CN117253899A - 高量子效率宽光谱吸收cis像素单元及其制作方法 - Google Patents

高量子效率宽光谱吸收cis像素单元及其制作方法 Download PDF

Info

Publication number
CN117253899A
CN117253899A CN202311455297.6A CN202311455297A CN117253899A CN 117253899 A CN117253899 A CN 117253899A CN 202311455297 A CN202311455297 A CN 202311455297A CN 117253899 A CN117253899 A CN 117253899A
Authority
CN
China
Prior art keywords
well
region
pdn2
implantation
impurity compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311455297.6A
Other languages
English (en)
Inventor
王秀宇
崔雨昂
徐江涛
任群
吴溪广润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202311455297.6A priority Critical patent/CN117253899A/zh
Publication of CN117253899A publication Critical patent/CN117253899A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14698Post-treatment for the devices, e.g. annealing, impurity-gettering, shor-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明涉及CMOS图像传感器(CIS)领域,为提出一种基于杂质补偿结构的CIS新型像素及其工艺实现方法,该结构CIS具有宽光谱吸收的特点,且在近红外区具有较高的量子效率。为此,本发明,高量子效率宽光谱吸收CIS像素单元,P型衬底上设置有两个P阱,一个P阱上部设置有浅沟槽隔离STI,另一个P阱上部设置有传输栅TG、浮空扩散节点FD、复位端VRST、电极VDD,两个P阱之间是钳位光电二极管PPD,钳位光电二极管PPD的具体结构由上至下依次为:钳位层、浅N阱、杂质补偿区PDc和p衬底,浅N阱由PDN1和PDN2两层构成。本发明主要应用于CMOS图像传感器的设计制造场合。

Description

高量子效率宽光谱吸收CIS像素单元及其制作方法
技术领域
本发明涉及CMOS图像传感器(CIS)领域,特别涉及一种高量子效率宽光谱吸收的CIS新型像素设计及工艺实现方法。具体讲,涉及高量子效率宽光谱吸收CIS像素单元及其制作方法。
背景技术
随着CMOS工艺技术的快速发展,CMOS图像传感器因其读出灵活、功耗和成本低等优点逐渐取代电荷耦合图像传感器(CCD)成为常用的图像传感器,在消费电子、医疗检测和安防监控等领域有着广泛的应用。
由硅光吸收系数与波长和吸收深度的关系可知,波长越长,光在硅体内的吸收深度越深,量子效率也越低。为使CIS具有较高的量子效率,传统CIS通常工作在400~700nm波长范围内。为提高光的利用效率,目前在CIS像素的钳位光电二极管(PPD)设计时,通常采用深N阱结构。为使深N阱的PPD在低压下能完全耗尽,有源像素(APS)通常采用高阻衬底或采用如图1a所示的梯度掺杂,以增加PN结耗尽区深度,从而提高CIS对长波长光的吸收。图1a为传统深N阱有源像素(APS)结构,PPD由上至下依次为钳位层、深N阱和p衬底;其中浅沟槽隔离(STI)在p型深掺杂阱(P阱)上,n型掺杂的深N阱由四种不同浓度的PDN1、PDN2、PDN3和DPDN组成,其浓度由表面到体内依次降低;浮空扩散节点(FD)为电荷电压转换节点,TG、VRST和VDD分别为传输栅、复位晶体管和电源。但是,深N阱结构的PPD存在如下问题:深N阱结构对离子注入工艺要求较高,需通过高能离子注入才能实现;入射光会在相邻的深N阱像素间发生显著的横向串扰,为避免这一问题,通常N阱深度在设计时不超过3μm(SozoYokogawa,Itaru Oshiyama,Harumi Ikeda,IR sensitivity enhancement of CMOS ImageSensor with diffractive light trapping pixels.Scientific Reports,2017,7:3832.)。
发明内容
为克服现有技术的不足,本发明旨在提出一种基于杂质补偿结构的CIS新型像素及其工艺实现方法,该结构CIS具有宽光谱吸收的特点,且在近红外区具有较高的量子效率。为此,本发明采取的技术方案是,高量子效率宽光谱吸收CIS像素单元,P型衬底上设置有两个P阱,一个P阱上部设置有浅沟槽隔离STI,另一个P阱上部设置有传输栅TG、浮空扩散节点FD、复位端VRST、电极VDD,两个P阱之间是钳位光电二极管PPD,钳位光电二极管PPD的具体结构由上至下依次为:钳位层、浅N阱、杂质补偿区PDc和p衬底,浅N阱由PDN1和PDN2两层构成,PDN1和PDN2掺杂浓度根据阱容量要求确定,且前者浓度比后者浓度高,PDN2下方为杂质补偿区PDc,其中,N阱靠近硅表面,负责吸收短波长的光;透过N阱的长波长光被其下方的杂质补偿区PDc吸收。
高量子效率宽光谱吸收CIS像素单元制作方法,制作前述CIS像素单元,具体步骤如下:
(1)PDN1区制备:首先进行As掺杂,注入剂量为3.1×1012/cm2,能量为155千电子伏特(keV);砷As注入区位于硅表面下0.06~0.58μm范围内,这里先进行砷As+离子注入,使硅表面非晶化,以避免后面磷离子P+和硼离子B+注入时的沟道效应;
(2)杂质补偿区制备:首先进行杂质补偿区B掺杂,分三次注入,使得硼B+离子注入区位于硅表面下0.70~1.82μm范围内,其注入剂量分别为1.0×1011/cm2、0.9×1010/cm2和0.9×1011/cm2,注入能量分别为400keV、450keV和250keV,然后进行P掺杂,注入剂量为5.8×1011/cm2,能量为400keV;磷P+离子注入区位于表面下0.34~1.82μm范围内,B掺杂区与P掺杂区基本重合,能在硅表面下0.70~1.82μm范围内形成杂质补偿区;
(3)PDN2区制备:进行P掺杂,注入剂量为2.1×1011/cm2,能量为80keV,P注入区位于表面下0.36~1.00μm范围内;
(4)进行像素FD制备和P型钳位层注入;
(5)对器件整体进行快速退火:退火温度为800~880℃,退火时间为20~60s。
本发明的特点及有益效果是:
本发明提出一种基于杂质补偿结构的高量子效率宽光谱吸收的CIS新型像素及其工艺实现方法。与传统深N阱CIS像素相比,所设计的CIS新型像素通过杂质补偿效应,在硅禁带中构建了P+和B局域态能级,能同时发生硅的本征光吸收和局域态能级的光吸收,具有宽光谱吸收的特点,从而提高了CIS的量子效率。具体而言,像素曝光时,PDN1/PDN2吸收短波长的可见光,而PDc杂质补偿区吸收透过PDN1/PDN2区的长波长的光,二者相互配合,有效地提高了光的利用效率。此外,基于杂质补偿结构的CIS新型像素长波光吸收深度较浅,因此在工艺上不需要进行高能离子注入,较易实现。
附图说明:
图1本发明与传统CIS像素单元结构对比。
图中a传统深N阱APS结构;b基于杂质补偿浅N阱APS结构
图2杂质补偿硅量子效率与波长的关系。
图3基于杂质补偿结构CIS新型像素TCAD仿真结果。
具体实施方式
基于局域态能级宽光谱吸收的特性,本发明通过杂质补偿在PPD中构建局域态能级,不但降低了N阱的长波长光吸收深度,而且还提高了其在近红外区光吸收的量子效率。
本发明基于图1a传统有源像素的PPD结构,高量子效率宽光谱吸收CIS像素单元的N阱由PDN1和PDN2两层构成,如图1b所示。PDN1和PDN2掺杂浓度根据阱容量要求确定,且前者浓度比后者浓度高,PDN2下方为杂质补偿区(PDc),这一点也与传统CIS的PPD不同。图1b高量子效率宽光谱吸收CIS像素的PPD由上至下依次为钳位层、浅N阱、杂质补偿区PDc和p衬底。
在高量子效率宽光谱吸收CIS像素的PPD中构建杂质补偿区,PPD的具体结构由上至下依次为:钳位层、浅N阱、杂质补偿区PDc和p衬底。为提高对长波长光的吸收,传统CIS的N阱深度通常大于2.5μm;与传统CIS像素不同的是,本发明中高量子效率宽光谱吸收CIS像素的N阱深度不超过2.5μm。本发明PPD中的浅N阱由PDN1和PDN2两层构成,其N阱深度比传统CIS的N阱深度浅,PDN1和PDN2掺杂浓度根据阱容量要求确定,且前者浓度比后者浓度高,PDN2下方为杂质补偿区PDc。由于杂质补偿区PDc位于N阱下方,远离硅表面,因此这种结构的PPD在曝光时具有如下光吸收特点:N阱靠近硅表面,负责吸收短波长的光;透过N阱的长波长光被其下方的杂质补偿区PDc吸收,这样PPD中N阱及其下方的杂质补偿区在光吸收时相互配合,有效地提高了光的利用效率。
本发明设计的基于杂质补偿CIS新型像素如图1b所示,其结构与图1a中传统的CIS像素结构类似,PPD均由多层构成。不同之处在于:图1a中的PPD为多次N型掺杂(一般3~5层),PN结较深;而图1b中的PPD由N阱层(由PDN1和PDN2组成)和杂质补偿层(PDc)构成,PN结较浅。图1b中的N阱与图1a中的N阱作用相同,均用于复位后光生电子的产生和收集;不同之处在于:图1a中的N阱较深,能吸收长波长的光且波长范围较宽;而图1b中的N阱较浅,因此仅能吸收短波长的光且波长范围较窄,但图1b中的杂质补偿结构新型光电二极管(PPDc)长波长光吸收主要由杂质补偿区PDc负责。在图1b的N阱底部,当n-Si被硼(B)杂质补偿后,PDc区中的磷(P)和B杂质原子由于补偿形成P+和B离子。从能带理论解释,所形成的P+和B离子在硅(Si)禁带中构成了局域态能级,有利于Si价带电子通过上述局域态能级被长波长光激发至导带,从而产生了长波长光吸收。
基于图1b中的杂质补偿PPDc结构模型,根据过剩少子的连续性方程和边界条件,可得杂质补偿区的电流密度J;然后根据杂质补偿区量子效率η与J的关系,得到量子效率η与入射光波长λ的关系,结果如图2所示。与传统CIS像素相比,基于杂质补偿结构的CIS新型像素在波长高于700nm的近红外波段仍具有较高的量子效率,在895nm波长处的量子效率最高(0.68);在1100nm处,传统CIS像素的量子效率为0,而基于杂质补偿结构的CIS新型像素的量子效率仍高达0.63。但在可见光波段,基于杂质补偿结构的CIS新型像素的量子效率比传统像素的低;其原因可能与杂质补偿区PDc在PDN1/PDN2下方有关:当PDN1/PDN2复位后曝光时,由于PDN1/PDN2靠近硅表面,因此会吸收短波长的可见光,从而使短波长的可见光不易到达PDc杂质补偿区;因此,不能被PDN1/PDN2区吸收的长波长光会到达PDc杂质补偿区并被吸收。显然,这种PPDc结构能很好地利用短波长的光和长波长的光,表现出宽光谱吸收,从而提高了光的利用效率,有利于微光成像。
图1b中具有杂质补偿结构的PPDc制备工艺主要包括三次N型离子注入和三次P型离子注入,其它器件的制备工艺与传统CIS中的器件工艺相同。
基于杂质补偿结构CIS新型像中的STI隔离、P阱注入、FD和钳位层的形成等工艺与传统CIS像素中的工艺一样。具有杂质补偿结构PPDc的制备工艺主要包括三次N型离子注入和三次P型离子注入,可采用倒掺杂阱工艺,具体步骤如下:
(1)PDN1区制备:首先进行As掺杂,注入剂量为3.1×1012/cm2,能量为155keV。仿真结果表明,此时As注入区位于硅表面下0.06~0.58μm范围内。这里先进行砷(As+)离子注入,使硅表面非晶化,以避免后面磷离子(P+)和硼离子(B+)注入时的沟道效应。
(2)杂质补偿区制备:首先进行杂质补偿区B掺杂,分三次注入,使得硼(B+)离子注入区位于硅表面下0.70~1.82μm范围内,其注入剂量分别为1.0×1011/cm2、0.9×1010/cm2和0.9×1011/cm2,注入能量分别为400keV、450keV和250keV。然后进行P掺杂,注入剂量为5.8×1011/cm2,能量为400keV;仿真结果表明,此时磷(P+)离子注入区位于表面下0.34~1.82μm范围内。以上工艺仿真结果表明(图3),B掺杂区与P掺杂区基本重合,能在硅表面下0.70~1.82μm范围内形成杂质补偿区。
(3)PDN2区制备:进行P掺杂,注入剂量为2.1×1011/cm2,能量为80keV。仿真结果表明,此时P注入区位于表面下0.36~1.00μm范围内。
(4)在上述N阱制备及杂质补偿区制备工艺完成后,进行像素FD制备和钳位层注入等工艺,这些工艺制备方法与传统CIS的相同。
(5)在钳位层注入完成后,对器件整体进行快速退火:退火温度为800~880℃,退火时间为20~60s。
本发明像素中其它器件的制备工艺与传统CIS工艺相同。通过对上述(1)~(5)工艺进行仿真,结果如图3所示。为确保CIS复位之后N阱区(PDN1/PDN2)能完全耗尽,图3中的PPD采用插指结构,其中插指宽度约为0.85μm,插指间距为0.44μm。N阱区(PDN1/PDN2)和杂质补偿区总深度度约为1.82μm,杂质补偿区厚度约为0.92μm,杂质补偿后PDc区净施主杂质浓度约为6.3×1014/cm3。N区(PDN1/PDN2)总厚度约为0.90μm,其中PDN1区厚度约为0.39μm,杂质浓度约为7.9×1016/cm3;PDN2区厚度约为0.51μm,杂质浓度约为1.2×1016/cm3。该设计的满阱容量为2930e-,钳位电压为0.39V。须说明的是,阱容量和钳位电压可根据性能需要通过N阱杂质浓度进行调节。
以上研究表明,基于杂质补偿结构的CIS新型像素N阱可以设计的较浅,这种结构的像素不仅具有宽光谱吸收的特点,而且在近红外波段也具有较高的量子效率。该发明为CIS新型像素的设计提供了新思路,具有良好的应用前景。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种高量子效率宽光谱吸收CIS像素单元,其特征是,P型衬底上设置有两个P阱,一个P阱上部设置有浅沟槽隔离STI,另一个P阱上部设置有传输栅TG、浮空扩散节点FD、复位端VRST、电极VDD,两个P阱之间是钳位光电二极管PPD,钳位光电二极管PPD的具体结构由上至下依次为:钳位层、浅N阱、杂质补偿区PDc和p衬底,浅N阱由PDN1和PDN2两层构成,PDN1和PDN2掺杂浓度根据阱容量要求确定,且前者浓度比后者浓度高,PDN2下方为杂质补偿区PDc,其中,N阱靠近硅表面,负责吸收短波长的光;
透过N阱的长波长光被其下方的杂质补偿区PDc吸收。
2.一种高量子效率宽光谱吸收CIS像素单元制作方法,其特征是,制作前述CIS像素单元,具体步骤如下:
(1)PDN1区制备:首先进行As掺杂,注入剂量为3.1×1012/cm2,能量为155千电子伏特(keV);砷As注入区位于硅表面下0.06~0.58μm范围内,这里先进行砷As+离子注入,使硅表面非晶化,以避免后面磷离子P+和硼离子B+注入时的沟道效应;
(2)杂质补偿区制备:首先进行杂质补偿区B掺杂,分三次注入,使得硼B+离子注入区位于硅表面下0.70~1.82μm范围内,其注入剂量分别为1.0×1011/cm2、0.9×1010/cm2和0.9×1011/cm2,注入能量分别为400keV、450keV和250keV,然后进行P掺杂,注入剂量为5.8×1011/cm2,能量为400keV;磷P+离子注入区位于表面下0.34~1.82μm范围内,B掺杂区与P掺杂区基本重合,能在硅表面下0.70~1.82μm范围内形成杂质补偿区;
(3)PDN2区制备:进行P掺杂,注入剂量为2.1×1011/cm2,能量为80keV,P注入区位于表面下0.36~1.00μm范围内;
(4)进行像素FD制备和P型钳位层注入;
(5)对器件整体进行快速退火:退火温度为800~880℃,退火时间为20~60s。
CN202311455297.6A 2023-11-03 2023-11-03 高量子效率宽光谱吸收cis像素单元及其制作方法 Pending CN117253899A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311455297.6A CN117253899A (zh) 2023-11-03 2023-11-03 高量子效率宽光谱吸收cis像素单元及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311455297.6A CN117253899A (zh) 2023-11-03 2023-11-03 高量子效率宽光谱吸收cis像素单元及其制作方法

Publications (1)

Publication Number Publication Date
CN117253899A true CN117253899A (zh) 2023-12-19

Family

ID=89133435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311455297.6A Pending CN117253899A (zh) 2023-11-03 2023-11-03 高量子效率宽光谱吸收cis像素单元及其制作方法

Country Status (1)

Country Link
CN (1) CN117253899A (zh)

Similar Documents

Publication Publication Date Title
US7250325B2 (en) Image sensor with deep well region and method of fabricating the image sensor
US8987751B2 (en) Photodiode device based on wide bandgap material layer and back-side illumination (BSI) CMOS image sensor and solar cell including the photodiode device
US7855406B2 (en) Solid-state imaging device and method of manufacturing the same
US20090179293A1 (en) Image sensor and method for manufacturing the same
JP2000031525A (ja) イメ―ジセンサのピンドフォトダイオ―ド及びその製造方法
TW200400627A (en) Solid-state image sensing device and camera system using the same
CN104112782B (zh) 一种抗串扰倒u 型埋层光电二极管及生成方法
US8994138B2 (en) Hardened photodiode image sensor
TWI451564B (zh) 具有二磊晶層之影像感測器及其製造方法
JP2015220255A (ja) 裏面照射型cmos型撮像素子、及び、裏面照射型cmos型撮像素子の製造方法
US6566722B1 (en) Photo sensor in a photo diode on a semiconductor wafer
CN115642162A (zh) 图像传感器的形成方法及其图像传感器
CN109285851B (zh) 一种像素单元及其制备方法
CN117253899A (zh) 高量子效率宽光谱吸收cis像素单元及其制作方法
CN107994096B (zh) 一种提高cmos图像传感器量子效率的光电二极管结构
CN115732523A (zh) 基于复合介质栅的背照式感光阵列及其成像装置
Li et al. Collection efficiency and charge transfer optimization for a 4-T pixel with multi n-type implants
US7105906B1 (en) Photodiode that reduces the effects of surface recombination sites
CN111403426A (zh) 一种降低扩散暗电流的cmos图像传感器像素结构
CN102522416A (zh) 图像传感器及其制造方法
CN105321974A (zh) 通过f离子注入降低cmos图像传感器暗电流的方法
CN114078889A (zh) 全局快门cmos图像传感器及其制造方法
CN205542785U (zh) 一种互补金属氧化物半导体图像传感器
CN111446269B (zh) 一种cmos图像传感器结构及制造方法
CN110931578A (zh) 光电探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination