且使阴极102具有透光性可以实现顶面发射型(顶部发射结构)的显示装置。此外,通过使各像素电极及阴极102的双方具有透光性,可以实现双面发射型(双面发射结构)显示装置。
以覆盖阳极101R、阳极101G以及阳极101B的端部的方式设置绝缘层121。绝缘层121的端部优选为锥形形状。若不需要也可以不设置绝缘层121。
第一EL层103R、第一EL层103G及第一EL层103B各自包括与像素电极的顶面接触的区域及与绝缘层121的表面接触的区域。此外,第一EL层103R、第一EL层103G及第一EL层103B的端部位于绝缘层121上。
如图5B所示,在颜色不同的发光器件之间,在两个EL层之间设置间隙。如此,优选以互不接触的方式设置第一EL层103R、第一EL层103G及第一EL层103G。由此,可以适当地防止电流流过相邻的两个EL层而产生非意图性发光(也称为串扰)。因此,可以提高对比度并实现显示品质高的显示装置。
如图5C所示,以在Y方向上连续的方式形成带状的第一EL层103R。通过设置带状的第一EL层103R等,可以不需要用来分离它们的空间而可以减小发光器件间的非发光区域的面积,所以可以提高开口率。此外,作为一个例子图5C示出发光器件110R的截面,但是发光器件110G及发光器件110B也具有同样的形状。此外,每个发光器件的EL层也可以在Y方向上分开。
阴极102上以覆盖发光器件110R、发光器件110G以及发光器件110B的方式设置有保护层131。保护层131具有防止水等的杂质从上方扩散到各发光器件的功能。
保护层131例如可以具有至少包括无机绝缘膜的单层结构或叠层结构。作为无机绝缘膜,例如可以举出氧化硅膜、氧氮化硅膜、氮氧化硅膜、氮化硅膜、氧化铝膜、氧氮化铝膜、氧化铪膜等的氧氧化物膜或氮化物膜。或者,作为保护层131也可以使用铟镓氧化物、铟镓锌氧化物等的半导体材料。
此外,作为保护层131也可以使用无机绝缘膜与有机绝缘膜的叠层膜。例如,优选在一对无机绝缘膜之间夹持有机绝缘膜。并且,有机绝缘膜优选被用作平坦化膜。由此,可以使有机绝缘膜的顶面平坦,所以有机绝缘膜上的无机绝缘膜的覆盖性得到提高,由此可以提高阻挡性。此外,保护层131的顶面变平坦,所以当在保护层131的上方设置结构物(例如,滤色片、触摸传感器的电极或透镜阵列等)时可以减少起因于下方的结构的凹凸形状的影响,所以是优选的。
此外,图5A示出与阴极102电连接的连接电极101C。连接电极101C被供应用来对阴极102供应的电位(例如,阳极电位或阴极电位)。连接电极101C设置在发光器件110R等排列的显示区域的外侧。此外,在图5A中,以虚线表示阴极102。
连接电极101C可以沿着显示区域的外周设置。例如,既可以沿着显示区域的外周的一个边设置,又可以横跨显示区域的外周的两个以上的边设置。就是说,在显示区域的顶面给形状为方形的情况下,连接电极101C的顶面形状可以为帯状、L字状、“コ”字状(方括号状)或四角形等。
图5D是对应于图5A中的点划线C1-C2的截面示意图。图5D示出连接电极101C与阴极102电连接的连接部130。在连接部130中,在连接电极101C上以与连接电极101C接触的方式设置阴极102,并且以覆盖阴极102的方式设置保护层131。此外,以覆盖连接电极101C的端部的方式设置绝缘层121。
[制造方法例子1]
以下,参照附图说明本发明的一个方式的显示装置的制造方法的一个例子。在此,以上述结构例子中所示的发光装置400为例进行说明。图6A至图6F是以下例示出的显示装置的制造方法的各工序中的截面示意图。此外,在图6A等中的右侧还示出连接部130及其附近的截面示意图。
构成显示装置的薄膜(绝缘膜、半导体膜、导电膜等)可以利用溅射法、化学气相沉积(CVD:Chemical Vapor Deposition)法、真空蒸镀法、脉冲激光沉积(PLD:Pulsed LaserDeposition)法、原子层沉积(ALD:Atomic Layer Deposition)法等形成。作为CVD法有等离子体增强化学气相沉积(PECVD:Plasma Enhanced CVD)法或热CVD法等。此外,作为热CVD法之一,有有机金属化学气相沉积(MOCVD:Metal Organic CVD)法。
此外,构成显示装置的薄膜(绝缘膜、半导体膜、导电膜等)可以利用旋涂法、浸渍法、喷涂法、喷墨法、分配器法、丝网印刷法、胶版印刷法、刮刀(doctor knife)法、狭缝式涂布法、辊涂法、帘式涂布法、刮刀式涂布法等方法形成。
此外,当对构成显示装置的薄膜进行加工时,可以利用光刻法等进行加工。除了上述方法以外,还可以利用纳米压印法、喷砂法、剥离法等对薄膜进行加工。此外,可以通过利用金属掩模等遮蔽掩模的沉积方法直接形成岛状的薄膜。
光刻法典型地有如下两种方法。一个是在要进行加工的薄膜上形成抗蚀剂掩模,通过蚀刻等对该薄膜进行加工,并去除抗蚀剂掩模的方法。另一个是在沉积感光性薄膜之后,进行曝光及显影来将该薄膜加工为所希望的形状的方法。
在光刻法中,作为用于曝光的光,例如可以使用i线(波长365nm)、g线(波长436nm)、h线(波长405nm)或将这些光混合了的光。此外,还可以使用紫外光、KrF激光或ArF激光等。此外,也可以利用液浸曝光技术进行曝光。此外,作为用于曝光的光,也可以使用极紫外(EUV:Extreme Ultra-violet)光或X射线等。此外,也可以使用电子束代替用于曝光的光。当使用极紫外光、X射线或电子束时,可以进行极其微细的加工,所以是优选的。注意,在通过利用电子束等光束进行扫描而进行曝光时,不需要光掩模。
作为薄膜的蚀刻方法,可以利用干蚀刻法、湿蚀刻法及喷砂法等。
[衬底100的准备]
作为衬底100,可以使用至少具有能够承受后面的热处理程度的耐热性的衬底。在使用绝缘衬底作为衬底100的情况下,可以使用玻璃衬底、石英衬底、蓝宝石衬底、陶瓷衬底、有机树脂衬底等。此外,还可以使用以硅或碳化硅等为材料的单晶半导体衬底或多晶半导体衬底、以硅锗等为材料的化合物半导体衬底、SOI衬底等半导体衬底。
尤其是,衬底100优选使用在上述半导体衬底或绝缘衬底上形成有包括晶体管等半导体元件的半导体电路的衬底。该半导体电路优选例如构成像素电路、栅极线驱动电路(栅极驱动器)、源极线驱动电路(栅极驱动器)等。除此以外,还可以构成运算电路、存储电路等。
[阳极101R、101G、101B、连接电极101C的形成]
接着,在衬底100上形成阳极101R、阳极101G、阳极101B及连接电极101C。首先,沉积成为阳极(像素电极)的导电膜,通过光刻法形成抗蚀剂掩模,通过蚀刻去除导电膜的不要部分。然后,去除抗蚀剂掩模,由此可以形成阳极101R、阳极101G、阳极101B及连接电极101C。
在作为各像素电极使用对可见光具有反射性的导电膜时,优选使用可见光的波长域整体的反射率尽量高的材料(例如,银或铝等)。由此,不仅可以提高发光器件的光提取效率,而且可以提高颜色再现性。在将对可见光具有反射性的导电膜用作各像素电极的情况下,可以得到在与衬底相反的方向上提取光的所谓的顶部发射型发光装置。在将具有透光性的导电膜用作各像素电极的情况下,可以得到在衬底方向上提取光的所谓的底部发射型发光装置。
[绝缘层121的形成]
接着,以覆盖阳极101R、阳极101G、阳极101B及连接电极101C的端部的方式形成绝缘层121(图6A)。作为绝缘层121,可以使用有机绝缘膜或无机绝缘膜。为了提高后面形成的EL膜的台阶覆盖性,优选使绝缘层121端部具有锥形形状。尤其在使用有机绝缘膜时优选使用感光性的材料,此时可以根据曝光及显影的条件容易控制端部的形状。此外,在不设置绝缘层121的情况下,可以进一步拉近发光器件之间的距离,由此可以得到更高清晰发光装置。
[EL膜103Rb的形成]
接着,在阳极101R、阳极101G、阳极101B及绝缘层121上沉积后面成为第一EL层103R的EL膜103Rb。
EL膜103Rb至少包括包含发光性化合物的膜。除此以外,还可以层叠有被用作空穴传输层、空穴注入层、电子阻挡层的膜中的一个以上。EL膜103Rb例如可以通过蒸镀法、溅射法或喷墨法等形成。此外,不局限于此,可以适当地使用上述沉积方法。
作为一个例子,作为EL膜103Rb优选使用依次层叠有空穴注入层、空穴传输层、发光层的叠层膜。此时,作为后面形成的EL层可以使用包括电子传输层114、电子注入层115的膜。在本发明的一个方式中,通过使用空穴传输材料与电子传输材料的混合材料作为发光层中的主体材料,可以使载流子的再结合区域远离发光层的阴极一侧表面,从而可以减少由于利用光刻法的图案化及蚀刻导致的可靠性下降。
EL膜103Rb优选不设置在连接电极101C上。例如,在通过蒸镀法(或溅射法)形成EL膜103Rb时,为了避免在连接电极101C上沉积EL膜103Rb,优选使用遮蔽掩模或者在后面的蚀刻工序中去除。
[牺牲膜144a的形成]
接着,以覆盖EL膜103Rb的方式形成牺牲膜144a。此外,牺牲膜144a接触于连接电极101C的顶面。
牺牲膜144a可以使用对于EL膜103Rb等的各EL膜的蚀刻处理的耐性较高的膜,即蚀刻选择比较大的膜。此外,牺牲膜144a可以使用与后述的保护膜146a等保护膜的蚀刻选择比较大的膜。并且,牺牲膜144a可以使用可以通过对各EL膜带来的损伤较少的湿蚀刻法被去除的膜。
作为牺牲膜144a,例如可以使用金属膜、合金膜、金属氧化物膜、半导体膜、无机绝缘膜等的无机膜。牺牲膜144a可以通过溅射法、蒸镀法、CVD法、ALD法等的各种沉积方法形成。
作为牺牲膜144a,例如可以使用金、银、铂、镁、镍、钨、铬、钼、铁、钴、铜、钯、钛、铝、钇、锆及钽等的金属材料或者包含该金属材料的合金材料。尤其是,优选使用铝或银等低熔点材料。
此外,作为牺牲膜144a可以使用铟镓锌氧化物(In-Ga-Zn氧化物,也记为IGZO)等金属氧化物。此外,作为牺牲膜144a,可以使用氧化铟、铟锌氧化物(In-Zn氧化物)、铟锡氧化物(In-Sn氧化物)、铟钛氧化物(In-Ti氧化物)、铟锡锌氧化物(In-Sn-Zn氧化物)、铟钛锌氧化物(In-Ti-Zn氧化物)、铟镓锡锌氧化物(In-Ga-Sn-Zn氧化物)等。或者,也可以使用包含硅的铟锡氧化物等。
注意,也可以应用于使用元素M(M为铝、硅、硼、钇、铜、钒、铍、钛、铁、镍、锗、锆、钼、镧、铈、钕、铪、钽、钨和镁中的一种或多种)代替上述镓的情况。尤其是,M优选为镓、铝和钇中的一种或多种。
此外,作为牺牲膜144a可以使用氧化铝、氧化铪、氧化硅等无机绝缘材料。
此外,作为牺牲膜144a,优选使用至少可溶解于对位于EL膜103Rb的最上部的膜化学上稳定的溶剂的材料。尤其是,可以将溶解于水或醇的材料适合用于牺牲膜144a。在沉积牺牲膜144a时,在将材料溶解于水或醇等溶剂的状态下通过湿式的沉积方法涂敷,然后进行加热处理以便使溶剂蒸发。此时,通过在减压气氛下进行加热处理,可以以低温且短时间去除溶剂,所以可以减少对EL膜103Rb带来的热损伤,所以是优选的。
作为可用于牺牲膜144a的湿式的沉积方法,可以举出旋涂法、浸渍法、喷涂法、喷墨法、分配器法、丝网印刷法、胶版印刷法、刮刀法、狭缝式涂布法、辊涂法、帘式涂布法、刮刀式涂布法等。
作为牺牲膜144a,可以使用聚乙烯醇(PVA)、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚乙二醇、聚甘油、普鲁兰多糖、水溶性纤维素或可溶解于醇的聚酰胺树脂等的有机材料。
[保护膜146a的形成]
接着,在牺牲膜144a上形成保护膜146a(图6B)。
保护膜146a是在后面蚀刻牺牲膜144a时用作硬掩模的膜。此外,在后面的保护膜146a的加工时牺牲膜144a被露出。因此,作为牺牲膜144a及保护膜146a的组合选择彼此的蚀刻选择比较大的膜。因此,可以根据牺牲膜144a的蚀刻条件及保护膜146a的蚀刻条件选择可用于保护膜146a的膜。
例如,当在保护膜146a的蚀刻中使用利用包含氟的气体(氟类气体)的干蚀刻时,可以将硅、氮化硅、氧化硅、钨、钛、钼、钽、氮化钽、包含钼及铌的合金或包含钼及钨的合金等用于保护膜146a。在此,作为相对于上述氟类气体的干蚀刻的蚀刻选择比大(即,蚀刻速度较慢)的膜,可以举出IGZO、ITO等的金属氧化物膜等,可以将该金属氧化物膜用于牺牲膜144a。
此外,不局限于此,保护膜146a可以根据牺牲膜144a的蚀刻条件及保护膜146a的蚀刻条件从各种材料选择。例如,也可以从可用于上述牺牲膜144a的膜选择。
此外,作为保护膜146a例如可以使用氮化物膜。具体而言,可以使用氮化硅、氮化铝、氮化铪、氮化钛、氮化钽、氮化钨、氮化镓、氮化锗等氮化物。
此外,作为保护膜146a可以使用氧化物膜。典型的是,可以使用氧化硅、氧氮化硅、氧化铝、氧氮化铝、氧化铪、氧氮化铪等氧化物膜或者氧氮化物膜。
此外,作为保护膜146a可以使用可用于EL膜103Rb等的有机膜。例如,可以将与用于EL膜103Rb、EL膜103Gb或EL膜103Bb的有机膜相同的膜用于保护膜146a。通过使用这些有机膜,可以与EL膜103Rb等共通使用相同沉积装置,所以是优选的。
[抗蚀剂掩模143a的形成]
接着,在保护膜146a上的与阳极101R重叠的位置及与连接电极101C重叠的位置上分别形成抗蚀剂掩模143a(图6C)。
抗蚀剂掩模143a可以使用正型抗蚀剂材料或负型抗蚀剂材料等包括感光性树脂的抗蚀剂材料。
在此,在不包括保护膜146a而在牺牲膜144a上形成抗蚀剂掩模143a的情况下,在牺牲膜144a中存在有针孔等的缺陷时有时因抗蚀剂材料的溶剂而EL膜103Rb被溶解。通过使用保护膜146a,可以防止这样不良的发生。
此外,在作为牺牲膜144a使用不容易发生针孔等缺陷的膜时,也可以不使用保护膜146a而在牺牲膜144a上直接形成抗蚀剂掩模143a。
[保护膜146a的蚀刻]
接着,通过蚀刻去除保护膜146a的不被抗蚀剂掩模143a覆盖的一部分来形成带状的保护层147a。同时,也在连接电极101C上形成保护层147a。
在蚀刻保护膜146a时,优选采用选择比高的蚀刻条件以便防止牺牲膜144a通过该蚀刻被去除。保护膜146a的蚀刻可以通过湿蚀刻或干蚀刻进行,通过使用干蚀刻可以抑制保护膜146a的图案缩小。
[抗蚀剂掩模143a的去除]
接着,去除抗蚀剂掩模143a(图6D)。
在去除抗蚀剂掩模143a时可以利用湿蚀刻或干蚀刻。尤其是,优选通过使用氧气体作为蚀刻气体的干蚀刻(也被称为等离子体灰化)去除抗蚀剂掩模143a。
此时,以EL膜103Rb被牺牲膜144a覆盖的状态去除抗蚀剂掩模143a,所以EL膜103Rb受到的影响得到抑制。尤其是,在EL膜103Rb暴露于氧时有时对电特性带来不好影响,所以在进行等离子体灰化等的利用氧气体的蚀刻时优选的。
[牺牲膜144a的蚀刻]
接着,使用保护层147a作为掩模通过蚀刻去除牺牲膜144a的不被保护层147a覆盖的一部分来形成帯状的牺牲层145a(图6E)。同时,也在连接电极101C上形成牺牲层145a。
牺牲膜144a的蚀刻可以通过湿蚀刻或干蚀刻进行,通过使用干蚀刻法可以抑制牺牲膜144a的图案缩小。
[EL膜103Rb、保护层147a的蚀刻]
接着,在蚀刻保护层147a的同时通过蚀刻去除不被牺牲层145a覆盖的EL膜103Rb的一部分来形成带状的第一EL层103R(图6F)。同时,连接电极101C上的保护层147a也被去除。
通过进行相同处理蚀刻EL膜103Rb及保护层147a,可以简化工序,所以可以降低显示装置的制造成本,所以是优选的。
尤其是,在蚀刻EL膜103Rb时优选利用使用不包含氧作为主要成分的蚀刻气体的干蚀刻法。由此,可以抑制EL膜103Rb的变质而可以实现可靠性高的显示装置。作为不包含氧作为主要成分的蚀刻气体,例如可以举出CF4、C4F8、SF6、CHF3、Cl2、H2O、BCl3、H2或He等稀有气体。此外,可以将上述气体及不包含氧的稀释气体的混合气体用于蚀刻气体。
此外,也可以分别进行EL膜103Rb的蚀刻及保护层147a的蚀刻。此时,既可以先蚀刻EL膜103Rb,又可以先蚀刻保护层147a。
在此,EL膜103Rb及连接电极101C被牺牲层145a覆盖。
[EL膜103Gb的形成]
接着,在牺牲层145a、绝缘层121、阳极101G、阳极101B上沉积后面成为第一EL层103G的EL膜103Gb。此时,与上述EL膜103Rb同样,优选在连接电极101C上不设置EL膜103Gb。
EL膜103Gb的形成方法可以参照上述EL膜103Rb的记载。
[牺牲膜144b的形成]
接着,在EL膜103Gb上形成牺牲膜144b。牺牲膜144b可以通过与上述牺牲膜144a同样的方法形成。尤其是,牺牲膜144b可以使用与牺牲膜144a相同的材料。
此时,同时在连接电极101C上以覆盖牺牲层145a的方式形成牺牲膜144a。
[保护膜146b的形成]
接着,在牺牲膜144b上形成保护膜146b。保护膜146b可以通过与上述保护膜146a同样的方法形成。尤其是,保护膜146b可以使用与上述保护膜146a相同的材料。
[抗蚀剂掩模143b的形成]
接着,在保护膜146b上的与阳极101G重叠的区域及与连接电极101C重叠的区域分别形成抗蚀剂掩模143b(图7A)。
抗蚀剂掩模143b可以通过与上述抗蚀剂掩模143a同样的方法形成。
[保护膜146b的蚀刻]
接着,通过蚀刻去除不被抗蚀剂掩模143b覆盖的保护膜146b的一部分来形成带状的保护层147b(图7B)。同时,也在连接电极101C上形成保护层147b。
保护膜146b的蚀刻可以参照上述保护膜146a的记载。
[抗蚀剂掩模143b的去除]
接着,去除抗蚀剂掩模143a。抗蚀剂掩模143b的去除可以参照上述抗蚀剂掩模143a的记载。
[牺牲膜144b的蚀刻]
接着,使用保护层147b作为掩模通过蚀刻去除牺牲膜144b的不被保护层147b覆盖的一部分来形成帯状的牺牲层145b。同时,也在连接电极101C上形成牺牲层145b。连接电极101C上层叠有牺牲层145a与牺牲层145b。
牺牲膜144b的蚀刻可以参照上述牺牲膜144a的记载。
[EL膜103Gb、保护层147b的蚀刻]
接着,在蚀刻保护层147b的同时通过蚀刻去除不被牺牲层145b覆盖的EL膜103Gb的一部分来形成带状的第一EL层103G(图7C)。同时,连接电极101C上的保护层147b也被去除。
EL膜103Gb及保护层147b的蚀刻可以参照上述EL膜103Rb及保护层147a的记载。
此时,第一EL层103R被牺牲层145a保护,所以可以防止EL膜103Gb的蚀刻工序中受到损伤。
通过上述步骤,可以以高位置精度分别形成带状的第一EL层103R及带状的第一EL层103G。
[第一EL层103B的形成]
通过对EL膜103Bb(未图示)进行上述工序,可以形成岛状第一EL层103B及岛状的牺牲层145c(图7D)。
也就是说,在形成第一EL层103G之后,依次形成EL膜103Bb、牺牲膜144c、保护膜146c及抗蚀剂掩模143c(都未图示)。接着,蚀刻保护膜146c来形成保护层147c(未图示),然后去除抗蚀剂掩模143c。接着,蚀刻牺牲膜144c来形成牺牲层145c。然后,蚀刻保护层147c及EL膜103Bb来形成带状的第一EL层103B。
此外,在形成第一EL层103B的同时,也在连接电极101C上形成牺牲层145c。连接电极101C上层叠有牺牲层145a、牺牲层145b、牺牲层145c。
[牺牲层的去除]
接着,去除牺牲层145a、牺牲层145b、牺牲层145c来使第一EL层103R、第一EL层103G、第一EL层103B的顶面露出(图7E)。同时,连接电极101C的顶面也被露出。
牺牲层145a、牺牲层145b、牺牲层145c可以通过湿蚀刻或干蚀刻去除。此时,优选采用尽量不对第一EL层103R、第一EL层103G、第一EL层103B带来损伤的方法。尤其是,优选使用湿蚀刻法。例如,优选利用使用四甲基氢氧化铵水溶液(TMAH)、稀氢氟酸、草酸、磷酸、乙酸、硝酸或它们的混合液体的湿蚀刻。
或者,优选将牺牲层145a、牺牲层145b、牺牲层145c溶解于水或醇等的溶剂而去除。在此,作为可以溶解牺牲层145a、牺牲层145b及牺牲层145c的醇,可以使用乙基醇、甲基醇、异丙基醇(IPA)或甘油等各种醇。
优选在去除牺牲层145a、牺牲层145b及牺牲层145c之后进行干燥处理,以便去除包含在第一EL层103R、第一EL层103G及第一EL层103B内部的水及吸附于它们表面的水。例如,优选在非活性气体气氛或减压气氛下进行加热处理。在加热处理中,作为衬底温度可以在50℃以上且200℃以下,优选在60℃以上且150℃以下,更优选在70℃以上且120℃以下的温度下进行。通过采用减压气氛,可以以更低温进行干燥,所以是优选的。
如此,可以分别制造第一EL层103R、第一EL层103G及第一EL层103B。
注意,第一EL层103R、第一EL层103G及第一EL层103B各自所包括的电子传输层的结构可以彼此相同或不相同。此外,各电子传输层所包含的杂芳族化合物中的杂芳环优选相同,各电子传输层所包含的杂芳族化合物优选相同。此外,各电子传输层所包含的有机化合物优选相同。
[EL层515的形成]
接着,以覆盖第一EL层103R、第一EL层103G及第一EL层103B的方式沉积EL层515。EL层515包括如电子传输层、电子注入层等具有注入及传输电子的功能的层。
EL层515可以通过与EL膜103Rb等同样的方法沉积。在通过蒸镀法沉积EL层515时,优选使用遮蔽掩模进行沉积免得EL层515沉积在连接电极101C上。
[阴极102的形成]
接着,以覆盖EL层515及连接电极101C的方式形成阴极102(图7F)。
阴极102可以通过蒸镀法或溅射法等的沉积方法形成。或者,也可以层叠通过蒸镀法形成的膜与通过溅射法形成的膜。此时,优选以包围沉积EL层515的区域的方式形成阴极102。就是说,EL层515的端部可以与阴极102重叠。阴极102优选使用遮蔽掩模形成。
阴极102在显示区域的外侧与连接电极101C电连接。
[保护层的形成]
接着,在阴极102上形成保护层。在沉积用于保护层的无机绝缘膜时优选使用溅射法、PECVD法或ALD法。尤其是,ALD法是台阶覆盖性良好且不容易产生针孔等缺陷的方法,所以是优选的。此外,在沉积有机绝缘膜时,由于可以在所希望的区域均匀地形成膜,所以优选使用喷墨法。
通过上述步骤,可以制造本发明的一个方式的发光装置。
注意,上面说明形成顶面形状互不相同的阴极102及电子注入层115的情况,但是也可以将阴极102及电子注入层115设置在相同区域中。
[发光器件的结构例子]
接着,说明本发明的一个方式的发光器件的其他结构或材料的例子。如上所述,本发明的一个方式的发光器件在阳极101和阴极102这一对电极之间包括由多个层构成的第一EL层103,该第一EL层103包括包含发光材料的发光层113以及具有上述结构的电子传输层114。
阳极101优选使用功函数大(具体为4.0eV以上)的金属、合金、导电化合物以及它们的混合物等形成。具体地,例如可以举出氧化铟-氧化锡(ITO:Indium Tin Oxide,铟锡氧化物)、包含硅或氧化硅的氧化铟-氧化锡、氧化铟-氧化锌、包含氧化钨及氧化锌的氧化铟(IWZO)等。虽然通常通过溅射法沉积这些导电金属氧化物膜,但是也可以应用溶胶-凝胶法等来形成。作为形成方法的例子,可以举出使用对氧化铟添加有1wt%至20wt%的氧化锌的靶材通过溅射法形成氧化铟-氧化锌的方法等。此外,可以使用对氧化铟添加有0.5wt%至5wt%的氧化钨和0.1wt%至1wt%的氧化锌的靶材通过溅射法形成包含氧化钨及氧化锌的氧化铟(IWZO)。此外,作为用于阳极101的材料例如可以举出金(Au)、铂(Pt)、镍(Ni)、钨(W)、铬(Cr)、钼(Mo)、铁(Fe)、钴(Co)、铜(Cu)、钯(Pd)或金属材料的氮化物(例如,氮化钛)等。此外,作为用于阳极101的材料也可以使用石墨烯。此外,通过将后面说明的复合材料用于第一EL层103中的接触于阳极101的层,可以在选择电极材料时无需顾及功函数。
第一EL层103优选具有叠层结构,对该叠层结构没有特别的限制,可以采用空穴注入层、空穴传输层、发光层、电子传输层、电子注入层、载流子阻挡层(空穴阻挡层及电子阻挡层)、激子阻挡层、电荷产生层等各种层结构。此外,也可以不设置任意层。在本实施方式中,以下具体示出如下结构:如图1A至图1D所示,第一EL层103包括空穴注入层111、空穴传输层112、发光层113、电子传输层114及电子注入层115。
空穴注入层111是含有具有受主性的物质的层。作为具有受主性的物质,既可使用有机化合物又可使用无机化合物。
作为具有受体性的物质可以使用具有吸电子基团(卤基、氰基)的化合物,可以举出7,7,8,8-四氰-2,3,5,6-四氟醌二甲烷(简称:F4-TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮杂三亚苯(简称:HAT-CN)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(简称:F6-TCNNQ)、2-(7-二氰基亚甲基-1,3,4,5,6,8,9,10-八氟-7H-芘-2-亚基)丙二腈等。尤其是,吸电子基团键合于具有多个杂原子的稠合芳香环的化合物诸如HAT-CN等热稳定,所以是优选的。此外,包括吸电子基团(尤其是如氟基等卤基、氰基)的[3]轴烯衍生物的电子接收性非常高,所以是优选的,具体而言,可以举出:α,α’,α”-1,2,3-环丙烷三亚基三[4-氰-2,3,5,6-四氟苯乙腈]、α,α’,α”-1,2,3-环丙烷三亚基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α”-1,2,3-环丙烷三亚基三[2,3,4,5,6-五氟苯乙腈]等。作为具有受主性的物质,除了上述有机化合物以外还可以使用钼氧化物、钒氧化物、钌氧化物、钨氧化物、锰氧化物等。此外,也可以使用酞菁(简称:H2Pc)、酞菁类配合物化合物如铜酞菁(CuPc)等;芳香胺化合物如4,4’-双[N-(4-二苯基氨基苯基)-N-苯基氨基]联苯(简称:DPAB)、N,N’-双{4-[双(3-甲基苯基)氨基]苯基}-N,N’-二苯基-(1,1’-联苯)-4,4’-二胺(简称:DNTPD)等;或者高分子如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(简称:PEDOT/PSS)等来形成空穴注入层111。具有受主性的物质借助于施加电场而能够从邻接的空穴传输层(或空穴传输材料)抽出电子。
此外,作为空穴注入层111,可以使用在具有空穴传输性的材料中含有上述受主性物质的复合材料。注意,通过使用在具有空穴传输性的材料中含有受主性物质的复合材料,在选择形成电极的材料时可以无需顾及电极的功函数。换言之,作为阳极101,不仅可以使用功函数高的材料,还可以使用功函数低的材料。
作为用于复合材料的具有空穴传输性的材料,可以使用各种有机化合物如芳香胺化合物、咔唑衍生物、芳香烃、高分子化合物(低聚物、树枝状聚合物、聚合物等)等。作为用于复合材料的具有空穴传输性的材料,优选使用空穴迁移率为1×10-6cm2/Vs以上的物质。以下,具体地列举可以用作复合材料中的具有空穴传输性的材料的有机化合物。
作为可以用于复合材料的芳香胺化合物,可以举出N,N’-二(对甲苯基)-N,N’-二苯基-对亚苯基二胺(简称:DTDPPA)、4,4’-双[N-(4-二苯基氨基苯基)-N-苯基氨基]联苯(简称:DPAB)、N,N’-双{4-[双(3-甲基苯基)氨基]苯基}-N,N’-二苯基-(1,1’-联苯)-4,4’-二胺(简称:DNTPD)、1,3,5-三[N-(4-二苯基氨基苯基)-N-苯基氨基]苯(简称:DPA3B)等。作为咔唑衍生物,可以具体地举出3-[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(简称:PCzPCA1)、3,6-双[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(简称:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨基]-9-苯基咔唑(简称:PCzPCN1)、4,4’-二(N-咔唑基)联苯(简称:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(简称:TCPB)、9-[4-(10-苯基蒽-9-基)苯基]-9H-咔唑(简称:CzPA)、1,4-双[4-(N-咔唑基)苯基]-2,3,5,6-四苯基苯等。作为芳香烃,例如可以举出2-叔丁基-9,10-二(2-萘基)蒽(简称:t-BuDNA)、2-叔丁基-9,10-二(1-萘基)蒽、9,10-双(3,5-二苯基苯基)蒽(简称:DPPA)、2-叔丁基-9,10-双(4-苯基苯基)蒽(简称:t-BuDBA)、9,10-二(2-萘基)蒽(简称:DNA)、9,10-二苯基蒽(简称:DPAnth)、2-叔丁基蒽(简称:t-BuAnth)、9,10-双(4-甲基-1-萘基)蒽(简称:DMNA)、2-叔丁基-9,10-双[2-(1-萘基)苯基]蒽、9,10-双[2-(1-萘基)苯基]蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9’-联蒽、10,10’-二苯基-9,9’-联蒽、10,10’-双(2-苯基苯基)-9,9’-联蒽、10,10’-双[(2,3,4,5,6-五苯基)苯基]-9,9’-联蒽、蒽、并四苯、红荧烯、苝、2,5,8,11-四(叔丁基)苝等。此外,除此之外,还可以使用并五苯、晕苯等。此外,也可以具有乙烯基骨架。作为具有乙烯基的芳香烃,例如可以举出4,4’-双(2,2-二苯基乙烯基)联苯(简称:DPVBi)、9,10-双[4-(2,2-二苯基乙烯基)苯基]蒽(简称:DPVPA)等。此外,也可以使用本发明的一个方式的有机化合物。
此外,也可以使用聚(N-乙烯基咔唑)(简称:PVK)、聚(4-乙烯基三苯胺)(简称:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基氨基)苯基]苯基-N’-苯基氨基}苯基)甲基丙烯酰胺](简称:PTPDMA)、聚[N,N’-双(4-丁基苯基)-N,N’-双(苯基)联苯胺](简称:Poly-TPD)等高分子化合物。
作为用于复合材料的具有空穴传输性的材料,更优选具有咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架及蒽骨架中的任意个。尤其是,可以为具有包括二苯并呋喃环或二苯并噻吩环的取代基的芳香胺、包括萘环的芳香单胺、或者9-芴基通过亚芳基键合于胺的氮的芳香单胺。注意,当这些第二有机化合物是包括N,N-双(4-联苯)氨基的物质时,可以制造寿命长的发光器件,所以是优选的。作为上述第二有机化合物,具体而言,可以举出N-(4-联苯)-6,N-二苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BnfABP)、N,N-双(4-联苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf)、4,4’-双(6-苯基苯并[b]萘并[1,2-d]呋喃-8-基)-4”-苯基三苯基胺(简称:BnfBB1BP)、N,N-双(4-联苯)苯并[b]萘并[1,2-d]呋喃-6-胺(简称:BBABnf(6))、N,N-双(4-联苯)苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf(8))、N,N-双(4-联苯)苯并[b]萘并[2,3-d]呋喃-4-胺(简称:BBABnf(II)(4))、N,N-双[4-(二苯并呋喃-4-基)苯基]-4-氨基-对三联苯基(简称:DBfBB1TP)、N-[4-(二苯并噻吩-4-基)苯基]-N-苯基-4-联苯胺(简称:ThBA1BP)、4-(2-萘基)-4’,4”-二苯基三苯基胺(简称:BBAβNB)、4-[4-(2-萘基)苯基]-4’,4”-二苯基三苯基胺(简称:BBAβNBi)、4,4’-二苯基-4”-(6;1’-联萘基-2-基)三苯基胺(简称:BBAαNβNB)、4,4’-二苯基-4”-(7;1’-联萘基-2-基)三苯基胺(简称:BBAαNβNB-03)、4,4’-二苯基-4”-(7-苯基)萘基-2-基三苯基胺(简称:BBAPβNB-03)、4,4’-二苯基-4”-(6;2’-联萘基-2-基)三苯基胺(简称:BBA(βN2)B)、4,4’-二苯基-4”-(7;2’-联萘基-2-基)-三苯基胺(简称:BBA(βN2)B-03)、4,4’-二苯基-4”-(4;2’-联萘基-1-基)三苯基胺(简称:BBAβNαNB)、4,4’-二苯基-4”-(5;2’-联萘基-1-基)三苯基胺(简称:BBAβNαNB-02)、4-(4-联苯基)-4’-(2-萘基)-4”-苯基三苯基胺(简称:TPBiAβNB)、4-(3-联苯基)-4’-[4-(2-萘基)苯基]-4”-苯基三苯基胺(简称:mTPBiAβNBi)、4-(4-联苯基)-4’-[4-(2-萘基)苯基]-4”-苯基三苯基胺(简称:TPBiAβNBi)、4-苯基-4’-(1-萘基)三苯基胺(简称:αNBA1BP)、4,4’-双(1-萘基)三苯基胺(简称:αNBB1BP)、4,4’-二苯基-4”-[4’-(咔唑-9-基)联苯-4-基]三苯基胺(简称:YGTBi1BP)、4’-[4-(3-苯基-9H-咔唑-9-基)苯基]三(1,1’-联苯-4-基)胺(简称:YGTBi1BP-02)、4-二苯基-4’-(2-萘基)-4”-{9-(4-联苯基)咔唑)}三苯基胺(简称:YGTBiβNB)、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-N-[4-(1-萘基)苯基]-9,9’-螺二[9H-芴]-2-胺(简称:PCBNBSF)、N,N-双(4-联苯基)-9,9’-螺二[9H-芴]-2-胺(简称:BBASF)、N,N-双(1,1’-联苯基-4-基)-9,9’-螺二[9H-芴]-4-胺(简称:BBASF(4))、N-(1,1’-联苯-2-基)-N-(9,9-二甲基-9H-芴-2-基)-9,9’-螺-双(9H-芴)-4-胺(简称:oFBiSF)、N-(4-联苯基)-N-(二苯并呋喃-4-基)-9,9-二甲基-9H-芴-2--胺(简称:FrBiF)、N-[4-(1-萘基)苯基]-N-[3-(6-苯基二苯并呋喃-4-基)苯基]-1-萘基胺(简称:mPDBfBNBN)、4-苯基-4’-(9-苯基芴-9-基)三苯基胺(简称:BPAFLP)、4-苯基-3’-(9-苯基芴-9-基)三苯基胺(简称:mBPAFLP)、4-苯基-4’-[4-(9-苯基芴-9-基)苯基]三苯基胺(简称:BPAFLBi)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBNBB)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-螺-9,9’-二芴-2-胺(简称:PCBASF)、N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-芴-2-胺(简称:PCBBiF)、N,N-双(9,9-二甲基-9H-芴-2-基)-9,9’-螺二-9H-芴-4-胺、N,N-双(9,9-二甲基-9H-芴-2-基)-9,9’-螺二-9H-芴-3-胺、N,N-双(9,9-二甲基-9H-芴-2-基)-9,9’-螺二-9H-芴-2-胺、N,N-双(9,9-二甲基-9H-芴-2-基)-9,9’-螺二-9H-芴-1-胺等。
注意,用于复合材料的具有空穴传输性的材料更优选为具有-5.7eV以上且-5.4eV以下的较深的HOMO能级的物质。当用于复合材料的具有空穴传输性的材料具有较深的HOMO能级时,空穴容易注入到空穴传输层112,且可以容易得到使用寿命长的发光器件。此外,在用于复合材料的具有空穴传输性的材料为具有较深的HOMO能级的物质时,空穴的感应适当地得到抑制,因此可以实现使用寿命更长的发光器件。
注意,通过还对上述复合材料混合碱金属或碱土金属的氟化物(优选的是该层中的氟原子的原子比率为20%以上),可以降低该层的折射率。由此,也可以在第一EL层103内部形成折射率低的层,且可以提高发光器件的外部量子效率。
通过形成空穴注入层111,可以提高空穴注入性,从而可以得到驱动电压低的发光器件。
此外,在具有受主性的物质中具有受主性的有机化合物可以利用蒸镀容易地沉积,所以是易于使用的材料。
空穴传输层112以包含具有空穴传输性的材料的方式形成。具有空穴传输性的材料优选具有1×10-6cm2/Vs以上的空穴迁移率。
作为上述具有空穴传输性的材料,可以举出:4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(简称:NPB)、N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯]-4,4’-二胺(简称:TPD)、4,4’-双[N-(螺-9,9’-二芴-2-基)-N-苯基氨基]联苯(简称:BSPB)、4-苯基-4’-(9-苯基芴-9-基)三苯胺(简称:BPAFLP)、4-苯基-3’-(9-苯基芴-9-基)三苯胺(简称:mBPAFLP)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]芴-2-胺(简称:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-二芴-2-胺(简称:PCBASF)等具有芳香胺骨架的化合物;1,3-双(N-咔唑基)苯(简称:mCP)、4,4’-二(N-咔唑基)联苯(简称:CBP)、3,6-双(3,5-二苯基苯基)-9-苯基咔唑(简称:CzTP)、3,3’-双(9-苯基-9H-咔唑)(简称:PCCP)、9,9’-双(联苯基-4-基)-3,3’-联-9H-咔唑(简称:BisBPCz)、9,9’-双(1,1’-联苯基-3-基)-3,3’-联-9H-咔唑(简称:BismBPCz)、9-(1,1’-联苯基-3-基)-9’-(1,1’-联苯基-4-基)-9H,9’H-3,3’-联咔唑(简称:mBPCCBP)、9-(2-萘基)-9’-苯基-9H,9’H-3,3’-联咔唑(简称:βNCCP)等具有咔唑骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-芴-9-基)苯基]二苯并噻吩(简称:DBTFLP-III)、4-[4-(9-苯基-9H-芴-9-基)苯基]-6-苯基二苯并噻吩(简称:DBTFLP-IV)等具有噻吩骨架的化合物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:DBF3P-II)、4-{3-[3-(9-苯基-9H-芴-9-基)苯基]苯基}二苯并呋喃(简称:mmDBFFLBi-II)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物或具有咔唑骨架的化合物具有良好的可靠性和高空穴传输性并有助于降低驱动电压,所以是优选的。注意,作为构成空穴传输层112的材料也可以适当地使用作为用于空穴注入层111的复合材料的具有空穴传输性的材料举出的物质。
发光层113包含发光物质及主体材料。注意,发光层113也可以包含其他材料。此外,也可以为组成不同的两层的叠层。此外,在本发明的一个方式中,主体材料为空穴传输材料与电子传输材料的混合材料。
发光物质可以是荧光发光物质、磷光发光物质、呈现热活化延迟荧光(TADF)的物质或其他发光物质。本发明的一个方式可以在发光层113为呈现荧光发光的层,尤其是,为呈现蓝色荧光发光的层的情况下更适合地使用。
在发光层113中,作为可以用作荧光发光物质的材料,例如可以举出如下物质。注意,除此之外,还可以使用其他荧光发光物质。
例如,可以举出5,6-双[4-(10-苯基-9-蒽基)苯基]-2,2’-联吡啶(简称:PAP2BPy)、5,6-双[4’-(10-苯基-9-蒽基)联苯-4-基]-2,2’-联吡啶(简称:PAPP2BPy)、N,N’-二苯基-N,N’-双[4-(9-苯基-9H-芴-9-基)苯基]芘-1,6-二胺(简称:1,6FLPAPrn)、N,N’-双(3-甲基苯基)-N,N’-双[3-(9-苯基-9H-芴-9-基)苯基]芘-1,6-二胺(简称:1,6mMemFLPAPrn)、N,N’-双[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(简称:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(简称:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(简称:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(简称:PCAPA)、二萘嵌苯、2,5,8,11-四(叔丁基)二萘嵌苯(简称:TBP)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBAPA)、N,N”-(2-叔丁基蒽-9,10-二基二-4,1-亚苯基)双[N,N’,N’-三苯基-1,4-苯二胺](简称:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(简称:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(简称:2DPAPPA)、N,N,N’,N’,N”,N”,N”’,N”’-八苯基二苯并[g,p](chrysene)-2,7,10,15-四胺(简称:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(简称:2PCAPA)、N-[9,10-双(1,1’-联苯基-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(简称:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N’,N’-三苯基-1,4-苯二胺(简称:2DPAPA)、N-[9,10-双(1,1’-联苯-2-基)-2-蒽基]-N,N’,N’-三苯基-1,4-苯二胺(简称:2DPABPhA)、9,10-双(1,1’-联苯-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(简称:2YGABPhA)、N,N,9-三苯基蒽-9-胺(简称:DPhAPhA)、香豆素545T、N,N’-二苯基喹吖酮(简称:DPQd)、红荧烯、5,12-双(1,1’-联苯-4-基)-6,11-二苯基并四苯(简称:BPT)、2-(2-{2-[4-(二甲氨基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亚基)丙二腈(简称:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCM2)、N,N,N’,N’-四(4-甲基苯基)并四苯-5,11-二胺(简称:p-mPhTD)、7,14-二苯基-N,N,N’,N’-四(4-甲基苯基)苊并[1,2-a]荧蒽-3,10-二胺(简称:p-mPhAFD)、2-{2-异丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTI)、2-{2-叔丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTB)、2-(2,6-双{2-[4-(二甲氨基)苯基]乙烯基}-4H-吡喃-4-亚基)丙二腈(简称:BisDCM)、2-{2,6-双[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:BisDCJTM)、N,N’-二苯基-N,N’-(1,6-芘-二基)双[(6-苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](简称:1,6BnfAPrn-03)、3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)、3,10-双[N-(二苯并呋喃-3-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10FrA2Nbf(IV)-02)等。尤其是,以1,6FLPAPrn、1,6mMemFLPAPrn、1,6BnfAPrn-03等芘二胺化合物为代表的稠合芳族二胺化合物具有高空穴俘获性且良好的发光效率及可靠性,所以是优选的。/>
在发光层113中,当作为发光物质使用磷光发光物质时,作为可使用的材料,例如可以举出如下物质。
例如可以使用如下材料,三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}铱(III)(简称:[Ir(mpptz-dmp)3])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)铱(III)(简称:[Ir(Mptz)3])、三[4-(3-联苯)-5-异丙基-3-苯基-4H-1,2,4-三唑]铱(III)(简称:[Ir(iPrptz-3b)3])等具有4H-三唑骨架的有机金属铱配合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]铱(III)(简称:[Ir(Mptz1-mp)3])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)铱(III)(简称:[Ir(Prptz1-Me)3])等具有1H-三唑骨架的有机金属铱配合物;fac-三[(1-2,6-二异丙基苯基)-2-苯基-1H-咪唑]铱(III)(简称:[Ir(iPrpmi)3])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]铱(III)(简称:[Ir(dmpimpt-Me)3])等具有咪唑骨架的有机金属铱配合物;以及双[2-(4’,6’-二氟苯基)吡啶根-N,C2’]铱(III)四(1-吡唑基)硼酸盐(简称:FIr6)、双[2-(4’,6’-二氟苯基)吡啶根-N,C2’]铱(III)吡啶甲酸酯(简称:FIrpic)、双{2-[3’,5’-双(三氟甲基)苯基]吡啶根-N,C2’}铱(III)吡啶甲酸酯(简称:[Ir(CF3ppy)2(pic)])、双[2-(4’,6’-二氟苯基)吡啶根-N,C2’]铱(III)乙酰丙酮(简称:FIracac)等以具有拉电子基的苯基吡啶衍生物为配体的有机金属铱配合物。上述物质是发射蓝色磷光的化合物,并且是在440nm至520nm的波长区域中具有发光峰的化合物。
此外,可以举出:三(4-甲基-6-苯基嘧啶根)铱(III)(简称:[Ir(mppm)3])、三(4-叔丁基-6-苯基嘧啶根)铱(III)(简称:[Ir(tBuppm)3])、(乙酰丙酮根)双(6-甲基-4-苯基嘧啶根)铱(III)(简称:[Ir(mppm)2(acac)])、(乙酰丙酮根)双(6-叔丁基-4-苯基嘧啶根)铱(III)(简称:[Ir(tBuppm)2(acac)])、(乙酰丙酮根)双[6-(2-降冰片基)-4-苯基嘧啶根]铱(III)(简称:[Ir(nbppm)2(acac)])、(乙酰丙酮根)双[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶根]铱(III)(简称:[Ir(mpmppm)2(acac)])、(乙酰丙酮根)双(4,6-二苯基嘧啶根)铱(III)(简称:[Ir(dppm)2(acac)])等具有嘧啶骨架的有机金属铱配合物;(乙酰丙酮根)双(3,5-二甲基-2-苯基吡嗪根)铱(III)(简称:[Ir(mppr-Me)2(acac)])、(乙酰丙酮根)双(5-异丙基-3-甲基-2-苯基吡嗪根)铱(III)(简称:[Ir(mppr-iPr)2(acac)])等具有吡嗪骨架的有机金属铱配合物;三(2-苯基吡啶根-N,C2’)铱(III)(简称:[Ir(ppy)3])、双(2-苯基吡啶根-N,C2’)铱(III)乙酰丙酮(简称:[Ir(ppy)2(acac)])、双(苯并[h]喹啉)铱(III)乙酰丙酮(简称:[Ir(bzq)2(acac)])、三(苯并[h]喹啉)铱(III)(简称:[Ir(bzq)3])、三(2-苯基喹啉-N,C2’)铱(III)(简称:[Ir(pq)3])、双(2-苯基喹啉-N,C2’)铱(III)乙酰丙酮(简称:[Ir(pq)2(acac)])、[2-d3-甲基-8-(2-吡啶基-κN)苯并呋喃并[2,3-b]吡啶-κC]双[2-(5-d3-甲基-2-吡啶基-κN2)苯基-κC]铱(III)(简称:Ir(5mppy-d3)2(mbfpypy-d3))、[2-(甲基-d3)-8-[4-(1-甲基乙基-1-d)-2-吡啶基-κN]苯并呋喃并2,[3-b]吡啶-7-基-κC]双[5-(甲基-d3)-2-[5-(甲基-d3)-2-吡啶基-κN]苯基-κC]铱(III)(简称:Ir(5mtpy-d6)2(mbfpypy-iPr-d4))、[2-d3-甲基-(2-吡啶基-κN)苯并呋喃并[2,3-b]吡啶-κC]双[2-(2-吡啶基-κN)苯基-κC]铱(III)(简称:Ir(ppy)2(mbfpypy-d3))、[2-(4-甲基-5-苯基-2-吡啶基-κN)苯基-κC]双[2-(2-吡啶基-κN)苯基-κC]铱(III)(简称:Ir(ppy)2(mdppy))等具有吡啶骨架的有机金属铱配合物;以及三(乙酰丙酮根)(单菲咯啉)铽(III)(简称:[Tb(acac)3(Phen)])等稀土金属配合物。上述物质主要是呈现绿色磷光的化合物,并且在500nm至600nm的波长区域中具有发光峰。此外,由于具有嘧啶骨架的有机金属铱配合物具有特别优异的可靠性、发光效率,所以是特别优选的。
此外,可以举出:(二异丁酰基甲烷根)双[4,6-双(3-甲基苯基)嘧啶基]铱(III)(简称:[Ir(5mdppm)2(dibm)])、双[4,6-双(3-甲基苯基)嘧啶根)(二新戊酰基甲烷根)铱(III)(简称:[Ir(5mdppm)2(dpm)])、双[4,6-二(萘-1-基)嘧啶根](二新戊酰基甲烷根)铱(III)(简称:[Ir(d1npm)2(dpm)])等具有嘧啶骨架的有机金属铱配合物;(乙酰丙酮根)双(2,3,5-三苯基吡嗪根)铱(III)(简称:[Ir(tppr)2(acac)])、双(2,3,5-三苯基吡嗪根)(二新戊酰基甲烷根)铱(III)(简称:[Ir(tppr)2(dpm)])、(乙酰丙酮根)双[2,3-双(4-氟苯基)喹喔啉合]铱(III)(简称:[Ir(Fdpq)2(acac)])等具有吡嗪骨架的有机金属铱配合物;三(1-苯基异喹啉-N,C2’)铱(III)(简称:[Ir(piq)3])、双(1-苯基异喹啉-N,C2’)铱(III)乙酰丙酮(简称:[Ir(piq)2(acac)])等具有吡啶骨架的有机金属铱配合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉铂(II)(简称:PtOEP)等铂配合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(单菲咯啉)铕(III)(简称:[Eu(DBM)3(Phen)])、三[1-(2-噻吩甲酰基)-3,3,3-三氟丙酮](单菲咯啉)铕(III)(简称:[Eu(TTA)3(Phen)])等稀土金属配合物。上述物质是呈现红色磷光的化合物,并且在600nm至700nm的波长区域中具有发光峰。此外,具有吡嗪骨架的有机金属铱配合物可以获得色度良好的红色发光。
此外,除了上述磷光化合物以外,还可以选择已知的磷光化合物而使用。
作为TADF材料可以使用富勒烯及其衍生物、吖啶及其衍生物以及伊红衍生物等。此外,还可以举出包含镁(Mg)、锌(Zn)、镉(Cd)、锡(Sn)、铂(Pt)、铟(In)或钯(Pd)等含金属卟啉。作为该含金属卟啉,例如,也可以举出由下述结构式表示的原卟啉-氟化锡配合物(SnF2(Proto IX))、中卟啉-氟化锡配合物(SnF2(Meso IX))、血卟啉-氟化锡配合物(SnF2(Hemato IX))、粪卟啉四甲酯-氟化锡配合物(SnF2(Copro III-4Me)、八乙基卟啉-氟化锡配合物(SnF2(OEP))、初卟啉-氟化锡配合物(SnF2(Etio I))以及八乙基卟啉-氯化铂配合物(PtCl2OEP)等。
[化学式1]
此外,还可以使用由下述结构式表示的2-(联苯-4-基)-4,6-双(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(简称:PIC-TRZ)、9-(4,6-二苯基-1,3,5-三嗪-2-基)-9’-苯基-9H,9’H-3,3’-联咔唑(简称:PCCzTzn)、9-[4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-9H,9’H-3,3’-联咔唑(简称:PCCzPTzn)、2-[4-(10H-吩恶嗪-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(简称:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氢吩嗪-10-基)苯基]-4,5-二苯基-1,2,4-三唑(简称:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧杂蒽-9-酮(简称:ACRXTN)、双[4-(9,9-二甲基-9,10-二氢吖啶)苯基]硫砜(简称:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(简称:ACRSA)等具有富π电子型杂芳环和缺π电子型杂芳环的一方或双方的杂环化合物。该杂环化合物具有富π电子型杂芳环和缺π电子型杂芳环,电子传输性和空穴传输性都高,所以是优选的。尤其是,在具有缺π电子杂芳环的骨架中,吡啶骨架、二嗪骨架(嘧啶骨架、吡嗪骨架、哒嗪骨架)及三嗪骨架稳定且可靠性良好,所以是优选的。尤其是,苯并呋喃并嘧啶骨架、苯并噻吩并嘧啶骨架、苯并呋喃并吡嗪骨架、苯并噻吩并吡嗪骨架的受体性高且可靠性良好,所以是优选的。此外,在具有富π电子杂芳环的骨架中,吖啶骨架、吩恶嗪骨架、吩噻嗪骨架、呋喃骨架、噻吩骨架及吡咯骨架稳定且可靠性良好,所以优选具有上述骨架中的至少一个。此外,作为呋喃骨架优选使用二苯并呋喃骨架,作为噻吩骨架优选使用二苯并噻吩骨架。作为吡咯骨架,特别优选使用吲哚骨架、咔唑骨架、吲哚并咔唑骨架、联咔唑骨架、3-(9-苯基-9H-咔唑-3-基)-9H-咔唑骨架。在富π电子型杂芳环和缺π电子型杂芳环直接键合的物质中,富π电子杂芳环的电子供给性和缺π电子型杂芳环的电子接收性都高而S1能级与T1能级之间的能量差变小,可以高效地获得热活化延迟荧光,所以是特别优选的。注意,也可以使用键合有氰基等吸电子基团的芳香环代替缺π电子型杂芳环。此外,作为富π电子型骨架,可以使用芳香胺骨架、吩嗪骨架等。此外,作为缺π电子型骨架,可以使用氧杂蒽骨架、二氧化噻吨(thioxanthene dioxide)骨架、噁二唑骨架、三唑骨架、咪唑骨架、蒽醌骨架、苯基硼烷或boranthrene等含硼骨架、苯甲腈或氰苯等具有腈基或氰基的芳香环或杂芳环、二苯甲酮等羰骨架、氧化膦骨架、砜骨架等。如此,可以使用缺π电子骨架及富π电子型骨架代替缺π电子型杂芳环以及富π电子杂芳环中的至少一个。
[化学式2]
TADF材料是指S1能级和T1能级之差较小且具有通过反系间窜跃将三重激发能转换为单重激发能的功能的材料。因此,能够通过微小的热能量将三重激发能上转换(up-convert)为单重激发能(反系间窜跃)并能够高效地产生单重激发态。此外,可以将三重激发能转换为发光。
以两种物质形成激发态的激基复合物(Exciplex)因S1能级和T1能级之差极小而具有可以将三重激发能转换为单重激发能的TADF材料的功能。
注意,作为T1能级的指标,可以使用在低温(例如,77K至10K)下观察到的磷光光谱。关于TADF材料,优选的是,当以通过在荧光光谱的短波长侧的尾处划切线得到的外推线的波长能量为S1能级并以通过在磷光光谱的短波长侧的尾处划切线得到的外推线的波长能量为T1能级时,S1与T1之差为0.3eV以下,更优选为0.2eV以下。
此外,当使用TADF材料作为发光物质时,主体材料的S1能级优选比TADF材料的S1能级高。此外,主体材料的T1能级优选比TADF材料的T1能级高。
作为用于主体材料的空穴传输材料,优选使用具有胺骨架、富π电子型杂芳环的有机化合物。例如,可以举出:4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(简称:NPB)、N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯]-4,4’-二胺(简称:TPD)、4,4’-双[N-(螺-9,9’-二芴-2-基)-N-苯基氨基]联苯(简称:BSPB)、4-苯基-4’-(9-苯基芴-9-基)三苯胺(简称:BPAFLP)、4-苯基-3’-(9-苯基芴-9-基)三苯胺(简称:mBPAFLP)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]芴-2-胺(简称:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-二芴-2-胺(简称:PCBASF)等具有芳香胺骨架的化合物;1,3-双(N-咔唑基)苯(简称:mCP)、4,4’-二(N-咔唑基)联苯(简称:CBP)、3,6-双(3,5-二苯基苯基)-9-苯基咔唑(简称:CzTP)、3,3’-双(9-苯基-9H-咔唑)(简称:PCCP)等具有咔唑骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-芴-9-基)苯基]二苯并噻吩(简称:DBTFLP-III)、4-[4-(9-苯基-9H-芴-9-基)苯基]-6-苯基二苯并噻吩(简称:DBTFLP-IV)等具有噻吩骨架的化合物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:DBF3P-II)、4-{3-[3-(9-苯基-9H-芴-9-基)苯基]苯基}二苯并呋喃(简称:mmDBFFLBi-II)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物、具有咔唑骨架的化合物具有良好的可靠性和高空穴传输性并有助于降低驱动电压,所以是优选的。此外,也可以使用作为空穴传输层112中的具有空穴传输性的材料的例子举出的有机化合物作为主体的空穴传输材料。
作为用于主体材料的电子传输材料,例如优选使用:双(10-羟基苯并[h]喹啉)铍(II)(简称:BeBq2)、双(2-甲基-8-羟基喹啉)(4-苯基苯酚)铝(III)(简称:BAlq)、双(8-羟基喹啉)锌(II)(简称:Znq)、双[2-(2-苯并噁唑基)苯酚]锌(II)(简称:ZnPBO)、双[2-(2-苯并噻唑基)苯酚]锌(II)(简称:ZnBTZ)等金属配合物或包含缺π电子型杂芳环的有机化合物。作为包含缺π电子型杂芳环的有机化合物,例如可以举出:2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(简称:PBD)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(简称:TAZ)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(简称:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(简称:CO11)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(简称:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(简称:mDBTBIm-II)等包含具有多唑骨架的杂芳环的有机化合物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mCzBPDBq)、4,6-双[3-(菲-9-基)苯基]嘧啶(简称:4,6mPnP2Pm)、4,6-双[3-(4-二苯并噻吩基)苯基]嘧啶(简称:4,6mDBTP2Pm-II)、2,6-双(4-萘-1-基苯基)-4-[4-(3-吡啶基)苯基]嘧啶(简称:2,4NP-6PyPPm)、6-(1,1’-联苯基-3-基)-4-[3,5-双(9H-咔唑-9-基)苯基]-2-苯基嘧啶(简称:6mBP-4Cz2PPm)、4-[3,5-双(9H-咔唑-9-基)苯基]-2-苯基-6-(1,1’-联苯基-4-基)嘧啶(简称:6BP-4Cz2PPm)、7-[4-(9-苯基-9H-咔唑-2-基)喹唑啉-2-基]-7H-二苯并[c,g]咔唑(简称:PC-cgDBCzQz)等包含具有二嗪骨架的杂芳环的有机化合物;3,5-双[3-(9H-咔唑-9-基)苯基]吡啶(简称:35DCzPPy)、1,3,5-三[3-(3-吡啶)苯基]苯(简称:TmPyPB)等包含具有吡啶骨架的杂芳环的有机化合物;2-[3’-(9,9-二甲基-9H-芴-2-基)-1,1’-联苯-3-基]-4,6-二苯基-1,3,5-三嗪(简称:mFBPTzn)、2-[(1,1’-联苯基)-4-基]-4-苯基-6-[9,9’-螺二(9H-芴)-2-基]-1,3,5-三嗪(简称:BP-SFTzn)、2-{3-[3-(苯并[b]萘并[1,2-d]呋喃-8-基)苯基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:mBnfBPTzn)、2-{3-[3-(苯并[b]萘并[1,2-d]呋喃-6-基)苯基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:mBnfBPTzn-02)、5-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-7,7-二甲基-5H,7H-茚并[2,1-b]咔唑(简称:mINc(II)PTzn)、2-[3’-(三亚苯-2-基)-1,1’-联苯基-3-基]-4,6-二苯基’1,3,5-三嗪(简称:mTpBPTzn)、2-[(1,1’-联苯)-4-基]-4-苯基-6-[9,9’-螺二(9H-芴)-2-基]-1,3,5-三嗪(简称:BP-SFTzn)、9-[4-(4,6-二苯基-1,3,5-三嗪-2-基)-2-二苯并噻吩基]-2-苯基-9H-咔唑(简称:PCDBfTzn)、2-[1,1’-联苯基]-3-基-4-苯基-6-(8-[1,1’:4’,1”-三联苯基]-4-基-1-二苯并呋喃基)-1,3,5-三嗪(简称:mBP-TPDBfTzn)等包含具有三嗪骨架的杂芳环的有机化合物。其中,包含具有二嗪骨架的杂芳环的有机化合物、包含具有吡啶骨架的杂芳环的有机化合物、包含具有三嗪骨架的杂芳环的有机化合物具有良好的可靠性,所以是优选的。尤其是,包含具有二嗪(嘧啶或吡嗪)骨架的杂芳环的有机化合物、包含具有三嗪骨架的杂芳环的有机化合物具有高电子传输性,有助于降低驱动电压。
通过混合电子传输材料与空穴传输材料,可以容易调整发光层113的传输性,也可以更简便地进行再结合区域的控制。此外,也可以将TADF材料用作电子传输材料或空穴传输材料。
作为能够用作主体材料的TADF材料,可以使用与上面作为TADF材料举出的材料同样的材料。当使用TADF材料作为主体材料时,由TADF材料生成的三重激发能经反系间窜跃转换为单重激发能并进一步能量转移到发光物质,由此可以提高发光器件的发光效率。此时,TADF材料被用作能量供体,发光物质被用作能量受体。
当上述发光物质为荧光发光物质时,这是非常有效的。此外,此时,为了得到高发光效率,TADF材料的S1能级优选比荧光发光物质的S1能级高。此外,TADF材料的T1能级优选比荧光发光物质的S1能级高。因此,TADF材料的T1能级优选比荧光发光物质的T1能级高。
此外,优选使用呈现与荧光发光物质的最低能量一侧的吸收带的波长重叠的发光的TADF材料。由此,激发能顺利地从TADF材料转移到荧光发光物质,可以高效地得到发光,所以是优选的。
为了高效地从三重激发能通过反系间窜跃生成单重激发能,优选在TADF材料中产生载流子复合。此外,优选的是在TADF材料中生成的三重激发能不转移到荧光发光物质的三重激发能。为此,荧光发光物质优选在荧光发光物质所具有的发光体(成为发光的原因的骨架)的周围具有保护基。作为该保护基,优选为不具有π键的取代基,优选为饱和烃,具体而言,可以举出碳原子数为3以上且10以下的烷基、取代或未取代的碳原子数为3以上且10以下的环烷基、碳原子数为3以上且10以下的三烷基硅基,更优选具有多个保护基。不具有π键的取代基由于几乎没有传输载流子的功能,所以对载流子传输及载流子复合几乎没有影响,可以使TADF材料与荧光发光物质的发光体彼此远离。在此,发光体是指在荧光发光物质中成为发光的原因的原子团(骨架)。发光体优选为具有π键的骨架,优选包含芳香环,并优选具有稠合芳香环或稠合杂芳环。作为稠合芳香环或稠合杂芳环,可以举出菲骨架、二苯乙烯骨架、吖啶酮骨架、吩恶嗪骨架、吩噻嗪骨架等。尤其是,具有萘骨架、蒽骨架、芴骨架、骨架、三亚苯骨架、并四苯骨架、芘骨架、苝骨架、香豆素骨架、喹吖啶酮骨架、萘并双苯并呋喃骨架的荧光发光物质具有高荧光量子产率,所以是优选的。
在将荧光发光物质用作发光物质的情况下,作为主体材料,优选使用具有蒽骨架的材料。通过将具有蒽骨架的物质用作荧光发光物质的主体材料,可以实现发光效率及耐久性都高的发光层。在用作主体材料的具有蒽骨架的物质中,具有二苯基蒽骨架(尤其是9,10-二苯基蒽骨架)的物质在化学上稳定,所以是优选的。此外,在主体材料具有咔唑骨架的情况下,空穴的注入/传输性得到提高,所以是优选的,在包含苯环稠合到咔唑的苯并咔唑骨架的情况下,其HOMO能级比咔唑浅0.1eV左右,空穴容易注入,所以是更优选的。尤其是,在主体材料具有二苯并咔唑骨架的情况下,其HOMO能级比咔唑浅0.1eV左右,不仅空穴容易注入,而且空穴传输性及耐热性也得到提高,所以是优选的。因此,进一步优选用作主体材料的物质是具有9,10-二苯基蒽骨架及咔唑骨架(或者苯并咔唑骨架、二苯并咔唑骨架)的物质。注意,从上述空穴注入/传输性的观点来看,也可以使用苯并芴骨架、二苯并芴骨架代替咔唑骨架。作为这种物质的例子,可以举出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:PCzPA)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(简称:PCPN)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:CzPA)、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(简称:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(简称:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-芴-9-基)联苯-4’-基}蒽(简称:FLPPA)、9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(简称:αN-βNPAnth)、9-(1-萘基)-10-(2-萘基)蒽(简称:α,βADN)、2-(10-苯基蒽-9-基)二苯并呋喃、2-(10-苯基-9-蒽基)-苯并[b]萘并[2,3-d]呋喃(简称:Bnf(II)PhA)、9-(2-萘基)-10-[3-(2-萘基)苯基]蒽(简称:βN-mβNPAnth)、1-[4-(10-[,1,1’-联苯]-4-基-9-蒽基)苯基]-2-乙基-1H-苯并咪唑(简称:EtBImPBPhA)等。尤其是,CzPA、cgDBCzPA2mBnfPPA、PCzPA呈现非常良好的特性,所以是优选的。
注意,作为上述混合的材料的一部分,可以使用磷光发光物质。磷光发光物质在作为发光物质使用荧光发光物质时,可以被用作对荧光发光物质供应激发能的能量供体。
此外,也可以使用这些混合了的材料形成激基复合物。通过以形成发射与发光物质的最低能量一侧的吸收带的波长重叠的光的激基复合物的方式选择该混合了的材料,可以使能量转移变得顺利,从而高效地得到发光,所以是优选的。此外,通过采用该结构可以降低驱动电压,因此是优选的。
注意,形成激基复合物的材料的至少一个可以为磷光发光物质。由此,可以高效地将三重激发能经反系间窜跃转换为单重激发能。
关于高效地形成激基复合物的材料的组合,具有空穴传输性的材料的HOMO能级优选为具有电子传输性的材料的HOMO能级以上。此外,具有空穴传输性的材料的LUMO能级优选为具有电子传输性的材料的LUMO能级以上。注意,材料的LUMO能级及HOMO能级可以从通过循环伏安(CV)测定测得的材料的电化学特性(还原电位及氧化电位)导出。
注意,激基复合物的形成例如可以通过如下方法确认:对具有空穴传输性的材料的发射光谱、具有电子传输性的材料的发射光谱及混合这些材料而成的混合膜的发射光谱进行比较,当观察到混合膜的发射光谱比各材料的发射光谱向长波长一侧漂移(或者在长波长一侧具有新的峰值)的现象时说明形成有激基复合物。或者,对具有空穴传输性的材料的瞬态光致发光(PL)、具有电子传输性的材料的瞬态PL及混合这些材料而成的混合膜的瞬态PL进行比较,当观察到混合膜的瞬态PL寿命与各材料的瞬态PL寿命相比具有长寿命成分或者延迟成分的比率变大等瞬态响应不同时说明形成有激基复合物。此外,可以将上述瞬态PL称为瞬态电致发光(EL)。换言之,对具有空穴传输性的材料的瞬态EL、具有电子传输性的材料的瞬态EL及这些材料的混合膜的瞬态EL进行比较,观察瞬态响应的不同,可以确认激基复合物的形成。
电子传输层包含具有电子传输性的有机化合物,作为该有机化合物优选使用电场强度[V/cm]的平方根为600时的电子迁移率为1×10-6cm2/Vs以上的物质。此外,只要是电子传输性高于空穴传输性的物质,就可以使用上述以外的物质。作为上述有机化合物,优选使用包含缺π电子型杂芳环的有机化合物。作为包含缺π电子型杂芳环的有机化合物,例如优选使用包含具有多唑骨架的杂芳环的有机化合物、包含具有吡啶骨架的杂芳环的有机化合物、包含具有二嗪骨架的杂芳环的有机化合物以及包含具有三嗪骨架的杂芳环的有机化合物中的任何一个或多个。
作为可以用于上述电子传输层的包含缺π电子杂芳环的有机化合物,具体而言,可以举出:2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(简称:PBD)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(简称:TAZ)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(简称:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(简称:CO11)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(简称:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(简称:mDBTBIm-II)、4,4’-双(5-甲基苯恶唑-2-基)二苯乙烯(简称:BzOs)等具有唑骨架的有机化合物;3,5-双[3-(9H-咔唑-9-基)苯基]吡啶(简称:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(简称:TmPyPB)、3,5-双[3-(9H-咔唑-9-基)苯基]吡啶(简称:35DCzPPy)、红菲咯啉(简称:Bphen)、浴铜灵(简称:BCP)、2,9-双(萘-2-基)-4,7-二苯基-1,10-菲咯啉(简称:NBphen)等包含具有吡啶骨架的杂芳环的有机化合物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mCzBPDBq)、2-[4’-(9-苯基-9H-咔唑-3-基)-3,1’-联苯-1-基]二苯并[f,h]喹喔啉(简称:2mpPCBPDBq)、2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹喔啉(简称:2CzPDBq-Ⅲ)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:7mDBTPDBq-II)、6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:6mDBTPDBq-Ⅱ)、9-[(3’-二苯并噻吩-4-基)联苯-3-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9mDBtBPNfpr)、9-[(3’-二苯并噻吩-4-基)联苯-4-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9pmDBtBPNfpr)、4,6-双[3-(菲-9-基)苯基]嘧啶(简称:4,6mPnP2Pm)、4,6-双[3-(4-二苯并噻吩基)苯基]嘧啶(简称:4,6mDBTP2Pm-II)、4,6-双[3-(9H-咔唑-9-基)苯基]嘧啶(简称:4,6mCzP2Pm)、9,9’-[嘧啶-4,6-二基双(联苯-3,3’-二基)]双(9H-咔唑)(简称:4,6mCzBP2Pm)、8-(1,1’-联苯-4-基)-4-[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃并[3,2-d]嘧啶(简称:8BP-4mDBtPBfpm)、3,8-双[3-(二苯并噻吩-4-基)苯基]苯并呋喃并[2,3-b]吡嗪(简称:3,8mDBtP2Bfpr)、4,8-双[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃并[3,2-d]嘧啶(简称:4,8mDBtP2Bfpm)、8-[3’-(二苯并噻吩-4-基)(1,1’-联苯-3-基)]萘并[1’,2’:4,5]呋喃并[3,2-d]嘧啶(简称:8mDBtBPNfpm)、8-[(2,2’-联萘)-6-基]-4-[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃并[3,2-d]嘧啶(简称:8(βN2)-4mDBtPBfpm)、2,2’-(吡啶-2,6-二基)双(4-苯基苯并[h]喹唑啉)(简称:2,6(P-Bqn)2Py)、2,2’-(吡啶-2,6-二基)双{4-[4-(2-萘基)苯基]-6-苯基嘧啶}(简称:2,6(NP-PPm)2Py)、6-(1,1’-联苯-3-基)-4-[3,5-双(9H-咔唑-9-基)苯基]-2-苯基嘧啶(简称:6mBP-4Cz2PPm)、2,6-双(4-萘-1-基苯基)-4-[4-(3-吡啶基)苯基]嘧啶(简称:2,4NP-6PyPPm)、6-(1,1’-联苯-3-基)-4-[3,5-双(9H-咔唑-9-基)苯基)-2-苯基嘧啶(简称:6mBP-4Cz2PPm)、4-[3,5-双(9H-咔唑-9-基)苯基]-2-苯基-6-(1,1’-联苯-4-基)嘧啶(简称:6BP-4Cz2PPm)、7-[4-(9-苯基-9H-咔唑-2-基)喹唑啉-2-基]-7H-二苯并[c,g]咔唑(简称:PC-cgDBCzQz)等具有二嗪骨架的有机化合物;2-[3’-(9,9-二甲基-9H-芴-2-基)-1,1’-联苯基-3-基]-4,6-二苯基-1,3,5-三嗪(简称:mFBPTzn)、2-[(1,1’-联苯)-4-基]-4-苯基-6-[9,9’-螺二(9H-芴)-2-基]-1,3,5-三嗪(简称:BP-SFTzn)、2-{3-[3-(苯并[b]萘并[1,2-d]呋喃-8-基)苯基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:mBnfBPTzn)、2-{3-[3-(苯并[b]萘并[1,2-d]呋喃-6-基)苯基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:mBnfBPTzn-02)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:PCCzPTzn)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-联-9H-咔唑(简称:mPCCzPTzn-02)、2-[3’-(9,9-二甲基-9H-芴-2-基)-1,1’-联苯-3-基]-4,6-二苯基-1,3,5-三嗪(简称:mFBPTzn)、5-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-7,7-二甲基-5H,7H-茚并[2,1-b]咔唑(简称:mINc(II)PTzn)、2-{3-[3-(二苯并噻吩-4-基)苯基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:mDBtBPTzn)、2,4,6-三(3’-(吡啶-3-基)联苯-3-基)-1,3,5-三嗪(简称:TmPPPyTz)、2-[3-(2,6-二甲基-3-吡啶基)-5-(9-菲基)苯基]-4,6-二苯基-1,3,5-三嗪(简称:mPn-mDMePyPTzn)、5-[3-(4,6-二苯基-1,3,5-三嗪-2基)苯基]-7,7-二甲基-5H,7H-茚并[2,1-b]咔唑(简称:mINc(II)PTzn)、11-(4-[1,1’-联苯]-4-基-6-苯基-1,3,5-三嗪-2-基)-11,12-二氢-12-苯基-吲哚并[2,3-a]咔唑(简称:BP-Icz(II)Tzn)、5-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-7,7-二甲基-5H,7H-茚并[2,1-b]咔唑(简称:mINc(II)PTzn)、2-[3’-(三亚苯-2-基)-1,1’-联苯-3-基]-4,6-二苯基’1,3,5-三嗪(简称:mTpBPTzn)、2-[(1,1’-联苯)-4-基]-4-苯基-6-「9,9’-螺二(9H-芴)-2-基」-1,3,5-三嗪(简称:BP-SFTzn)、9-[4-(4,6-二苯基-1,3,5-三嗪-2-基)-2-二苯并噻吩基]-2-苯基-9H-咔唑(简称:PCDBfTzn)、2-[1,1’-联苯]-3-基-4-苯基-6-(8-[1,1’:4’,1”-三联苯]-4-基-1-二苯并呋喃基)-1,3,5-三嗪(简称:mBP-TPDBfTzn)等具有三嗪骨架的有机化合物。其中,包含具有二嗪骨架的杂芳环的有机化合物、包含具有吡啶骨架的杂芳环的有机化合物、包含具有三嗪骨架的杂芳环的有机化合物具有良好的可靠性,所以是优选的。尤其是,包含具有二嗪(嘧啶或吡嗪)骨架的杂芳环的有机化合物、包含具有三嗪骨架的杂芳环的有机化合物具有高电子传输性,有助于降低驱动电压。
注意,具有本结构的电子传输层114有时兼用作电子注入层115。
优选在电子传输层114和阴极102之间作为电子注入层115设置包含氟化锂(LiF)、氟化铯(CsF)、氟化钙(CaF2)、8-羟基喹啉-锂(简称:Liq)等的碱金属、碱土金属或者它们的化合物或配合物的层。电子注入层115可以使用将碱金属、碱土金属或它们的化合物包含在由具有电子传输性的物质构成的层中的层或电子化合物(electride)。作为电子化合物,例如可以举出对钙和铝的混合氧化物以高浓度添加电子的物质等。
注意,作为电子注入层115,也可以使用对具有电子传输性的物质(优选为具有联吡啶骨架的有机化合物)包含上述碱金属或碱土金属的氟化物为微晶状态的浓度以上(50wt%以上)的层。由于该层为折射率低的层,所以可以提供外部量子效率更良好的发光器件。
作为形成阴极102的物质,可以使用功函数小(具体为3.8eV以下)的金属、合金、导电化合物以及它们的混合物等。作为这种阴极材料的具体例子,可以举出锂(Li)、铯(Cs)等碱金属、镁(Mg)、钙(Ca)或者锶(Sr)等的属于元素周期表中的第1族或第2族的元素、包含它们的合金(MgAg、AlLi)、铕(Eu)、镱(Yb)等稀土金属以及包含它们的合金等。然而,通过在阴极102和电子传输层之间设置电子注入层,可以不顾及功函数的大小而将各种导电材料诸如Al、Ag、ITO、包含硅或氧化硅的氧化铟-氧化锡等用作阴极102。
这些导电材料可以通过真空蒸镀法、溅射法等干式法、喷墨法、旋涂法等沉积。此外,也可以通过利用溶胶-凝胶法等湿式法或利用金属材料的膏剂的湿式法形成。
此外,作为第一EL层103的形成方法,不论干式法或湿式法,都可以使用各种方法。例如,也可以使用真空蒸镀法、凹版印刷法、照相凹版印刷法、丝网印刷法、喷墨法或旋涂法等。
此外,也可以通过使用不同沉积方法形成上面所述的各电极或各层。
注意,设置在阳极101与阴极102之间的层的结构不局限于上述结构。但是,优选采用在离阳极101及阴极102远的部分设置空穴与电子再结合的发光区域的结构,以便抑制由于发光区域与用于电极或载流子注入层的金属接近而发生的猝灭。
此外,为了抑制从在发光层中产生的激子的能量转移,接触于发光层113的如空穴传输层、电子传输层,尤其是靠近发光层113中的复合区域的载流子传输层优选使用如下物质构成,即具有比构成发光层的发光材料或者包含在发光层中的发光材料所具有的带隙大的带隙的物质。
本实施方式可以与其他实施方式自由地组合。
(实施方式2)
在本实施方式中,说明本发明的一个方式的显示装置的结构例子。
本实施方式的显示装置可以为高分辨率的显示装置或大型显示装置。因此,例如可以将本实施方式的显示装置用作如下装置的显示部:具有较大的屏幕的电子设备诸如电视装置、台式或笔记本型个人计算机、用于计算机等的显示器、数字标牌、弹珠机等大型游戏机等;数码相机;数字视频摄像机;数码相框;移动电话机;便携式游戏机;智能手机;手表型终端;平板终端;便携式信息终端;声音再现装置。
[发光装置400A]
图8示出发光装置400A的立体图,图9A示出发光装置400A的截面图。
发光装置400A具有贴合衬底452与衬底451的结构。在图9中,以虚线表示衬底452。
发光装置400A包括显示部462、电路464及布线465等。图9示出发光装置400A中安装有IC及FPC472的例子。因此,也可以将图9所示的结构称为包括发光装置400A、IC(集成电路)及FPC的显示模块。
作为电路464,例如可以使用扫描线驱动电路。
布线465具有对显示部462及电路464供应信号及电力的功能。该信号及电力从外部经由FPC472输入到布线465或者从IC输入到布线465。
图9示出通过COG(Chip On Glass:玻璃覆晶封装)方式或COF(Chip on Film:薄膜覆晶封装)方式等在衬底451上设置IC的例子。作为IC,例如可以使用包括扫描线驱动电路或信号线驱动电路等的IC。注意,发光装置400A及显示模块不一定必须设置有IC。此外,也可以将IC利用COF方式等安装于FPC。
图9A示出发光装置400A的包括FPC472的区域的一部分、电路464的一部分、显示部462的一部分及包括端部的区域的一部分的截面的一个例子。
图9A所示的发光装置400A在衬底451与衬底452之间包括晶体管201、晶体管205、发射红色光的发光器件430a、发射绿色光的发光器件430b以及发射蓝色光的发光器件430c等。
发光器件430a、发光器件430b及发光器件430c可以使用在实施方式1中例示出的发光器件。
在此,当显示装置的像素包括具有发射彼此不同的光的发光器件的三个子像素时,作为该三个子像素可以举出R、G、B这三个颜色的子像素、黄色(Y)、青色(C)及品红色(M)这三个颜色的子像素等。当包括四个上述子像素时,作为该四个子像素可以举出R、G、B及白色(W)这四个颜色的子像素、R、G、B及Y这四个颜色的子像素等。
保护层416与衬底452由粘合层442粘合。作为对发光器件的密封,可以采用固体密封结构或中空密封结构等。在图9A中,由衬底452、粘合层442及衬底451围绕的空间443填充有惰性气体(氮或氩等),采用中空密封结构。粘合层442也可以与发光器件重叠。此外,由衬底452、粘合层442及衬底451围绕的空间443也可以填充有与粘合层442不同的树脂。
发光器件430a、430b、430c在像素电极与EL层之间包括光学调整层。发光器件430a包括光学调整层426a,发光器件430b包括光学调整层426b,发光器件430c包括光学调整层426c。发光器件的详细内容可以参照实施方式1。
像素电极411a、411b、411c都通过设置在绝缘层214中的开口与晶体管205所包括的导电层222b连接。
像素电极及光学调整层的端部被绝缘层421覆盖。像素电极包含发射可见光的材料,对置电极包含透过可见光的材料。
发光器件将光发射到衬底452一侧。衬底452优选使用对可见光的透过性高的材料。
晶体管201及晶体管205都设置在衬底451上。这些晶体管可以使用同一材料及同一工序形成。
在衬底451上依次设置有绝缘层211、绝缘层213、绝缘层215及绝缘层214。绝缘层211的一部分用作各晶体管的栅极绝缘层。绝缘层213的一部分用作各晶体管的栅极绝缘层。绝缘层215以覆盖晶体管的方式设置。绝缘层214以覆盖晶体管的方式设置,并被用作平坦化层。此外,对栅极绝缘层的个数及覆盖晶体管的绝缘层的个数没有特别的限制,既可以为一个,又可以为两个以上。
优选的是,将水及氢等杂质不容易扩散的材料用于覆盖晶体管的绝缘层中的至少一个。由此,可以将绝缘层用作阻挡层。通过采用这种结构,可以有效地抑制杂质从外部扩散到晶体管中,从而可以提高显示装置的可靠性。
作为绝缘层211、绝缘层213及绝缘层215优选使用无机绝缘膜。作为无机绝缘膜,例如可以使用氮化硅膜、氧氮化硅膜、氧化硅膜、氮氧化硅膜、氧化铝膜、氮化铝膜等。此外,也可以使用氧化铪膜、氧化钇膜、氧化锆膜、氧化镓膜、氧化钽膜、氧化镁膜、氧化镧膜、氧化铈膜及氧化钕膜等。此外,也可以层叠上述绝缘膜中的两个以上。
这里,有机绝缘膜的阻挡性在很多情况下低于无机绝缘膜。因此,有机绝缘膜优选在发光装置400A的端部附近包括开口。由此,可以抑制杂质从发光装置400A的端部通过有机绝缘膜进入。此外,也可以以其端部位于发光装置400A的端部的内侧的方式形成有机绝缘膜,以使有机绝缘膜不暴露于发光装置400A的端部。
用作平坦化层的绝缘层214优选使用有机绝缘膜。作为能够用于有机绝缘膜的材料,例如可以使用丙烯酸树脂、聚酰亚胺树脂、环氧树脂、聚酰胺树脂、聚酰亚胺酰胺树脂、硅氧烷树脂、苯并环丁烯类树脂、酚醛树脂及这些树脂的前体等。
在图9A所示的区域228中,在绝缘层214中形成有开口。由此,即使在使用有机绝缘膜作为绝缘层214的情况下,也可以抑制杂质从外部通过绝缘层214进入显示部462。由此,可以提高发光装置400A的可靠性。
晶体管201及晶体管205包括:用作栅极的导电层221;用作栅极绝缘层的绝缘层211;用作源极及漏极的导电层222a及导电层222b;半导体层231;用作栅极绝缘层的绝缘层213;以及用作栅极的导电层223。在此,通过对同一导电膜进行加工而得到的多个层由相同的阴影线表示。绝缘层211位于导电层221与半导体层231之间。绝缘层213位于导电层223与半导体层231之间。
对本实施方式的显示装置所包括的晶体管结构没有特别的限制。例如,可以采用平面型晶体管、交错型晶体管或反交错型晶体管等。此外,晶体管都可以具有顶栅结构或底栅结构。或者,也可以在形成沟道的半导体层上下设置有栅极。
作为晶体管201及晶体管205,采用两个栅极夹着形成沟道的半导体层的结构。此外,也可以连接两个栅极,并通过对该两个栅极供应同一信号,来驱动晶体管。或者,通过对两个栅极中的一个施加用来控制阈值电压的电位,对另一个施加用来进行驱动的电位,可以控制晶体管的阈值电压。
对用于晶体管的半导体材料的结晶性也没有特别的限制,可以使用非晶半导体、单晶半导体或者单晶半导体以外的具有结晶性的半导体(微晶半导体、多晶半导体或其一部分具有结晶区域的半导体)。当使用单晶半导体或具有结晶性的半导体时可以抑制晶体管的特性劣化,所以是优选的。
晶体管的半导体层优选使用金属氧化物(氧化物半导体)。就是说,本实施方式的显示装置优选使用在沟道形成区中包含金属氧化物的晶体管(以下,OS晶体管)。此外,晶体管的半导体层也可以包含硅。作为硅,可以举出非晶硅、结晶硅(低温多晶硅、单晶硅等)等。
例如,半导体层优选包含铟、M(M为选自镓、铝、硅、硼、钇、锡、铜、钒、铍、钛、铁、镍、锗、锆、钼、镧、铈、钕、铪、钽、钨或镁中的一种或多种)和锌。尤其是,M优选为选自铝、镓、钇或锡中的一种或多种。
尤其是,作为半导体层,优选使用包含铟(In)、镓(Ga)及锌(Zn)的氧化物(IGZO)。
在半导体层使用In-M-Zn氧化物时,该In-M-Zn氧化物中的In的原子个数比优选为M的原子个数比以上。作为这种In-M-Zn氧化物的金属元素的原子个数比,可以举出In:M:Zn=1:1:1或其附近的组成、In:M:Zn=1:1:1.2或其附近的组成、In:M:Zn=2:1:3或其附近的组成、In:M:Zn=3:1:2或其附近的组成、In:M:Zn=4:2:3或其附近的组成、In:M:Zn=4:2:4.1或其附近的组成、In:M:Zn=5:1:3或其附近的组成、In:M:Zn=5:1:6或其附近的组成、In:M:Zn=5:1:7或其附近的组成、In:M:Zn=5:1:8或其附近的组成、In:M:Zn=6:1:6或其附近的组成、In:M:Zn=5:2:5或其附近的组成等。此外,附近的组成包括所希望的原子个数比的±30%的范围。
当记载为原子数比为In:Ga:Zn=4:2:3或其附近的组成时包括如下情况:In的原子数比为4时,Ga的原子数比为1以上且3以下,Zn的原子数比为2以上且4以下。此外,当记载为原子数比为In:Ga:Zn=5:1:6或其附近的组成时包括如下情况:In的原子数比为5时,Ga的原子数比大于0.1且为2以下,Zn的原子数比为5以上且7以下。此外,当记载为原子数比为In:Ga:Zn=1:1:1或其附近的组成时包括如下情况:In的原子数比为1时,Ga的原子数比大于0.1且为2以下,Zn的原子数比大于0.1且为2以下。
电路464所包括的晶体管和显示部462所包括的晶体管既可以具有相同的结构,又可以具有不同的结构。电路464所包括的多个晶体管既可以具有相同的结构,又可以具有两种以上的不同结构。与此同样,显示部462所包括的多个晶体管既可以具有相同的结构,又可以具有两种以上的不同结构。
在衬底451与衬底452不重叠的区域中设置有连接部204。在连接部204中,布线465通过导电层466及连接层242与FPC472电连接。导电层466具有加工与像素电极相同的导电膜而得到的导电膜和加工与光学调整层的相同的导电膜而得到的导电膜的叠层结构。在连接部204的顶面上露出导电层466。因此,通过连接层242可以使连接部204与FPC472电连接。
优选在衬底452的衬底451一侧的面设置遮光层417。此外,可以在衬底452的外侧配置各种光学构件。作为光学构件,可以使用偏振片、相位差板、光扩散层(扩散薄膜等)、防反射层及聚光薄膜(condensing film)等。此外,在衬底452的外侧也可以配置抑制尘埃的附着的抗静电膜、不容易被弄脏的具有拒水性的膜、抑制使用时的损伤的硬涂膜、冲击吸收层等。
通过形成覆盖发光器件的保护层416,可以抑制水等杂质进入发光器件,由此可以提高发光器件的可靠性。
在发光装置400A的端部附近的区域228中,优选绝缘层215与保护层416通过绝缘层214的开口彼此接触。尤其是,特别优选绝缘层215含有的无机绝缘膜与保护层416含有的无机绝缘膜彼此接触。由此,可以抑制杂质从外部通过有机绝缘膜进入显示部462。因此,可以提高发光装置400A的可靠性。
图9B示出保护层416具有三层结构的例子。在图9B中,保护层416包括发光器件430c上的无机绝缘层416a、无机绝缘层416a上的有机绝缘层416b及有机绝缘层416b上的无机绝缘层416c。
无机绝缘层416a的端部及无机绝缘层416c的端部延伸到有机绝缘层416b的端部的外侧,并且它们彼此接触。此外,无机绝缘层416a通过绝缘层214(有机绝缘层)的开口与绝缘层215(无机绝缘层)接触。由此,可以使用绝缘层215及保护层416包围发光器件,可以提高发光器件的可靠性。
像这样,保护层416也可以具有有机绝缘膜和无机绝缘膜的叠层结构。此时,无机绝缘膜的端部优选延伸到有机绝缘膜的端部的外侧。
衬底451及衬底452可以使用玻璃、石英、陶瓷、蓝宝石以及树脂等。从发光器件取出光一侧的衬底使用使该光透过的材料。通过将具有柔性的材料用于衬底451及衬底452,可以提高显示装置的柔性。作为衬底451或衬底452,可以使用偏振片。
作为衬底451及衬底452,可以使用如下材料:聚对苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN)等聚酯树脂、聚丙烯腈树脂、丙烯酸树脂、聚酰亚胺树脂、聚甲基丙烯酸甲酯树脂、聚碳酸酯(PC)树脂、聚醚砜(PES)树脂、聚酰胺树脂(尼龙、芳族聚酰胺等)、聚硅氧烷树脂、环烯烃树脂、聚苯乙烯树脂、聚酰胺-酰亚胺树脂、聚氨酯树脂、聚氯乙烯树脂、聚偏二氯乙烯树脂、聚丙烯树脂、聚四氟乙烯(PTFE)树脂、ABS树脂以及纤维素纳米纤维等。此外,也可以作为衬底451和衬底452中的一方或双方使用其厚度为具有柔性程度的玻璃。
在将圆偏振片重叠于显示装置的情况下,优选将光学各向同性高的衬底用作显示装置所包括的衬底。光学各向同性高的衬底的双折射较低(也可以说双折射量较少)。
光学各向同性高的衬底的相位差值(retardation value)的绝对值优选为30nm以下,更优选为20nm以下,进一步优选为10nm以下。
作为光学各向同性高的薄膜,可以举出三乙酸纤维素(也被称为TAC:Cellulosetriacetate)薄膜、环烯烃聚合物(COP)薄膜、环烯烃共聚物(COC)薄膜及丙烯酸薄膜等。
当作为衬底使用薄膜时,有可能因薄膜的吸水而发生显示面板出现皱纹等形状变化。因此,作为衬底优选使用吸水率低的薄膜。例如,优选使用吸水率为1%以下的薄膜,更优选使用吸水率为0.1%以下的薄膜,进一步优选为使用吸水率为0.01%以下的薄膜。
作为粘合层,可以使用紫外线固化粘合剂等光固化粘合剂、反应固化粘合剂、热固化粘合剂、厌氧粘合剂等各种固化粘合剂。作为这些粘合剂,可以举出环氧树脂、丙烯酸树脂、硅酮树脂、酚醛树脂、聚酰亚胺树脂、酰亚胺树脂、PVC(聚氯乙烯)树脂、PVB(聚乙烯醇缩丁醛)树脂、EVA(乙烯-醋酸乙烯酯)树脂等。尤其是,优选使用环氧树脂等透湿性低的材料。此外,也可以使用两液混合型树脂。此外,也可以使用粘合薄片等。
作为连接层242,可以使用各向异性导电膜(ACF:Anisotropic ConductiveFilm)、各向异性导电膏(ACP:Anisotropic Conductive Paste)等。
作为可用于晶体管的栅极、源极及漏极和构成显示装置的各种布线及电极等导电层的材料,可以举出铝、钛、铬、镍、铜、钇、锆、钼、银、钽或钨等金属或者以上述金属为主要成分的合金等。可以使用包含这些材料的膜的单层或叠层。
此外,作为具有透光性的导电材料,可以使用氧化铟、铟锡氧化物、铟锌氧化物、氧化锌、包含镓的氧化锌等导电氧化物或石墨烯。或者,可以使用金、银、铂、镁、镍、钨、铬、钼、铁、钴、铜、钯或钛等金属材料或包含该金属材料的合金材料。或者,还可以使用该金属材料的氮化物(例如,氮化钛)等。此外,当使用金属材料或合金材料(或者它们的氮化物)时,优选将其形成得薄到具有透光性。此外,可以使用上述材料的叠层膜作为导电层。例如,通过使用银和镁的合金与铟锡氧化物的叠层膜等,可以提高导电性,所以是优选的。上述材料也可以用于构成显示装置的各种布线及电极等的导电层及发光器件所包括的导电层(被用作像素电极或公共电极的导电层)。
作为可用于各绝缘层的绝缘材料,例如可以举出丙烯酸树脂或环氧树脂等树脂、无机绝缘材料如氧化硅、氧氮化硅、氮氧化硅、氮化硅或氧化铝等。
[发光装置400B]
图10A示出发光装置400B的截面图。发光装置400B的立体图与发光装置400A(图8)相同。图10A示出发光装置400B的包括FPC472的区域的一部分、电路464的一部分、显示部462的一部分的截面的一个例子。图10A示出显示部462的包括发射绿色的光的发光器件430b及发射蓝色的光的发光器件430c的区域的截面的一个例子。注意,有时省略与发光装置400A同样的部分的说明。
图10A所示的发光装置400B在衬底453与衬底454之间包括晶体管202、晶体管210、发光器件430b及发光器件430c等。
此外,衬底454和保护层416通过粘合层442贴合。粘合层442分别与发光器件430b及发光器件430c重叠,发光装置400B采用固体密封结构。
衬底453和绝缘层212被粘合层455贴合。
发光装置400B的制造方法为如下:首先,使用粘合层442将设置有绝缘层212、各晶体管、各发光器件等的制造衬底与设置有遮光层417的衬底454贴合在一起;然后,剥离制造衬底而将其贴合在露出的衬底453,来将形成在制造衬底上的各构成要素转置到衬底453。衬底453和衬底454优选具有柔性。由此,可以提高发光装置400B的柔性。
作为绝缘层212,可以使用可以用于绝缘层211、绝缘层213及绝缘层215的无机绝缘膜。
像素电极通过设置在绝缘层214中的开口电连接到晶体管210所包括的导电层222b。导电层222b通过设置在绝缘层215及绝缘层225中的开口连接到低电阻区域231n。晶体管210具有控制发光器件的驱动的功能。
像素电极的端部被绝缘层421覆盖。
发光器件430b、430c将光发射到衬底454一侧。衬底454优选使用对可见光的透过性高的材料。
衬底453与衬底454不重叠的区域中设置有连接部204。在连接部204中,布线465通过导电层466及连接层242与FPC472电连接。导电层466可以通过对与像素电极相同的导电膜进行加工来获得。因此,通过连接层242可以使连接部204与FPC472电连接。
晶体管202及晶体管210包括:用作栅极的导电层221;用作栅极绝缘层的绝缘层211;包含沟道形成区域231i及一对低电阻区域231n的半导体层;与一对低电阻区域231n中的一个连接的导电层222a;与一对低电阻区域231n中的另一个连接的导电层222b;用作栅极绝缘层的绝缘层225;用作栅极的导电层223;以及覆盖导电层223的绝缘层215。绝缘层211位于导电层221与沟道形成区域231i之间。绝缘层225位于导电层223与沟道形成区域231i之间。
导电层222a及导电层222b通过设置在绝缘层215中的开口与低电阻区域231n连接。导电层222a及导电层222b中的一个被用作源极,另一个被用作漏极。
图10A示出绝缘层225覆盖半导体层的顶面及侧面的例子。导电层222a及导电层222b通过设置在绝缘层225及绝缘层215中的开口与低电阻区域231n连接。
另一方面,在图10B所示的晶体管209中,绝缘层225与半导体层231的沟道形成区域231i重叠而不与低电阻区域231n重叠。例如,通过以导电层223为掩模加工绝缘层225,可以形成图10B所示的结构。在图10B中,绝缘层215覆盖绝缘层225及导电层223,并且导电层222a及导电层222b分别通过绝缘层215的开口与低电阻区域231n连接。再者,还可以设置有覆盖晶体管的绝缘层218。
本实施方式所示的结构例子及对应该结构例子的附图等的至少一部分可以与其他结构例子或附图等适当地组合。
本实施方式的至少一部分可以与本说明书所记载的其他实施方式适当地组合而实施。
(实施方式3)
在本实施方式中,说明与上述不同的显示装置的结构例子。
本实施方式的显示装置可以为高清晰的显示装置。因此,例如可以将本实施方式的显示装置用作手表型或手镯型等信息终端设备(可穿戴设备)以及头戴显示器等VR用设备、眼镜型AR用设备等可戴在头上的可穿戴设备的显示部。
[显示模块]
图11A是显示模块280的立体图。显示模块280包括发光装置400C及FPC290。注意,显示模块280所包括的显示装置不局限于发光装置400C,也可以是将在后面说明的发光装置400D或发光装置400E。
显示模块280包括衬底291及衬底292。显示模块280包括显示部281。显示部281是显示模块280中的图像显示区域,并可以看到来自设置在下述像素部284中的各像素的光。
图11B是衬底291一侧的结构的立体示意图。衬底291上层叠有电路部282、电路部282上的像素电路部283及该像素电路部283上的像素部284。此外,衬底291的不与像素部284重叠的部分上设置有用来连接到FPC290的端子部285。端子部285与电路部282通过由多个布线构成的布线部286电连接。
像素部284包括周期性地排列的多个像素284a。在图11B的右侧示出一个像素284a的放大图。像素284a包括发光颜色彼此不同的发光器件430a、430b、430c。多个发光器件也可以配置为图11B所示那样的条纹排列。通过采用条纹排列可以将本发明的一个方式的发光元件高密度地排列在像素电路中,所以可以提供一种高清晰度的显示装置。此外,也可以采用三角状排列、Pentile排列等各种排列方法。
像素电路部283包括周期性地排列的多个像素电路283a。
一个像素电路283a控制一个像素284a所包括的三个发光器件的发光。一个像素电路283a可以由三个控制一个发光器件的发光的电路构成。例如,像素电路283a可以采用对于一个发光器件至少具有一个选择晶体管、一个电流控制用晶体管(驱动晶体管)和电容器的结构。此时,选择晶体管的栅极被输入栅极信号,源极或漏极中的一方被输入源极信号。由此,实现有源矩阵型显示装置。
电路部282包括用于驱动像素电路部283的各像素电路283a的电路。例如,优选包括栅极线驱动电路和源极线驱动电路中的一方或双方。此外,还可以具有运算电路、存储电路和电源电路等中的至少一个。
FPC290用作从外部向电路部282供给视频信号或电源电位等的布线。此外,也可以在FPC290上安装IC。
显示模块280可以采用像素部284的下侧层叠有像素电路部283和电路部282中的一方或双方的结构,所以可以使显示部281具有极高的开口率(有效显示面积比)。例如,显示部281的开口率可以为40%以上且低于100%,优选为50%以上且95%以下,更优选为60%以上且95%以下。此外,能够极高密度地配置像素284a,由此可以使显示部281具有极高的清晰度。例如,显示部281优选以20000ppi以下或30000ppi以下且2000ppi以上、更优选为3000ppi以上、进一步优选为5000ppi以上、更进一步优选为6000ppi以上的清晰度配置像素284a。
这种高清晰的显示模块280适合用于头戴式显示器等VR用设备或眼镜型AR用设备。例如,因为显示模块280具有极高清晰度的显示部281,所以在透过透镜观看显示模块280的显示部的结构中,即使用透镜放大显示部也使用者不能看到像素,由此可以实现具有高度沉浸感的显示。此外,显示模块280还可以应用于具有相对较小型的显示部的电子设备。例如,适合用于手表型设备等可穿戴式电子设备的显示部。
[发光装置400C]
图12所示的发光装置400C包括衬底301、发光器件430a、430b、430c、电容器240及晶体管310。
衬底301相当于图11A及图11B中的衬底291。从衬底301到绝缘层255的叠层结构相当于实施方式1中的衬底100及绝缘层120。
晶体管310是在衬底301中具有沟道形成区域的晶体管。作为衬底301,例如可以使用如单晶硅衬底等半导体衬底。晶体管310包括衬底301的一部分、导电层311、低电阻区域312、绝缘层313及绝缘层314。导电层311被用作栅电极。绝缘层313位于衬底301与导电层311之间,并被用作栅极绝缘层。低电阻区域312是衬底301中掺杂有杂质的区域,并被用作源极和漏极中的一个。绝缘层314覆盖导电层311的侧面,并被用作绝缘层。
此外,在相邻的两个晶体管310之间,以嵌入衬底301的方式设置有元件分离层315。
此外,以覆盖晶体管310的方式设置有绝缘层261,并绝缘层261上设置有电容器240。
电容器240包括导电层241、导电层245及位于它们之间的绝缘层243。导电层241用作电容器240中的一个电极,导电层245用作电容器240中的另一个电极,并且绝缘层243用作电容器240的介电质。
导电层241设置在绝缘层261上,并嵌入绝缘层254中。导电层241通过嵌入绝缘层261中的插头271与晶体管310的源极和漏极中的一个电连接。绝缘层243覆盖导电层241而设置。导电层245设置在隔着绝缘层243与导电层241重叠的区域中。
以覆盖电容器240的方式设置有绝缘层255,绝缘层255上设置有发光器件430a、430b、430c等。发光器件430a、430b、430c上设置有保护层416,衬底420由树脂层419贴合于保护层416的顶面。
发光器件的像素电极通过嵌入绝缘层255中的插头256、嵌入绝缘层254中的导电层241及嵌入绝缘层261中的插头271电连接于晶体管310的源极和漏极中的一个。
[发光装置400D]
图13所示的发光装置400D的与发光装置400C主要不同之处是晶体管的结构。注意,有时省略与发光装置400C同样的部分的说明。
晶体管320是在形成沟道的半导体层中使用金属氧化物(也称为氧化物半导体)的晶体管。
晶体管320包括半导体层321、绝缘层323、导电层324、一对导电层325、绝缘层326及导电层327。
衬底331相当于图11A及图11B中的衬底291。从衬底331到绝缘层255的叠层结构相当于实施方式1中的包括晶体管的层401。作为衬底331可以使用绝缘衬底或半导体衬底。
在衬底331上设置有绝缘层332。绝缘层332用作阻挡层,该阻挡层防止水或氢等杂质从衬底331扩散到晶体管320且防止氧从半导体层321向绝缘层332一侧脱离。作为绝缘层332,例如可以使用与氧化硅膜相比氢或氧不容易扩散的膜诸如氧化铝膜、氧化铪膜、氮化硅膜等。
在绝缘层332上设置有导电层327,并以覆盖导电层327的方式设置有绝缘层326。导电层327用作晶体管320的第一栅电极,绝缘层326的一部分用作第一栅极绝缘层。绝缘层326中的至少接触半导体层321的部分优选使用氧化硅膜等氧化物绝缘膜。绝缘层326的顶面优选被平坦化。
半导体层321设置在绝缘层326上。半导体层321优选含有具有半导体特性的金属氧化物(也称为氧化物半导体)膜。关于可以用于半导体层321的材料将在后面详细描述。
一对导电层325接触于半导体层321上并用作源电极及漏电极。
此外,以覆盖一对导电层325的顶面及侧面以及半导体层321的侧面等的方式设置有绝缘层328,绝缘层328上设置有绝缘层264。绝缘层328被用作阻挡层,该阻挡层防止水或氢等杂质从绝缘层264等扩散到半导体层321以及氧从半导体层321脱离。作为绝缘层328,可以使用与上述绝缘层332同样的绝缘膜。
绝缘层328及绝缘层264中设置有到达半导体层321的开口。该开口内部嵌入有接触于绝缘层264、绝缘层328及导电层325的侧面以及半导体层321的顶面的绝缘层323、以及导电层324。导电层324被用作第二栅电极,绝缘层323被用作第二栅极绝缘层。
导电层324的顶面、绝缘层323的顶面及绝缘层264的顶面被进行平坦化处理以它们的高度都大致一致,并以覆盖它们的方式设置有绝缘层329及绝缘层265。
绝缘层264及绝缘层265被用作层间绝缘层。绝缘层329被用作阻挡层,该阻挡层防止水或氢等杂质从绝缘层265等扩散到晶体管320。绝缘层329可以使用与上述绝缘层328及绝缘层332同样的绝缘膜。
与一对导电层325中的一方电连接的插头274嵌入绝缘层265、绝缘层329及绝缘层264。在此,插头274优选具有覆盖绝缘层265、绝缘层329、绝缘层264及绝缘层328各自的开口的侧面及导电层325的顶面的一部分的导电层274a以及与导电层274a的顶面接触的导电层274b。此时,作为导电层274a,优选使用不容易扩散氢及氧的导电材料。
发光装置400D中的从绝缘层254到衬底420的结构是与发光装置400C同样的。
[发光装置400E]
在图14所示的发光装置400E中,层叠有沟道形成于衬底301的晶体管310及形成沟道的半导体层含有金属氧化物的晶体管320。注意,有时省略与发光装置400C、400D同样的部分的说明。
以覆盖晶体管310的方式设置有绝缘层261,并且绝缘层261上设置有导电层251。此外,以覆盖导电层251的方式设置有绝缘层262,并且绝缘层262上设置有导电层252。导电层251及导电层252都被用作布线。此外,以覆盖导电层252的方式设置有绝缘层263及绝缘层332,并且绝缘层332上设置有晶体管320。此外,以覆盖晶体管320的方式设置有绝缘层265,并在绝缘层265上设置有电容器240。电容器240与晶体管320通过插头274电连接。
晶体管320可以用作构成像素电路的晶体管。此外,晶体管310可以用作构成像素电路的晶体管或构成用来驱动该像素电路的驱动电路(栅极线驱动电路、源极线驱动电路)的晶体管。此外,晶体管310及晶体管320可以用作构成运算电路或存储电路等各种电路的晶体管。
借助于这种结构,在发光器件正下不但可以形成像素电路还可以形成驱动电路等,因此与在显示区域的周围设置驱动电路的情况相比,可以使显示装置小型化。
本实施方式所示的结构例子及对应该结构例子的附图等的至少一部分可以与其他结构例子或附图等适当地组合。
本实施方式的至少一部分可以与本说明书中记载的其他实施方式适当地组合而实施。
(实施方式4)
在本实施方式中说明高清晰显示装置。
[像素电路的结构例子]
以下说明适合于高清晰显示装置的像素及其排列方法的例子。
图15示出像素单元70的电路图的例子。像素单元70由两个像素(像素70a及像素70b)构成。此外,像素单元70与布线51a、布线51b、布线52a、布线52b、布线52c、布线52d、布线53a、布线53b以及布线53c等。
像素70a包括子像素71a、子像素72a以及子像素73a。像素70b包括子像素71b、子像素72b以及子像素73b。子像素71a、子像素72a以及子像素73a分别包括像素电路41a、像素电路42a以及像素电路43a。此外,子像素71b、子像素72b以及子像素73b分别包括像素电路41b、像素电路42b以及像素电路43b。
各子像素包括像素电路和显示元件60。例如,子像素71a包括像素电路41a和显示元件60。在此,示出作为显示元件60使用有机EL元件等发光器件的情况。
布线51a及布线51b分别被用作扫描线(也称为栅极线)。布线52a、布线52b、布线52c以及布线52d分别被用作信号线(也称为源极线或数据线)。此外,布线53a、布线53b以及布线53c具有对显示元件60供应电位的功能。
像素电路41a与布线51a、布线52a以及布线53a电连接。像素电路42a与布线51b、布线52d以及布线53a电连接。像素电路43a与布线51a、布线52b以及布线53b电连接。像素电路41b与布线51b、布线52a以及布线53b电连接。像素电路42b与布线51a、布线52c以及布线53c电连接。像素电路43b与布线51b、布线52b以及布线53c电连接。
如图15所示,通过采用一个像素与两个栅极线连接的结构,可以使源极线的个数变为条纹配置的一半。由此,可以使被用作源极驱动电路的IC的端子个数变为原来的一半,而可以减少构件个数。
此外,优选采用用作信号线的一个布线与对应于相同的颜色的像素电路连接的结构。例如,当为了校正像素之间的亮度不均匀,将其电位被调整的信号供应给上述布线时,有时校正值根据颜色而大不相同。此时,通过将一个信号线连接到对应于相同颜色的像素电路,可以容易进行校正。
此外,各像素电路包括晶体管61、晶体管62以及电容器63。例如,在像素电路41a中,晶体管61的栅极与布线51a电连接,晶体管61的源极和漏极中的一个与布线52a电连接,源极和漏极中的另一个与晶体管62的栅极及电容器63的一个电极电连接。晶体管62的源极和漏极中的一个与显示元件60的一个电极电连接,源极和漏极中的另一个与电容器63的另一个电极及布线53a电连接。显示元件60的另一个电极与被供应电位V1的布线电连接。
注意,关于其他像素电路,如图15所示,除了与晶体管61的栅极连接的布线、与晶体管61的源极和漏极中的一个连接的布线以及与电容器63的另一个电极连接的布线以外,其结构与像素电路41a相同。
在图15中,晶体管61具有选择晶体管的功能。晶体管62与显示元件60串联连接且具有控制流过显示元件60的电流的功能。电容器63具有保持与晶体管62的栅极连接的节点的电位的功能。当晶体管61的关闭状态的泄漏电流及经过晶体管62的栅极的泄漏电流等极小时,也可以不设置电容器63。
如图15所示,晶体管62优选包括互相电连接的第一栅极及第二栅极。如此,通过采用具有两个栅极的结构,可以增加晶体管62能够流过的电流。特别在高清晰的显示装置中,可以以不使晶体管62的尺寸(尤其是沟道宽度)变大的方式增加该电流,所以是优选的。
晶体管62也可以具有一个栅极。与上述结构相比,该结构不需要进行形成第二栅极的工序而可以简化工序。此外,晶体管61也可以具有两个栅极。通过采用该结构,可以缩小晶体管的尺寸。各晶体管的第一栅极与第二栅极互相电连接。或者,也可以使一个栅极与其他布线电连接。此时,通过改变对该布线供应的电位,可以控制晶体管的阈值电压。
此外,显示元件60的一对电极中与晶体管62电连接的电极相当于上述像素电极。在图5中,将显示元件60的与晶体管62电连接的电极用作阴极,而将另一个电极用作阳极。这种结构在晶体管62为n沟道晶体管时特别有效。就是说,当晶体管62处于导通状态时,由布线53a供应的电位成为源极电位,由此无论显示元件60的电阻的不均匀性或变动如何,也可以使流过晶体管62的电流恒定。此外,作为像素电路所包括的晶体管也可以使用p沟道型晶体管。
(实施方式5)
在本实施方式中,说明可用于上述实施方式中说明的OS晶体管的金属氧化物(称为氧化物半导体)。
金属氧化物优选至少包含铟或锌。尤其优选包含铟及锌。此外,除此之外,优选还包含铝、镓、钇或锡等。此外,也可以包含选自硼、硅、钛、铁、镍、锗、锆、钼、镧、铈、钕、铪、钽、钨、镁及钴等中的一种或多种。
此外,金属氧化物可以通过溅射法、有机金属化学气相沉积(MOCVD:MetalOrganic Chemical Vapor Deposition)法等化学气相沉积(CVD:Chemical VaporDeposition)法、原子层沉积(ALD:Atomic Layer Deposition)法等形成。
<结晶结构的分类>
作为氧化物半导体的结晶结构,可以举出非晶(包括completely amorphous)、CAAC(c-axis-aligned crystalline)、nc(nanocrystalline)、CAC(cloud-alignedcomposite)、单晶(single crystal)及多晶(poly crystal)等。
可以使用X射线衍射(XRD:X-Ray Diffraction)谱对膜或衬底的结晶结构进行评价。例如,可以使用GIXD(Grazing-Incidence XRD)测定测得的XRD谱进行评价。此外,将GIXD法也称为薄膜法或Seemann-Bohlin法。
例如,石英玻璃衬底的XRD谱的峰形状大致为左右对称。另一方面,具有结晶结构的IGZO膜的XRD谱的峰形状不是左右对称。XRD谱的峰的形状是左右不对称说明膜中或衬底中存在结晶。换言之,除非XRD谱峰形状左右对称,否则不能说膜或衬底处于非晶状态。
此外,可以使用通过纳米束电子衍射法(NBED:Nano Beam ElectronDiffraction)观察的衍射图案(也称为纳米束电子衍射图案)对膜或衬底的结晶结构进行评价。例如,在石英玻璃衬底的衍射图案中观察到光晕图案,可以确认石英玻璃处于非晶状态。此外,以室温形成的IGZO膜的衍射图案中观察到斑点状的图案而没有观察到光晕。因此可以推测,以室温形成的IGZO膜处于既不是晶态也不是非晶态的中间态,不能得出该IGZO膜是非晶态的结论。
<<氧化物半导体的结构>>
此外,在注目于氧化物半导体的结构的情况下,有时氧化物半导体的分类与上述分类不同。例如,氧化物半导体可以分类为单晶氧化物半导体和除此之外的非单晶氧化物半导体。作为非单晶氧化物半导体,例如可以举出上述CAAC-OS及nc-OS。此外,在非单晶氧化物半导体中包含多晶氧化物半导体、a-like OS(amorphous-like oxidesemiconductor)及非晶氧化物半导体等。
在此,对上述CAAC-OS、nc-OS及a-like OS的详细内容进行说明。
[CAAC-OS]
CAAC-OS是包括多个结晶区域的氧化物半导体,该多个结晶区域的c轴取向于特定的方向。此外,特定的方向是指CAAC-OS膜的厚度方向、CAAC-OS膜的被形成面的法线方向、或者CAAC-OS膜的表面的法线方向。此外,结晶区域是具有原子排列的周期性的区域。注意,在将原子排列看作晶格排列时结晶区域也是晶格排列一致的区域。再者,CAAC-OS具有在a-b面方向上多个结晶区域连接的区域,有时该区域具有畸变。此外,畸变是指在多个结晶区域连接的区域中,晶格排列一致的区域和其他晶格排列一致的区域之间的晶格排列的方向变化的部分。换言之,CAAC-OS是指c轴取向并在a-b面方向上没有明显的取向的氧化物半导体。
此外,上述多个结晶区域的每一个由一个或多个微小结晶(最大径小于10nm的结晶)构成。在结晶区域由一个微小结晶构成的情况下,该结晶区域的最大径小于10nm。此外,结晶区域由多个微小结晶构成的情况下,有时该结晶区域的尺寸为几十nm左右。
此外,在In-M-Zn氧化物(元素M为选自铝、镓、钇、锡及钛等中的一种或多种)中,CAAC-OS有具有层叠有含有铟(In)及氧的层(以下,In层)、含有元素M、锌(Zn)及氧的层(以下,(M,Zn)层)的层状结晶结构(也称为层状结构)的趋势。此外,铟和元素M可以彼此置换。因此,有时(M,Zn)层包含铟。此外,有时In层包含元素M。注意,有时In层包含Zn。该层状结构例如在高分辨率TEM(Transmission Electron Microscope:透射电子显微镜)图像中被观察作为晶格像。
例如,当对CAAC-OS膜使用XRD装置进行结构分析时,在使用θ/2θ扫描的Out-of-plane XRD测量中,在2θ=31°或其附近检测出表示c轴取向的峰值。注意,表示c轴取向的峰值的位置(2θ值)有时根据构成CAAC-OS的金属元素的种类、组成等变动。
此外,例如,在CAAC-OS膜的电子衍射图案中观察到多个亮点(斑点)。此外,在以透过样品的入射电子束的斑点(也称为直接斑点)为对称中心时,某一个斑点和其他斑点被观察在点对称的位置。
在从上述特定的方向观察结晶区域的情况下,虽然该结晶区域中的晶格排列基本上是六方晶格,但是单位晶格并不局限于正六角形,有是非正六角形的情况。此外,在上述畸变中,有时具有五角形、七角形等晶格排列。此外,在CAAC-OS的畸变附近观察不到明确的晶界(grain boundary)。也就是说,晶格排列的畸变抑制晶界的形成。这可能是由于CAAC-OS因为a-b面方向上的氧原子的排列的低密度、因金属原子被取代而使原子间的键合距离产生变化等而能够包容畸变。
此外,确认到明确的晶界的结晶结构被称为所谓的多晶(polycrystal)。晶界成为复合中心而载流子被俘获,因而有可能导致晶体管的通态电流的降低、场效应迁移率的降低等。因此,确认不到明确的晶界的CAAC-OS是对晶体管的半导体层提供具有优异的结晶结构的结晶性氧化物之一。注意,为了构成CAAC-OS,优选为包含Zn的结构。例如,与In氧化物相比,In-Zn氧化物及In-Ga-Zn氧化物能够进一步抑制晶界的发生,所以是优选的。
CAAC-OS是结晶性高且确认不到明确的晶界的氧化物半导体。因此,可以说在CAAC-OS中,不容易发生起因于晶界的电子迁移率的降低。此外,氧化物半导体的结晶性有时因杂质的混入、缺陷的生成等而降低,因此可以说CAAC-OS是杂质或缺陷(氧空位等)少的氧化物半导体。因此,包含CAAC-OS的氧化物半导体的物理性质稳定。因此,包含CAAC-OS的氧化物半导体具有高耐热性及高可靠性。此外,CAAC-OS对制造工序中的高温度(所谓热积存;thermal budget)也很稳定。由此,通过在OS晶体管中使用CAAC-OS,可以扩大制造工序的自由度。
[nc-OS]
在nc-OS中,微小的区域(例如1nm以上且10nm以下的区域,特别是1nm以上且3nm以下的区域)中的原子排列具有周期性。换言之,nc-OS具有微小的结晶。此外,例如,该微小的结晶的尺寸为1nm以上且10nm以下,尤其为1nm以上且3nm以下,将该微小的结晶称为纳米晶。此外,nc-OS在不同的纳米晶之间观察不到结晶取向的规律性。因此,在膜整体中观察不到取向性。所以,有时nc-OS在某些分析方法中与a-like OS或非晶氧化物半导体没有差别。例如,在对nc-OS膜使用XRD装置进行结构分析时,在使用θ/2θ扫描的Out-of-plane XRD测量中,不检测出表示结晶性的峰值。此外,在对nc-OS膜进行使用其束径比纳米晶大(例如,50nm以上)的电子束的电子衍射(也称为选区电子衍射)时,观察到类似光晕图案的衍射图案。另一方面,在对nc-OS膜进行使用其束径近于或小于纳米晶的尺寸(例如1nm以上且30nm以下)的电子束的电子衍射(也称为纳米束电子衍射)的情况下,有时得到在以直接斑点为中心的环状区域内观察到多个斑点的电子衍射图案。
[a-like OS]
a-like OS是具有介于nc-OS与非晶氧化物半导体之间的结构的氧化物半导体。a-like OS包含空洞或低密度区域。也就是说,a-like OS的结晶性比nc-OS及CAAC-OS的结晶性低。此外,a-like OS的膜中的氢浓度比nc-OS及CAAC-OS的膜中的氢浓度高。
<<氧化物半导体的结构>>
接着,说明上述CAC-OS的详细内容。此外,CAC-OS与材料构成有关。
[CAC-OS]
CAC-OS例如是指包含在金属氧化物中的元素不均匀地分布的构成,其中包含不均匀地分布的元素的材料的尺寸为0.5nm以上且10nm以下,优选为1nm以上且3nm以下或近似的尺寸。注意,在下面也将在金属氧化物中一个或多个金属元素不均匀地分布且包含该金属元素的区域混合的状态称为马赛克状或补丁(patch)状,该区域的尺寸为0.5nm以上且10nm以下,优选为1nm以上且3nm以下或近似的尺寸。
再者,CAC-OS是指其材料分开为第一区域与第二区域而成为马赛克状且该第一区域分布于膜中的结构(下面也称为云状)。就是说,CAC-OS是指具有该第一区域和该第二区域混合的结构的复合金属氧化物。
在此,将相对于构成In-Ga-Zn氧化物的CAC-OS的金属元素的In、Ga及Zn的原子个数比的每一个记为[In]、[Ga]及[Zn]。例如,在In-Ga-Zn氧化物的CAC-OS中,第一区域是其[In]大于CAC-OS膜的组成中的[In]的区域。此外,第二区域是其[Ga]大于CAC-OS膜的组成中的[Ga]的区域。此外,例如,第一区域是其[In]大于第二区域中的[In]且其[Ga]小于第二区域中的[Ga]的区域。此外,第二区域是其[Ga]大于第一区域中的[Ga]且其[In]小于第一区域中的[In]的区域。
具体而言,上述第一区域是以铟氧化物或铟锌氧化物等为主要成分的区域。此外,上述第二区域是以镓氧化物或镓锌氧化物等为主要成分的区域。换言之,可以将上述第一区域称为以In为主要成分的区域。此外,可以将上述第二区域称为以Ga为主要成分的区域。
注意,有时观察不到上述第一区域和上述第二区域的明确的边界。
此外,In-Ga-Zn氧化物中的CAC-OS是指如下构成:在包含In、Ga、Zn及O的材料构成中,部分主要成分为Ga的区域与部分主要成分为In的区域无规律地以马赛克状存在。因此,可推测,CAC-OS具有金属元素不均匀地分布的结构。
CAC-OS例如可以通过在对衬底不进行加热的条件下利用溅射法来形成。在利用溅射法形成CAC-OS的情况下,作为沉积气体,可以使用选自惰性气体(典型的是氩)、氧气体和氮气体中的任一种或多种。此外,沉积时的沉积气体的总流量中的氧气体的流量比越低越好,例如,优选使沉积时的沉积气体的总流量中的氧气体的流量比为0%以上且低于30%,更优选为0%以上且10%以下。
例如,在In-Ga-Zn氧化物的CAC-OS中,根据通过能量分散型X射线分析法(EDX:Energy Dispersive X-ray spectroscopy)取得的EDX面分析(mapping)图像,可确认到具有以In为主要成分的区域(第一区域)及以Ga为主要成分的区域(第二区域)不均匀地分布而混合的结构。
在此,第一区域是具有比第二区域高的导电性的区域。就是说,当载流子流过第一区域时,呈现作为金属氧化物的导电性。因此,当第一区域以云状分布在金属氧化物中时,可以实现高场效应迁移率(μ)。
另一方面,第二区域是具有比第一区域高的绝缘性的区域。就是说,当第二区域分布在金属氧化物中时,可以抑制泄漏电流。
在将CAC-OS用于晶体管的情况下,通过起因于第一区域的导电性和起因于第二区域的绝缘性的互补作用,可以使CAC-OS具有开关功能(控制开启/关闭的功能)。换言之,在CAC-OS的材料的一部分中具有导电性的功能且在另一部分中具有绝缘性的功能,在材料的整体中具有半导体的功能。通过使导电性的功能和绝缘性的功能分离,可以最大限度地提高各功能。因此,通过将CAC-OS用于晶体管,可以实现大通态电流(Ion)、高场效应迁移率(μ)及良好的开关工作。
此外,使用CAC-OS的晶体管具有高可靠性。因此,CAC-OS最适合于显示装置等各种半导体装置。
氧化物半导体具有各种结构及各种特性。本发明的一个方式的氧化物半导体也可以包括非晶氧化物半导体、多晶氧化物半导体、a-like OS、CAC-OS、nc-OS、CAAC-OS中的两种以上。
<具有氧化物半导体的晶体管>
在此,说明将上述氧化物半导体用于晶体管的情况。
通过将上述氧化物半导体用于晶体管,可以实现场效应迁移率高的晶体管。此外,可以实现可靠性高的晶体管。
优选将载流子浓度低的氧化物半导体用于晶体管。例如,氧化物半导体中的载流子浓度为1×1017cm-3以下,优选为1×1015cm-3以下,更优选为1×1013cm-3以下,进一步优选为1×1011cm-3以下,更进一步优选低于1×1010cm-3,且1×10-9cm-3以上。在以降低氧化物半导体膜的载流子浓度为目的的情况下,可以降低氧化物半导体膜中的杂质浓度以降低缺陷态密度。在本说明书等中,将杂质浓度低且缺陷态密度低的状态称为“高纯度本征”或“实质上高纯度本征”。此外,有时将载流子浓度低的氧化物半导体称为“高纯度本征或实质上高纯度本征的氧化物半导体”。
因为高纯度本征或实质上高纯度本征的氧化物半导体膜具有较低的缺陷态密度,所以有可能具有较低的陷阱态密度。
此外,被氧化物半导体的陷阱态俘获的电荷到消失需要较长的时间,有时像固定电荷那样动作。因此,有时在陷阱态密度高的氧化物半导体中形成沟道形成区域的晶体管的电特性不稳定。
因此,为了使晶体管的电特性稳定,降低氧化物半导体中的杂质浓度是有效的。为了降低氧化物半导体中的杂质浓度,优选还降低附近膜中的杂质浓度。作为杂质有氢、氮、碱金属、碱土金属、铁、镍、硅等。
<杂质>
在此,说明氧化物半导体中的各杂质的影响。
在氧化物半导体包含第14族元素之一的硅或碳时,在氧化物半导体中形成缺陷态。因此,将氧化物半导体中或与氧化物半导体的界面附近的硅或碳的浓度(通过二次离子质谱(SIMS:Secondary Ion Mass Spectrometry)测得的浓度)设定为2×1018atoms/cm3以下,优选为2×1017atoms/cm3以下。
此外,当氧化物半导体包含碱金属或碱土金属时,有时形成缺陷态而形成载流子。因此,使用包含碱金属或碱土金属的氧化物半导体的晶体管容易具有常开启特性。因此,使通过SIMS测得的氧化物半导体中的碱金属或碱土金属的浓度为1×1018atoms/cm3以下,优选为2×1016atoms/cm3以下。
当氧化物半导体包含氮时,容易产生作为载流子的电子,使载流子浓度增高,而n型化。其结果是,在将包含氮的氧化物半导体用于半导体的晶体管容易具有常开启特性。或者,在氧化物半导体包含氮时,有时形成陷阱态。其结果,有时晶体管的电特性不稳定。因此,将利用SIMS测得的氧化物半导体中的氮浓度设定为低于5×1019atoms/cm3,优选为5×1018atoms/cm3以下,更优选为1×1018atoms/cm3以下,进一步优选为5×1017atoms/cm3以下。
包含在氧化物半导体中的氢与键合于金属原子的氧起反应生成水,因此有时形成氧空位。当氢进入该氧空位时,有时产生作为载流子的电子。此外,有时由于氢的一部分与键合于金属原子的氧键合,产生作为载流子的电子。因此,使用包含氢的氧化物半导体的晶体管容易具有常开启特性。由此,优选尽可能地减少氧化物半导体中的氢。具体而言,在氧化物半导体中,将利用SIMS测得的氢浓度设定为低于1×1020atoms/cm3,优选低于1×1019atoms/cm3,更优选低于5×1018atoms/cm3,进一步优选低于1×1018atoms/cm3
通过将杂质被充分降低的氧化物半导体用于晶体管的沟道形成区域,可以使晶体管具有稳定的电特性。
本实施方式的至少一部分可以与本说明书所记载的其他实施方式适当地组合而实施。
(实施方式6)
在本实施方式中,使用图16至图19说明本发明的一个方式的电子设备。
本实施方式的电子设备包括本发明的一个方式的显示装置。本发明的一个方式的显示装置容易实现高清晰化、高分辨率化、大型化。因此,可以将本发明的一个方式的显示装置用于各种各样的电子设备的显示部。
此外,本发明的一个方式的显示装置可以以低成本制造,由此可以降低电子设备的制造成本。
作为电子设备,例如除了电视装置、台式或笔记本型个人计算机、用于计算机等的显示器、数字标牌、弹珠机等大型游戏机等具有较大的屏幕的电子设备以外,还可以举出数码相机、数码摄像机、数码相框、移动电话机、便携式游戏机、便携式信息终端、声音再现装置等。
特别是,因为本发明的一个方式的显示装置可以提高清晰度,所以可以适当地用于包括较小的显示部的电子设备。作为这种电子设备,例如可以举出手表型、手镯型等的信息终端设备(可穿戴设备)、可戴在头上的可穿戴设备等诸如头戴显示器等VR用设备、眼镜型AR用设备等。此外,作为可穿戴设备还可以举出SR用设备以及MR用设备。
本发明的一个方式的显示装置优选具有极高的分辨率诸如HD(像素数为1280×720)、FHD(像素数为1920×1080)、WQHD(像素数为2560×1440)、WQXGA(像素数为2560×1600)、4K2K(像素数为3840×2160)、8K4K(像素数为7680×4320)等。尤其优选具有4K2K、8K4K或更高的分辨率。此外,本发明的一个方式的显示装置中的像素密度(清晰度)优选为300ppi以上,更优选为500ppi以上,进一步优选为1000ppi以上,更进一步优选为2000ppi以上,还进一步优选为3000ppi以上,还进一步优选为5000ppi以上,还进一步优选为7000ppi以上。通过使用上述的具有高分辨率或高清晰度的显示装置,在便携式或家用等的个人用途的电子设备中可以进一步提高真实感、纵深感等。
可以将本实施方式的电子设备沿着房屋或高楼的内壁或外壁、汽车的内部装饰或外部装饰的曲面组装。
本实施方式的电子设备也可以包括天线。通过由天线接收信号,可以在显示部上显示影像及信息等。此外,在电子设备包括天线及二次电池时,可以用天线进行非接触电力传送。
本实施方式的电子设备也可以包括传感器(该传感器具有感测、检测或测量如下因素的功能:力、位移、位置、速度、加速度、角速度、转速、距离、光、液、磁、温度、化学物质、声音、时间、硬度、电场、电流、电压、电力、辐射线、流量、湿度、倾斜度、振动、气味或红外线)。
本实施方式的电子设备可以具有各种功能。例如,可以具有如下功能:将各种信息(静态图像、动态图像、文字图像等)显示在显示部上的功能;触摸面板的功能;显示日历、日期或时间等的功能;执行各种软件(程序)的功能;进行无线通信的功能;读出储存在存储介质中的程序或数据的功能;等。
图16A所示的电子设备6500是可以被用作智能手机的便携式信息终端设备。
电子设备6500包括外壳6501、显示部6502、电源按钮6503、按钮6504、扬声器6505、麦克风6506、照相机6507及光源6508等。显示部6502具有触摸面板功能。
显示部6502可以使用本发明的一个方式的显示装置。
图16B是包括外壳6501的麦克风6506一侧的端部的截面示意图。
外壳6501的显示面一侧设置有具有透光性的保护构件6510,被外壳6501及保护构件6510包围的空间内设置有显示面板6511、光学构件6512、触控传感器面板6513、印刷电路板6517、电池6518等。
显示面板6511、光学构件6512及触控传感器面板6513使用粘合层(未图示)固定到保护构件6510。
在显示部6502的外侧的区域中,显示面板6511的一部分叠回,且该叠回部分连接有FPC6515。FPC6515安装有IC6516。FPC6515与设置于印刷电路板6517的端子连接。
显示面板6511可以使用本发明的一个方式的柔性显示器(具有柔性的显示装置)。由此,可以实现极轻量的电子设备。此外,由于显示面板6511极薄,所以可以在抑制电子设备的厚度的情况下安装大容量的电池6518。此外,通过折叠显示面板6511的一部分以在像素部的背面设置与FPC6515的连接部,可以实现窄边框的电子设备。
图17A示出电视装置的一个例子。在电视装置7100中,外壳7101中组装有显示部7000。在此示出利用支架7103支撑外壳7101的结构。
可以对显示部7000应用本发明的一个方式的显示装置。
可以通过利用外壳7101所具有的操作开关及另外提供的遥控操作机7111进行图17A所示的电视装置7100的操作。此外,也可以在显示部7000中具有触控传感器,也可以通过用指头等触控显示部7000进行电视装置7100的操作。此外,也可以在遥控操作机7111中具有显示从该遥控操作机7111输出的数据的显示部。通过利用遥控操作机7111所具有的操作键或触摸面板,可以进行频道及音量的操作,并可以对显示在显示部7000上的影像进行操作。
此外,电视装置7100具有接收机及调制解调器等。可以通过利用接收机接收一般的电视广播。再者,通过调制解调器连接到有线或无线方式的通信网络,从而进行单向(从发送者到接收者)或双向(发送者和接收者之间或接收者之间等)的信息通信。
图17B示出笔记本型个人计算机的一个例子。笔记本型个人计算机7200包括外壳7211、键盘7212、指向装置7213、外部连接端口7214等。在外壳7211中组装有显示部7000。
可以对显示部7000应用本发明的一个方式的显示装置。
图17C和图17D示出数字标牌的一个例子。
图17C所示的数字标牌7300包括外壳7301、显示部7000及扬声器7303等。此外,还可以包括LED灯、操作键(包括电源开关或操作开关)、连接端子、各种传感器、麦克风等。
图17D示出设置于圆柱状柱子7401上的数字标牌7400。数字标牌7400包括沿着柱子7401的曲面设置的显示部7000。
在图17C和图17D中,可以对显示部7000应用包括本发明的一个方式的晶体管的显示装置。
显示部7000越大,一次能够提供的信息量越多。显示部7000越大,越容易吸引人的注意,例如可以提高广告宣传效果。
通过将触摸面板用于显示部7000,不仅可以在显示部7000上显示静态图像或动态图像,使用者还能够直觉性地进行操作,所以是优选的。此外,在用于提供线路信息或交通信息等信息的用途时,可以通过直觉性的操作提高易用性。
如图17C和图17D所示,数字标牌7300或数字标牌7400优选可以通过无线通信与使用者所携带的智能手机等信息终端设备7311或信息终端设备7411联动。例如,显示在显示部7000上的广告信息可以显示在信息终端设备7311或信息终端设备7411的屏幕上。此外,通过操作信息终端设备7311或信息终端设备7411,可以切换显示部7000的显示。
此外,可以在数字标牌7300或数字标牌7400上以信息终端设备7311或信息终端设备7411的屏幕为操作单元(控制器)执行游戏。由此,不特定多个使用者可以同时参加游戏,享受游戏的乐趣。
图18A是安装有取景器8100的照相机8000的外观图。
照相机8000包括外壳8001、显示部8002、操作按钮8003、快门按钮8004等。此外,照相机8000安装有可装卸的镜头8006。在照相机8000中,镜头8006和外壳也可以被形成为一体。
照相机8000通过按下快门按钮8004或者触摸用作触摸面板的显示部8002,可以进行成像。
外壳8001包括具有电极的嵌入器,除了可以与取景器8100连接以外,还可以与闪光灯装置等连接。
取景器8100包括外壳8101、显示部8102以及按钮8103等。
外壳8101通过嵌合到照相机8000的嵌入器装到照相机8000。取景器8100可以将从照相机8000接收的图像等显示到显示部8102上。
按钮8103被用作电源按钮等。
本发明的一个方式的显示装置可以用于照相机8000的显示部8002及取景器8100的显示部8102。此外,也可以在照相机8000中内置有取景器。
图18B是头戴显示器8200的外观图。
头戴显示器8200包括安装部8201、透镜8202、主体8203、显示部8204以及电缆8205等。此外,在安装部8201中内置有电池8206。
通过电缆8205,将电力从电池8206供应到主体8203。主体8203具有无线接收器等,能够将所接收的图像信息等显示到显示部8204上。此外,主体8203具有相机,由此可以利用使用者的眼球或眼睑的动作作为输入方法。
此外,也可以对安装部8201的被使用者接触的位置设置多个电极,以检测出根据使用者的眼球的动作而流过电极的电流,由此实现识别使用者的视线的功能。此外,还可以具有根据流过该电极的电流监视使用者的脉搏的功能。安装部8201可以具有温度传感器、压力传感器、加速度传感器等各种传感器,也可以具有将使用者的生物信息显示在显示部8204上的功能或与使用者的头部的动作同步地使显示在显示部8204上的图像变化的功能等。
可以将本发明的一个方式的显示装置用于显示部8204。
图18C至图18E是头戴显示器8300的外观图。头戴显示器8300包括外壳8301、显示部8302、带状固定工具8304以及一对透镜8305。
使用者可以通过透镜8305看到显示部8302上的显示。优选的是,弯曲配置显示部8302。因为使用者可以感受高真实感。此外,通过透镜8305分别看到显示在显示部8302的不同区域上的图像,从而可以进行利用视差的三维显示等。此外,本发明的一个方式不局限于设置有一个显示部8302的结构,也可以设置两个显示部8302以对使用者的一对眼睛分别配置一个显示部。
可以将本发明的一个方式的显示装置用于显示部8302。本发明的一个方式的显示装置还可以实现极高的清晰度。例如,如图18E所示,即使使用透镜8305对显示进行放大观看,像素也不容易被使用者观看。就是说,可以利用显示部8302使使用者观看到现实感更高的影像。
图18F是护目镜型头戴显示器8400的外观图。头戴显示器8400包括一对外壳8401、安装部8402及缓冲构件8403。一对外壳8401内各自设置有显示部8404及透镜8405。通过使一对显示部8404显示互不相同的图像,可以进行利用视差的三维显示。
使用者可以通过透镜8405看到显示部8404上的显示。透镜8405具有焦点调整机构并可以根据使用者的视力调整位置。显示部8404优选为正方形或横向长的矩形。由此,可以提高真实感。
安装部8402优选具有塑性及弹性以可以根据使用者的脸尺寸调整并没有掉下来。此外,安装部8402的一部分优选具有被用作骨传导耳机的振动机构。由此,只要安装就可以享受影像及声音,而不需耳机、扬声器等音响设备。此外,也可以具有通过无线通信将声音数据输出到外壳8401内的功能。
安装部8402及缓冲构件8403是与使用者的脸(额头、脸颊等)接触的部分。通过使缓冲构件8403与使用者的脸密接,可以防止漏光,从而可以进一步提高沉浸感。缓冲构件8403优选使用柔软的材料以在使用者装上头戴显示器8400时与使用者的脸密接。例如,可以使用橡胶、硅酮橡胶、聚氨酯、海绵等材料。此外,当作为缓冲构件8403使用用布或皮革(天然皮革或合成皮革)等覆盖海绵等的表面的构件时,在使用者的脸和缓冲构件8403之间不容易产生空隙,从而可以适当地防止漏光。此外,在使用这种材料时,不仅让使用者感觉亲肤,而且当在较冷的季节等装上的情况下不让使用者感到寒意,所以是优选的。在缓冲构件8403或安装部8402等接触于使用者的皮肤的构件采用可拆卸的结构时,容易进行清洗及交换,所以是优选的。
图19A至图19F所示的电子设备包括外壳9000、显示部9001、扬声器9003、操作键9005(包括电源开关或操作开关)、连接端子9006、传感器9007(该传感器具有感测、检测或测量如下因素的功能:力、位移、位置、速度、加速度、角速度、转速、距离、光、液、磁、温度、化学物质、声音、时间、硬度、电场、电流、电压、电力、辐射线、流量、湿度、倾斜度、振动、气味或红外线)、麦克风9008等。
图19A至图19F所示的电子设备具有各种功能。例如,可以具有如下功能:将各种信息(静态图像、动态图像及文字图像等)显示在显示部上的功能;触摸面板的功能;显示日历、日期或时间等的功能;通过利用各种软件(程序)控制处理的功能;进行无线通信的功能;读出储存在存储介质中的程序或数据并进行处理的功能;等。注意,电子设备可具有的功能不局限于上述功能,而可以具有各种功能。电子设备可以包括多个显示部。此外,也可以在电子设备中设置相机等而使其具有如下功能:拍摄静态图像或动态图像,且将所拍摄的图像储存在存储介质(外部存储介质或内置于相机的存储介质)中的功能;将所拍摄的图像显示在显示部上的功能;等。
可以将本发明的一个方式的显示装置用于显示部9001。
下面,详细地说明图19A至图19F所示的电子设备。
图19A是示出便携式信息终端9101的立体图。可以将便携式信息终端9101例如用作智能手机。注意,在便携式信息终端9101中,也可以设置扬声器9003、连接端子9006、传感器9007等。此外,作为便携式信息终端9101,可以将文字及图像信息显示在其多个面上。在图19A中示出显示三个图标9050的例子。此外,可以将以虚线的矩形示出的信息9051显示在显示部9001的其他面上。作为信息9051的一个例子,可以举出提示收到电子邮件、SNS或电话等的信息;电子邮件、SNS等的标题;电子邮件或SNS等的发送者姓名;日期;时间;电池余量;以及天线接收信号强度的显示等。或者,可以在显示有信息9051的位置上显示图标9050等。
图19B是示出便携式信息终端9102的立体图。便携式信息终端9102具有将信息显示在显示部9001的三个以上的面上的功能。在此,示出信息9052、信息9053、信息9054分别显示于不同的面上的例子。例如,在将便携式信息终端9102放在上衣口袋里的状态下,使用者能够确认显示在从便携式信息终端9102的上方看到的位置上的信息9053。使用者可以确认到该显示而无需从口袋里拿出便携式信息终端9102,由此能够判断是否接电话。
图19C是示出手表型便携式信息终端9200的立体图。可以将便携式信息终端9200例如用作智能手表(注册商标)。此外,显示部9001的显示面弯曲,可沿着其弯曲的显示面进行显示。此外,便携式信息终端9200例如通过与可进行无线通信的耳麦相互通信可以进行免提通话。此外,通过利用连接端子9006,便携式信息终端9200可以与其他信息终端进行数据传输及充电。充电也可以通过无线供电进行。
图19D至图19F是示出可以折叠的便携式信息终端9201的立体图。此外,图19D是将便携式信息终端9201展开的状态的立体图、图19F是折叠的状态的立体图、图19E是从图19D的状态和图19F的状态中的一个转换成另一个时中途的状态的立体图。便携式信息终端9201在折叠状态下可携带性好,而在展开状态下因为具有无缝拼接较大的显示区域所以显示的浏览性强。便携式信息终端9201所包括的显示部9001被由铰链9055连结的三个外壳9000支撑。显示部9001例如可以在曲率半径0.1mm以上且150mm以下的范围弯曲。
本实施方式所示的结构例子及对应该结构例子的附图等的至少一部分可以与其他结构例子或附图等适当地组合。
本实施方式的至少一部分可以与本说明书所记载的其他实施方式适当地组合而实施。
[实施例1]
在本实施例中,着眼于主体材料的不同,说明如下两种发光器件的特性:一是在形成发光层之后将其表面暴露于氮气氛而制造的发光器件;二是通过连续真空工序制造直到上部电极为止而不暴露于氮气氛的发光器件。
以下示出用来制造各发光器件的有机化合物。
[化学式3]
/>
<<发光器件1-1a、发光器件1-1b的制造>>
首先,在衬底上形成第一电极。作为衬底使用玻璃衬底。此外,在通过溅射法以10nm的厚度沉积包含氧化硅的铟锡氧化物(ITSO)后,通过溅射法以100nm的厚度沉积银,再者,通过溅射法以10nm的厚度沉积ITSO,由此形成第一电极。
在此,作为预处理,用水对衬底的表面进行洗涤,在以200℃烘烤1小时之后进行370秒的UV臭氧处理。然后,将衬底放入其内部被减压到10-4Pa左右的真空蒸镀装置中,并在真空蒸镀装置内的加热室中以170℃进行60分钟的真空烘烤,然后对衬底进行30分钟左右的冷却。
接着,在第一电极上形成空穴注入层。在将真空蒸镀装置内部减压到10-4Pa之后,以厚度为10nm的方式共蒸镀由上述结构式(i)表示的N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-芴-2-胺(简称:PCBBiF)及以分子量672包含氟的电子受体材料(OCHD-003),其中重量比为1:0.03(=PCBBiF:OCHD-003),由此形成空穴注入层。
接着,在空穴注入层上形成空穴传输层。以厚度为190nm的方式蒸镀PCBBiF,由此形成空穴传输层。
接着,在空穴传输层上形成发光层。以厚度为40nm的方式共蒸镀由上述结构式(ii)表示的9-[3’-(二苯并噻吩-4-基)联苯-3-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9mDBtBPNfpr)、PCBBiF以及磷光掺杂剂OCPG-006,其中重量比为0.6:0.4:0.05(=9mDBtBPNfpr:PCBBiF:OCPG-006),由此形成发光层。
然后,继续进行后续沉积工序来制造发光器件1-1a。此外,在形成发光层之后,将衬底搬运到大气压下来在露点为-78℃且氧浓度为3ppm的氮气氛下放置1小时,再次在10- 4Pa左右的压力下进行后续沉积工序来制造发光器件1-1b。有时将发光器件1-1a及发光器件1-1b统称为发光器件1-1。
接着,在发光层上形成空穴阻挡层。以厚度为25nm的方式蒸镀由上述结构式(iii)表示的2-[3’-(9,9-二甲基-9H-芴-2-基)-1,1’-联苯-3-基]-4,6-二苯基-1,3,5-三嗪(简称:mFBPTzn),由此形成空穴阻挡层。
接着,在空穴阻挡层上形成电子传输层。以厚度为15nm的方式共蒸镀由上述结构式(iv)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(简称:ZADN)及由上述结构式(v)表示的8-羟基喹啉-锂(简称:Liq),其中重量比为1:1(=ZADN:Liq),由此形成电子传输层。
接着,在电子传输层上形成电子注入层。以厚度为1nm的方式蒸镀氟化锂(LiF),由此形成电子注入层。
接着,在电子注入层上形成第二电极。以厚度为15nm的方式共蒸镀银及镁,其中体积比为1:0.1(=Ag:Mg),由此形成第二电极。在本实施例中,第二电极被用作阴极。此外,在第二电极上形成覆盖层,以提高光提取效率。通过以厚度为80nm的方式蒸镀由上述结构式(vi)表示的4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:DBT3P-II),形成覆盖层。
以不暴露于大气的方式在氮气氛的手套箱中密封所制造的发光器件1-1(将密封剂涂敷于器件的周围,并且在密封时进行UV处理并以80℃进行1小时的热处理)。
<<发光器件1-2a、发光器件1-2b的制造>>
将发光器件1-1的发光层中的9mDBtBPNfpr:PCBBiF:OCPG-006的重量比设定为0.7:0.3:0.05(=9mDBtBPNfpr:PCBBiF:OCPG-006),由此制造发光器件1-2a、发光器件1-2b。除此以外,发光器件1-2a、发光器件1-2b的制造与发光器件1-1的制造同样。与发光器件1-1a及发光器件1-1b同样,发光器件1-2a与发光器件1-2b的不同之处在于是否在形成发光层之后暴露于氮气氛。有时将发光器件1-2a及发光器件1-2b统称为发光器件1-2。
<<发光器件1-3a、发光器件1-3b的制造>>
将发光器件1-1的发光层中的9mDBtBPNfpr:PCBBiF:OCPG-006的重量比设定为0.8:0.2:0.05(=9mDBtBPNfpr:PCBBiF:OCPG-006),由此制造发光器件1-3a、发光器件1-3b。除此以外,发光器件1-3a、发光器件1-3b的制造与发光器件1-1的制造同样。与发光器件1-1a及发光器件1-1b同样,发光器件1-3a与发光器件1-3b的不同之处在于是否在形成发光层之后暴露于氮气氛。有时将发光器件1-3a及发光器件1-3b统称为发光器件1-3。
<<发光器件2a及发光器件2b的制造>>
将发光器件1-1的空穴传输层的厚度设定为195nm,并且作为发光层共蒸镀由上述结构式(vii)表示的10-(9’-苯基-3,3’-联-9H-咔唑-9-基)萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:10PCCzNfpr)及磷光掺杂剂OCPG-006,其中重量比为1:0.05(=10PCCzNfpr:OCPG-006),由此制造发光器件2。除此以外,发光器件2的制造与发光器件1-1的制造同样。与发光器件1-1a及发光器件1-1b同样,发光器件2a与发光器件2b的不同之处在于是否在形成发光层之后暴露于氮气氛。有时将发光器件2a及发光器件2b统称为发光器件2。
作为上述各发光器件的可靠性测试,以50mA/cm2的恒流密度进行驱动测试。图20示出发光器件1-1至发光器件1-3的结果,图21示出发光器件2的结果。在图20及图21中,纵轴表示以初始亮度为100%时的归一化亮度(%),横轴表示器件的驱动时间(h)。
发光器件1-1至发光器件1-3为发光层中的主体材料由具有空穴传输性的材料和具有电子传输性的材料的两种材料构成的发光器件,发光器件2为主体材料由单一材料构成的发光器件。
由图21可知,关于发光器件2,与作为不暴露于氮气氛的发光器件的发光器件2a相比,作为暴露于氮气氛的发光器件的发光器件2b的可靠性下降。
同样,由图20可知,关于发光器件1-1及发光器件1-2,与不暴露于氮气氛的发光器件相比,暴露于氮气氛的发光器件的可靠性下降。另一方面,关于发光器件1-3,暴露于氮气氛的发光器件和不暴露于氮气氛的发光器件都具有同样的可靠性。
在此,根据对图20的详查可知,发光器件1-2中的可靠性的差异比发光器件1-1中的可靠性的差异小。关于发光器件1-3的结果也可以说是几乎没有该差异的结果。
如上所述,发光器件1-1至发光器件1-3间的不同之处在于:发光层中的电子传输材料与空穴传输材料的混合比,电子传输材料的占比按发光器件1-1、发光器件1-2、发光器件1-3的顺序依次增高。
随着电子传输材料的占比增高,发光层的电子传输性提高,使得再结合区域的中心转移到发光层的阳极方向。因此,可认为不容易受到刚形成发光层之后的氮气氛的影响,从而可以抑制可靠性下降。如此,通过使用电子传输材料和空穴传输材料的混合材料作为发光层的主体材料,可以在EL层内部调整再结合区域,从而可以减少暴露于氮气氛时的负面影响。
另一方面,发光器件2的主体材料由单一材料构成,由此发光区域被固定,不能像发光器件1-1或发光器件1-3那样调整器件。
如上所述,在本发明的一个方式中,通过使用电子传输材料和空穴传输材料的混合材料作为发光层的主体材料,可以制造未受暴露于氮气氛时的影响的发光器件。
[符号说明]
41a:像素电路、41b:像素电路、42a:像素电路、42b:像素电路、43a:像素电路、43b:像素电路、51a:布线、51b:布线、52a:布线、52b:布线、52c:布线、52d:布线、53a:布线、53b:布线、53c:布线、60:显示元件、61:晶体管、62:晶体管、63:电容器、70:像素单元、70a:像素、70b:像素、71a:子像素、71b:子像素、72a:子像素、72b:子像素、73a:子像素、73b:子像素、100:衬底、101:阳极、101_1:阳极、101_2:阳极、101b:导电膜、101C:连接电极、101R:阳极、101G:阳极、101B:阳极、102:阴极、103:EL层、103A:第一EL层、103B:第一EL层、103R:第一EL层、103Rb:EL膜、103G:第一EL层、103Gb:EL膜、103B:第一EL层、103Bb:EL膜、110:发光器件、110_1:发光器件、110_2:发光器件、110R:发光器件、110G:发光器件、110B:发光器件、111:空穴注入层、111A:空穴注入层、111B:空穴注入层、111b:有机层、112:空穴传输层、112A:空穴传输层、112B:空穴传输层、112b:有机层、113:发光层、113A:发光层、113B:发光层、113b:有机层、114:电子传输层、114b:有机层、115:电子注入层、120:绝缘层、121:绝缘层、121b:绝缘膜、125:绝缘层、125b:绝缘膜、126:绝缘层、126b:绝缘膜、127:牺牲层、130:连接部、131:保护层、143a:抗蚀剂掩模、143b:抗蚀剂掩模、143c:抗蚀剂掩模、144a:牺牲膜、144b:牺牲膜、144c:牺牲膜、145a:牺牲层、145b:牺牲层、145c:牺牲层、146a:保护膜、146b:保护膜、146c:保护膜、147a:保护层、147b:保护层、147c:保护层、201:晶体管、202:晶体管、204:连接部、205:晶体管、209:晶体管、210:晶体管、211:绝缘层、212:绝缘层、213:绝缘层、214:绝缘层、215:绝缘层、218:绝缘层、221:导电层、222a:导电层、222b:导电层、223:导电层、225:绝缘层、228:区域、231:半导体层、231i:沟道形成区域、231n:低电阻区域、240:电容器、241:导电层、242:连接层、243:绝缘层、245:导电层、251:导电层、252:导电层、254:绝缘层、255:绝缘层、256:插头、261:绝缘层、262:绝缘层、263:绝缘层、264:绝缘层、265:绝缘层、271:插头、274:插头、274a:导电层、274b:导电层、280:显示模块、281:显示部、282:电路部、283:像素电路部、283a:像素电路、284:像素部、284a:像素、285:端子部、286:布线部、290:FPC、291:衬底、292:衬底、301:衬底、310:晶体管、311:导电层、312:低电阻区域、313:绝缘层、314:绝缘层、315:元件分离层、320:晶体管、321:半导体层、323:绝缘层、324:导电层、325:导电层、326:绝缘层、327:导电层、328:绝缘层、329:绝缘层、331:衬底、332:绝缘层、400:发光装置、400A:发光装置、400B:发光装置、400C:发光装置、400D:发光装置、400E:发光装置、401:层、411a:像素电极、411b:像素电极、411c:像素电极、416:保护层、416a:无机绝缘层、416b:有机绝缘层、416c:无机绝缘层、417:遮光层、419:树脂层、420:衬底、421:绝缘层、426a:光学调整层、426b:光学调整层、426c:光学调整层、430a:发光器件、430b:发光器件、430c:发光器件、442:粘合层、443:空间、451:衬底、452:衬底、453:衬底、454:衬底、455:粘合层、462:显示部、464:电路、465:布线、466:导电层、472:FPC、515:EL层、516a:绝缘层、516b:绝缘层、900:衬底、901:阳极、903:阴极、911:空穴注入层、912:空穴传输层、913:发光层、914:电子传输层、915:电子注入层、6500:电子设备、6501:外壳、6502:显示部、6503:电源按钮、6504:按钮、6505:扬声器、6506:麦克风、6507:照相机、6508:光源、6510:保护构件、6511:显示面板、6512:光学构件、6513:触控传感器面板、6515:FPC、6516:IC、6517:印刷电路板、6518:电池、7000:显示部、7100:电视装置、7101:外壳、7103:支架、7111:遥控操作机、7200:笔记本型个人计算机、7211:外壳、7212:键盘、7213:指向装置、7214:外部连接端口、7300:数字标牌、7301:外壳、7303:扬声器、7311:信息终端设备、7400:数字标牌、7401:柱子、7411:信息终端设备、8000:照相机、8001:外壳、8002:显示部、8003:操作按钮、8004:快门按钮、8006:透镜、8100:取景器、8101:外壳、8102:显示部、8103:按钮、8200:头戴显示器、8201:安装部、8202:透镜、8203:主体、8204:显示部、8205:电缆、8206:电池、8300:头戴显示器、8301:外壳、8302:显示部、8304:固定工具、8305:透镜、8400:头戴显示器、8401:外壳、8402:安装部、8403:缓冲构件、8404:显示部、8405:透镜、9000:外壳、9001:显示部、9003:扬声器、9005:操作键、9006:连接端子、9007:传感器、9008:麦克风、9050:图标、9051:信息、9052:信息、9053:信息、9054:信息、9055:铰链、9101:便携式信息终端、9102:便携式信息终端、9200:便携式信息终端、9201:便携式信息终端。

Claims (9)

1.一种发光装置,包括:
第一发光器件;以及
第二发光器件,
其中,所述第一发光器件与所述第二发光器件的位置相邻,
所述第一发光器件包括第一EL层A及第二EL层,
所述第二发光器件包括第一EL层B及所述第二EL层,
所述第一EL层A与所述第一EL层B相互独立,
所述第二EL层由所述第一发光器件及所述第二发光器件共享,
所述第一EL层A的所述第一EL层B一侧的端面与所述第一EL层B的所述第一EL层A一侧的端面相对,
所述第一EL层A包括发光层,
所述发光层包含发光材料、第一有机化合物以及第二有机化合物,
所述第一有机化合物为具有电子传输性的有机化合物,
并且,所述第二有机化合物为具有空穴传输性的有机化合物。
2.根据权利要求1所述的发光装置,
其中所述发光层中的电子迁移率高于空穴迁移率。
3.根据权利要求1或2所述的发光装置,
其中所述第一有机化合物包含缺π电子杂芳环骨架,
并且所述第二有机化合物包含富π电子杂芳环骨架。
4.根据权利要求1至3中任一项所述的发光装置,
其中所述第一有机化合物包含萘并呋喃并吡嗪骨架。
5.根据权利要求1至4中任一项所述的发光装置,
其中所述第二有机化合物包含咔唑骨架。
6.根据权利要求1至5中任一项所述的发光装置,
其中所述第一EL层A及所述第一EL层B包括发光层。
7.根据权利要求6所述的发光装置,
其中所述发光层位于所述第一EL层A及所述第一EL层B中的最靠近第二EL层一侧。
8.根据权利要求6或7所述的发光装置,
其中所述第二EL层包括空穴阻挡层、电子传输层以及电子注入层中的任一个或多个。
9.一种电子设备,包括:
权利要求1至8中任一项所述的发光装置;
传感器;
操作按钮;以及
扬声器或麦克风。
CN202280029532.0A 2021-04-30 2022-04-18 发光装置及电子设备 Pending CN117256208A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-078005 2021-04-30
JP2021078005 2021-04-30
PCT/IB2022/053597 WO2022229780A1 (ja) 2021-04-30 2022-04-18 発光装置および電子機器

Publications (1)

Publication Number Publication Date
CN117256208A true CN117256208A (zh) 2023-12-19

Family

ID=83847826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280029532.0A Pending CN117256208A (zh) 2021-04-30 2022-04-18 发光装置及电子设备

Country Status (5)

Country Link
US (1) US20240206206A1 (zh)
JP (1) JPWO2022229780A1 (zh)
KR (1) KR20240004556A (zh)
CN (1) CN117256208A (zh)
WO (1) WO2022229780A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936774B1 (ko) * 2012-08-10 2019-01-09 엘지디스플레이 주식회사 유기발광소자 및 그 제조방법
KR102555053B1 (ko) 2015-06-29 2023-07-14 아이엠이씨 브이제트더블유 유기층의 고해상도 패턴화 방법
US20190031673A1 (en) * 2017-07-27 2019-01-31 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
KR102578544B1 (ko) * 2017-12-11 2023-09-13 엘지디스플레이 주식회사 전계발광 표시장치
CN110783380B (zh) * 2018-07-31 2024-01-09 乐金显示有限公司 显示装置
WO2020109927A1 (ja) * 2018-11-30 2020-06-04 株式会社半導体エネルギー研究所 Elデバイス用組成物
TW202104234A (zh) * 2019-06-14 2021-02-01 日商半導體能源研究所股份有限公司 發光器件、發光裝置、電子裝置及照明設備
JP7478521B2 (ja) * 2019-08-09 2024-05-07 株式会社ジャパンディスプレイ 有機el表示装置

Also Published As

Publication number Publication date
US20240206206A1 (en) 2024-06-20
JPWO2022229780A1 (zh) 2022-11-03
WO2022229780A1 (ja) 2022-11-03
KR20240004556A (ko) 2024-01-11

Similar Documents

Publication Publication Date Title
CN116709796A (zh) 发光器件
KR20230094169A (ko) 유기 반도체 디바이스, 유기 el 디바이스, 발광 장치, 전자 기기, 및 조명 장치
WO2022229780A1 (ja) 発光装置および電子機器
WO2022172129A1 (ja) 発光装置および電子機器
WO2024141864A1 (ja) 発光デバイス
CN116889120A (zh) 发光装置及电子设备
WO2024141881A1 (ja) 発光デバイスおよび発光デバイスの作製方法
WO2024116032A1 (ja) 発光デバイス
US20230171985A1 (en) Organic semiconductor element, organic el element, and photodiode
JP2022176174A (ja) 正孔輸送層用材料、電子輸送層用材料、発光デバイス、および電子機器
JP2024094294A (ja) 発光デバイス
CN116916717A (zh) 发光器件及其制造方法
CN117355197A (zh) 发光器件的制造方法
CN117596909A (zh) 发光器件
KR20240104052A (ko) 발광 디바이스
JP2024079628A (ja) 発光デバイス
CN118119203A (zh) 发光器件
CN116969950A (zh) 有机化合物、发光器件、发光装置
JP2023157871A (ja) 発光デバイス、およびその作製方法
JP2023164316A (ja) 有機化合物、発光デバイス、発光装置
JP2024079637A (ja) 有機化合物、および発光デバイス
CN118119255A (zh) 有机化合物及发光器件
CN117678323A (zh) 发光装置
JP2024065055A (ja) 有機金属錯体、発光デバイス
JP2024061664A (ja) 有機金属錯体、発光デバイス

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination