CN117248183A - 一种金属双极板耐蚀涂层及其制备方法 - Google Patents

一种金属双极板耐蚀涂层及其制备方法 Download PDF

Info

Publication number
CN117248183A
CN117248183A CN202311101245.9A CN202311101245A CN117248183A CN 117248183 A CN117248183 A CN 117248183A CN 202311101245 A CN202311101245 A CN 202311101245A CN 117248183 A CN117248183 A CN 117248183A
Authority
CN
China
Prior art keywords
corrosion
layer
film forming
bipolar plate
magnetron sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311101245.9A
Other languages
English (en)
Inventor
汤全丰
杨敏
唐道远
陈福平
万玲玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electric Group Corp
Original Assignee
Shanghai Electric Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Group Corp filed Critical Shanghai Electric Group Corp
Priority to CN202311101245.9A priority Critical patent/CN117248183A/zh
Publication of CN117248183A publication Critical patent/CN117248183A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种金属双极板耐蚀涂层及其制备方法。其包括下述步骤:S1在基底的两侧进行多弧离子镀成膜,形成打底层;S2在打底层进行多弧离子镀和磁控溅射交叠成膜,形成耐蚀层;总交替次数≥5;耐蚀层的材质为打底层材质的氮化物或碳化物膜;S3在耐蚀层上进行磁控溅射成膜,形成导电层。本发明的金属双极板耐蚀涂层的耐蚀性能优异,具有更高的腐蚀电位,更低的腐蚀电流,耐腐蚀时间长;具备更好的耐腐蚀性能可延缓接触电阻的上升;提高了膜层质量,增加了燃料电池的电化学稳定性。

Description

一种金属双极板耐蚀涂层及其制备方法
技术领域
本发明涉及一种金属双极板耐蚀涂层及其制备方法。
背景技术
质子交换膜燃料电池(PEMFC)是燃料电池的一种类型,其结构主要包括膜电极组件(MEA)、双极板(BPP)、集流体、端板等。双极板在PEMFC中主要起支撑MEA、导热、分隔氧化剂和燃料以及传输反应物等作用。在燃料电池的工作环境中,双极板需耐受pH=2~3的磺酸、约0.1ppm浓度的氢氟酸以及约80℃的环境条件,因此双极板对使用材料的耐蚀性要求较高。
目前双极板使用的主要材料为石墨、金属和复合材料。与其他双极板相比,金属双极板具有加工工艺性好、体积薄、导热导电性好以及材料成本低等优势,在业内收到广泛关注。但是在燃料电池的腐蚀环境下,尤其在高电位情况下,金属双极板易出现钝化导致接触电阻增大现象,甚至易出现腐蚀情况,影响燃料电池的使用。目前的金属双极板的涂层存在致密度不佳,易出现微孔结构等缺陷导致防腐性能较差。该问题亟待解决。
发明内容
本发明实际解决的技术问题是克服了现有技术中金属双极板易出现钝化导致接触电阻增大现象,甚至易出现腐蚀情况,影响燃料电池的使用,或者涂层存在致密度不佳,易出现微孔结构等缺陷导致防腐性能较差的缺陷,提供了一种金属双极板耐蚀涂层及其制备方法。
本发明通过以下技术方案解决上述技术问题。
本发明提供了一种金属双极板耐蚀涂层的制备方法,其包括下述步骤:
S1在基底的两侧进行多弧离子镀成膜,形成打底层;
S2在所述打底层进行多弧离子镀和磁控溅射交叠成膜,形成耐蚀层;总交替次数≥5;所述耐蚀层的材质为所述打底层材质的氮化物或碳化物膜;
S3在所述耐蚀层上进行磁控溅射成膜,形成导电层。
S1中,所述基底在使用前,一般先进行清洗。所述清洗的方式可为本领域常规,例如超声清洗和/或离子清洗。
其中,所述超声清洗的操作和条件可为本领域常规,一般在超声清洗机中进行。所述超声清洗的温度可为50℃-200℃,例如80℃。所述超声清洗的时间可为5min-60min,例如10min。
其中,所述超声清洗时,一般还使用不锈钢清洗剂。
其中,所述离子清洗的操作和条件可为本领域常规,一般在真空设备中进行。
其中,所述离子清洗的氛围可为惰性气氛,例如Ar气氛。所述离子清洗的温度可为100℃-500℃,例如300℃。所述离子清洗的气压可为0.01Pa-1Pa,例如0.01Pa。所述离子清洗的偏压可为100V-1000V,例如1000V。所述离子清洗的时间为可为300s-3600s,例如600s。
S1中,所述打底层的材质优选为Ti、Cr、Zr、Nd、Al、Ta、V和Mo中一种或多种,例如Ti。
S1中,所述多弧离子镀成膜的操作和条件可为本领域常规,一般在惰性气氛中进行。所述惰性气氛一般为不参与体系反应的气体形成的氛围,例如氩气氛围。
S1中,所述多弧离子镀成膜中,沉积真空优选为0.001Pa-0.1Pa,例如0.002Pa。
S1中,所述多弧离子镀成膜中,沉积温度优选为100℃-500℃,例如300℃。
S1中,所述多弧离子镀成膜中,沉积电流优选为20A-200A,例如90A。
S1中,所述多弧离子镀成膜中,使用偏压优选为100V-1000V,例如300V。
S1中,所述多弧离子镀成膜中,成膜时间优选为50-600s,例如300s。
S1中,所述打底层的厚度优选为0.01μm-0.3μm,例如0.1μm。
S2中,如使用单一成膜方式尤其是磁控溅射方式成膜,在膜层的生长过程中会有缺陷的出现,随着膜层堆积缺陷也会随之生长,从而导致出现贯穿性的微孔。本发明结合多弧离子镀和磁控溅射两种成膜方式进行交叠成膜,不同层之间进行连续沉积,形成耐蚀层。交叠成膜时,不仅保证两种膜层均能均匀的生成,而且每层交替膜都较薄,新的膜层沉积时会直接阻隔上一层缺陷的生长,从而使得层与层之间不会出现连续性的缺陷,可有效避免膜层缺陷的生长、大颗粒粒子或微孔结构的形成,从而提升膜层的耐蚀性,延缓接触电阻的上升。
S2中,所述交叠成膜之前,优选,先控制体系真空度不超过0.1Pa,然后通入混合气体,控制真空度为0.4-0.6Pa,例如0.5Pa。
其中,所述混合气体可为氩气和“C2H2或N2”的混合气体。
所述混合气体中,氩气和“C2H2或N2”的体积比可为10:(3-5),例如10:4。
所述混合气体中,“C2H2或N2”的用量可为20-40sccm,例如30sccm。
一优选实施例中,混合气体为氩气和N2,N2的用量可为30sccm。
S2中,所述交叠成膜过程中,第一次成膜可先采用所述多弧离子镀进行成膜,或者,采用所述磁控溅射进行成膜。
S2中,所述交叠成膜的过程中,总交替次数可为5次、6次、7次或8次等等。当交替总次数为5次时,即表示多弧离子镀和磁控溅射分别形成了5层膜,共计10层。
S2中,所述交叠成膜的过程中,沉积温度优选为100℃-500℃,例如300℃。
S2中,所述交叠成膜的过程中,使用偏压优选为100V-1000V,例如300V。
S2中,所述多弧离子镀成膜中,沉积电流优选为50A-150A,例如90A。
S2中,所述多弧离子镀成膜中,沉积时间优选为10s-60s,例如60s。
S2中,所述磁控溅射成膜中,沉积电流优选为5-20A,例如20A。
S2中,所述磁控溅射成膜中,沉积时间优选为60s-300s,例如300s。
S2中,所述耐蚀层的厚度优选为0.05μm-0.3μm,例如0.15μm。
S3中,所述磁控溅射成膜的操作和条件可为本领域常规,一般在惰性气氛中进行。所述惰性气氛一般为不参与体系反应的气体形成的氛围,例如氩气氛围。
S3中,所述磁控溅射成膜的过程中,沉积真空优选为0.001Pa-0.1Pa,例如0.002Pa。
S3中,所述磁控溅射成膜的过程中,沉积温度优选为100℃-600℃,例如300℃。
S3中,所述磁控溅射成膜的过程中,沉积电流优选为5A-20A,例如20A。
S3中,所述磁控溅射成膜的过程中,使用偏压优选为100V-1000V,例如500V。
S3中,所述磁控溅射成膜的过程中,成膜时间优选为300s-3600s,例如1500s。
S3中,所述导电层的厚度优选为0.01μm~0.3μm,例如0.05μm。
本发明还提供了一种由上述制备方法制得的金属双极板耐蚀涂层。
本发明还提供了一种金属双极板耐蚀涂层,其依次包括依次设置的:
一打底层;
一耐蚀层;所述耐蚀层为两种以上工艺形成的交替涂层;所述交替涂层中的交替次数≥5;所述耐蚀层的材质为所述打底层材质的氮化物或碳化物膜;
一导电层。
本发明中,所述打底层一般设置于基底的两侧。
本发明中,所述打底层的材质优选为Ti、Cr、Zr、Nd、Al、Ta、V和Mo中一种或多种,例如Ti。
本发明中,所述打底层的厚度优选为0.01μm-0.3μm,例如0.1μm。
本发明中,优选地,采用多弧离子镀和磁控溅射交叠成膜,形成所述耐蚀层。
本发明中,优选地,所述耐蚀层的材质为TiN或TiC。
本发明中,所述交替涂层中的每一层的厚度优选为0.005μm-0.03μm,例如0.015μm。
本发明中,所述耐蚀层的厚度优选为0.05μm-0.3μm,例如0.15μm。
本发明中,所述导电层优选地为碳层。
本发明中,所述导电层的厚度优选为0.01μm~0.3μm,例如0.05μm。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
本发明的金属双极板耐蚀涂层的耐蚀性能优异,具有更高的腐蚀电位,更低的腐蚀电流,耐腐蚀时间长;具备更好的耐腐蚀性能可延缓接触电阻的上升;提高了膜层质量,增加了燃料电池的电化学稳定性。
附图说明
图1为实施例1制备的金属双极板耐蚀涂层的表面SEM图。
图2为实施例1和对比例1、2制备的金属双极板耐蚀涂层的动电位腐蚀测试图。
图3为实施例1和对比例1、2制备的金属双极板耐蚀涂层的恒电位腐蚀测试图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
1、金属双极板耐蚀涂层:
在金属双极板的两侧均设置有耐蚀涂层,其包括依次设置的:第一导电层、第一耐蚀层、第一打底层、基底、第二打底层、第二耐蚀层和第二导电层;
第一打底层或第二打底层的材质均为Ti,厚度约为0.1μm。
第一耐蚀层或第二耐蚀层的厚度约为0.15μm;均为交叠使用离子镀和磁控溅射形成的交叠TiN膜,总交替次数需≥5,(即表示多弧离子镀和磁控溅射分别形成了5层膜,共计10层,每层厚度约0.015μm),既能保证两种膜层均能均匀的生成,又能尽量每层都较薄,能有效避免缺陷、大颗粒或微孔结构的生成。
第一导电层或第二导电层均为碳层,厚度约为0.05μm。
2、金属双极板耐蚀涂层的制备方法,包括下述步骤:
S1先将双极板基材表面进行超声清洗、离子清洗后,在其双侧进行多弧离子镀成膜,形成打底层。打底层的材质为Ti。打底层能保证膜层在基体上的结合。具体地,
超声清洗:使用不锈钢清洗剂在超声清洗机中将双极板基材表面清洗干净并烘干。清洗温度80℃,清洗时间10min。
离子清洗:使用真空设备对双极板基材表面进行离子清洗,在Ar气氛中进行,温度300℃),清洗气压0.01Pa),清洗偏压1000V,清洗时间为600s。
多弧离子镀成膜条件:在Ar气氛中进行,沉积真空为0.002Pa,沉积温度为300℃,沉积电流为90A,使用偏压为300V,成膜时间为300s,打底层厚度约为0.1μm。
S2耐蚀层制备:在打底层上进行多弧离子镀和磁控溅射交叠成膜,形成耐蚀层。耐蚀层为打底层材料与N2生成的TiN膜层的结合,主要提升涂层整体耐腐蚀性,并增加打底层与导电层之间的结合力。
交叠成膜条件:镀膜前,先控制体系真空度在不超过0.1Pa的范围内,之后通入气体后真空度为0.5Pa,其中,Ar与N2的比为10:4,N2用量为30sccm;在沉积过程中沉积温度为300℃,使用偏压为300V,沉积过程中,交替使用多弧离子镀和磁控溅射,不同层之间进行连续沉积。
首先进行多弧离子镀,沉积电流为90A,沉积时间60s,然后进行磁控溅射沉积,沉积电流为20A,沉积时间为300s,按照该沉积工艺交替使用离子镀和磁控溅射,总交替次数需≥5,(即表示多弧离子镀和磁控溅射分别形成了5层膜,共计10层,每层厚度约0.015μm),既能保证两种膜层均能均匀的生成,又能尽量每层都较薄,能有效避免缺陷、大颗粒或微孔结构的生成。耐蚀层厚度约为0.15μm。
S3导电层制备:在耐蚀层上使用磁控溅射成膜,形成导电层。导电层为C膜,主要提升膜层导电性。
磁控溅射成膜条件:在Ar气氛中进行,沉积真空为0.002Pa,沉积温度为300℃,沉积电流为20A,使用偏压为500V,成膜时间为1500s,导电层厚度约为0.05μm。
对比例1
与实施例1相比,区间仅在于S2,其它操作和参数均与实施例1相同。
S2耐蚀层制备:在沉积过程中,除了通入Ar气外还通入N2,沉积真空为0.002Pa,沉积温度为300℃,使用偏压为300V,沉积过程中,仅使用磁控溅射进行沉积,沉积电流为20A,沉积时间为300s,按照该沉积工艺使用磁控溅射沉积,耐蚀层厚度约为0.15μm。
对比例2
与实施例1相比,区间仅在于S4,其它操作和参数均与实施例1相同。
S4耐蚀层制备:在沉积过程中,除了通入Ar气外还通入N2,沉积真空为0.002Pa,沉积温度为300℃,使用偏压为300V,沉积过程中,仅使用多弧离子镀沉积,沉积电流为90A,沉积时间60s,按照该沉积工艺使用多弧离子镀沉积,耐蚀层厚度约为0.15μm。
效果实施例
测试对象:将实施例1、对比例1-2制备的金属双极板耐蚀涂层。
测试仪器:电化学测试使用GAMRY Reference3000电化学测试台测试,接触电阻使用瑞柯FT-341SJB接触电阻测试仪测试。
测试方法:
(1)动电位-0.3V~1V,水浴温度80℃,测试面积1cm*1cm,在含有5ppm氢氟酸的0.5mol/L的硫酸溶液中进行,进行动电位腐蚀测试。
(2)恒电位0.6V,水浴温度80℃,测试面积1cm*1cm,在含有5ppm氢氟酸的0.5mol/L的硫酸溶液中极化1h,进行恒电位腐蚀测试,并在极化结束前后均进行接触电阻测试。接触电阻按国标GB/T 20042.6-2011测试标准,样品尺寸5cm*5cm,在1.5MPa压力下测得。
测试结果:
图1为实施例1制备的金属双极板耐蚀涂层的表面SEM图。由图1可知,该方法所制备涂层质量较好,表面平整,且无大颗粒生成。
图2为实施例1和对比例1、2制备的金属双极板耐蚀涂层的动电位腐蚀测试图。实施例1腐蚀电位为224mV,腐蚀电流为0.61μA/cm2,对比例1腐蚀电位为91mV,腐蚀电流为3.73μA/cm2,对比例2腐蚀电位为137mV,腐蚀电流为2.29μA/cm2,实施例1相对对比例1和2具有更高的腐蚀电位以及更低的腐蚀电流,证明其具备更好的耐腐蚀性能。
图3为实施例1和对比例1、2制备的金属双极板耐蚀涂层的恒电位腐蚀测试图。极化1小时后,实施例1和对比例1、2的腐蚀电流分别为0.27μA/cm2,1.41μA/cm2,1.58μA/cm2,可见实施例1腐蚀电流最低,更能长时间耐腐蚀。
实施例1中金属双极板耐蚀涂层的腐蚀前接触电阻为2.9mΩ.cm2,腐蚀后接触电阻为4.3mΩ.cm2。对比例1中金属双极板耐蚀涂层的腐蚀前接触电阻为3.2mΩ.cm2,腐蚀后接触电阻为14.4mΩ.cm2。对比例2中金属双极板耐蚀涂层的腐蚀前接触电阻为3.4mΩ.cm2,腐蚀后接触电阻为16.9mΩ.cm2

Claims (10)

1.一种金属双极板耐蚀涂层的制备方法,其特征在于,其包括下述步骤:
S1在基底的两侧进行多弧离子镀成膜,形成打底层;
S2在所述打底层进行多弧离子镀和磁控溅射交叠成膜,形成耐蚀层;总交替次数≥5;所述耐蚀层的材质为所述打底层材质的氮化物或碳化物膜;
S3在所述耐蚀层上进行磁控溅射成膜,形成导电层。
2.如权利要求1所述的金属双极板耐蚀涂层的制备方法,其特征在于,所述金属双极板耐蚀涂层的制备方法满足下述条件①-③中的一种或多种:
①S1中,所述打底层的厚度为0.01μm-0.3μm,例如0.1μm;
②S2中,所述耐蚀层的厚度为0.05μm-0.3μm,例如0.15μm;和,
③S3中,所述导电层的厚度为0.01μm~0.3μm,例如0.05μm。
3.如权利要求1所述的金属双极板耐蚀涂层的制备方法,其特征在于,所述耐蚀层的制备过程中满足下述条件①-⑧中的一种或多种:
①S2中,所述交叠成膜之前,先控制体系真空度不超过0.1Pa,然后通入混合气体,控制真空度为0.4-0.6Pa;
②S2中,所述交叠成膜的过程中,总交替次数为5次、6次、7次或8次;
③S2中,所述交叠成膜的过程中,沉积温度为100℃-500℃;
④S2中,所述交叠成膜的过程中,使用偏压为100V-1000V;
⑤S2中,所述多弧离子镀成膜中,沉积电流为50A-150A;
⑥S2中,所述多弧离子镀成膜中,沉积时间为10s-60s;
⑦S2中,所述磁控溅射成膜中,沉积电流为5-20A;和,
⑧S2中,所述磁控溅射成膜中,沉积时间为60s-300s。
4.如权利要求3所述的金属双极板耐蚀涂层的制备方法,其特征在于,所述耐蚀层的制备过程中满足下述条件①-⑦中的一种或多种:
①S2中,控制真空度为0.5Pa;
②S2中,所述交叠成膜的过程中,沉积温度为300℃;
③S2中,所述交叠成膜的过程中,使用偏压为300V;
④S2中,所述多弧离子镀成膜中,沉积电流为90A;
⑤S2中,所述多弧离子镀成膜中,沉积时间为60s;
⑥S2中,所述磁控溅射成膜中,沉积电流为20A;和,
⑦S2中,所述磁控溅射成膜中,沉积时间为300s。
5.如权利要求3所述的金属双极板耐蚀涂层的制备方法,其特征在于,所述混合气体为氩气和“C2H2或N2”的混合气体;
所述混合气体中,氩气和“C2H2或N2”的体积比优选为10:(3-5),例如10:4;
所述混合气体中,“C2H2或N2”的用量优选为20-40sccm,例如30sccm。
6.如权利要求1所述的金属双极板耐蚀涂层的制备方法,其特征在于,所述打底层的制备过程中满足下述条件①-⑥中的一种或多种:
①S1中,所述打底层的材质为Ti、Cr、Zr、Nd、Al、Ta、V和Mo中一种或多种,例如Ti;
②S1中,所述多弧离子镀成膜中,沉积真空为0.001Pa-0.1Pa,例如0.002Pa;
③S1中,所述多弧离子镀成膜中,沉积温度为100℃-500℃,例如300℃;
④S1中,所述多弧离子镀成膜中,沉积电流为20A-200A,例如90℃;
⑤S1中,所述多弧离子镀成膜中,使用偏压为100V-1000V,例如300V;和,
⑥S1中,所述多弧离子镀成膜中,成膜时间为50-600s,例如300s。
7.如权利要求1所述的金属双极板耐蚀涂层的制备方法,其特征在于,所述导电层的制备过程中满足下述条件①-⑤中的一种或多种:
①S3中,所述磁控溅射成膜的过程中,沉积真空为0.001Pa-0.1Pa,例如0.002Pa;
②S3中,所述磁控溅射成膜的过程中,沉积温度为100℃-600℃,例如300℃;
③S3中,所述磁控溅射成膜的过程中,沉积电流为5A-20A,例如20A;
④S3中,所述磁控溅射成膜的过程中,使用偏压为100V-1000V,例如500V;和,
⑤S3中,所述磁控溅射成膜的过程中,成膜时间为300s-3600s,例如1500s。
8.一种如权利要求1-7中任一项所述的制备方法制得的金属双极板耐蚀涂层。
9.一种金属双极板耐蚀涂层,其特征在于,其依次包括依次设置的:
一打底层;
一耐蚀层;所述耐蚀层为两种以上工艺形成的交替涂层;所述交替涂层中的交替次数≥5;所述耐蚀层的材质为所述打底层材质的氮化物或碳化物膜;
一导电层。
10.如权利要求9所述的金属双极板耐蚀涂层,其特征在于,所述金属双极板耐蚀涂层满足下述条件①-⑧中的一种或多种:
①所述打底层的材质为Ti、Cr、Zr、Nd、Al、Ta、V和Mo中一种或多种,例如Ti;
②所述打底层的厚度为0.01μm-0.3μm,例如0.1μm;
③采用多弧离子镀和磁控溅射交叠成膜,形成所述耐蚀层;
④所述耐蚀层的材质为TiN或TiC;
⑤所述交替涂层中的每一层的厚度为0.005μm-0.03μm,例如0.015μm;
⑥所述耐蚀层的厚度为0.05μm-0.3μm,例如0.15μm;
⑦所述导电层为碳层;
⑧所述导电层的厚度为0.01μm~0.3μm,例如0.05μm。
CN202311101245.9A 2023-08-29 2023-08-29 一种金属双极板耐蚀涂层及其制备方法 Pending CN117248183A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311101245.9A CN117248183A (zh) 2023-08-29 2023-08-29 一种金属双极板耐蚀涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311101245.9A CN117248183A (zh) 2023-08-29 2023-08-29 一种金属双极板耐蚀涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN117248183A true CN117248183A (zh) 2023-12-19

Family

ID=89135955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311101245.9A Pending CN117248183A (zh) 2023-08-29 2023-08-29 一种金属双极板耐蚀涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN117248183A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117626183A (zh) * 2024-01-23 2024-03-01 北京科技大学 一种导电耐蚀涂层及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117626183A (zh) * 2024-01-23 2024-03-01 北京科技大学 一种导电耐蚀涂层及其制备方法和应用
CN117626183B (zh) * 2024-01-23 2024-04-30 北京科技大学 一种导电耐蚀涂层及其制备方法和应用

Similar Documents

Publication Publication Date Title
Yi et al. Corrosion and interfacial contact resistance of 316L stainless steel coated with magnetron sputtered ZrN and TiN in the simulated cathodic environment of a proton-exchange membrane fuel cell
JP4825894B2 (ja) 燃料電池用セパレータおよびその製造方法
US11519088B2 (en) Titanium sub-oxide/ruthenium oxide composite electrode and preparation method and application thereof
CN102239593B (zh) 固体高分子型燃料电池的隔板用不锈钢板及使用该钢板的固体高分子型燃料电池
US8524050B2 (en) Stainless steel separator for fuel cell having M/MNx and MOyNz layer and method for manufacturing the same
KR101446411B1 (ko) 스테인레스스틸을 모재로 한 내식성 및 전도성 나노 카본 코팅 방법 및 그에 따른 연료전지분리판
CN117248183A (zh) 一种金属双极板耐蚀涂层及其制备方法
CN115312798B (zh) 金属极板表面防护涂层及其制备方法、应用、金属极板
Li et al. Investigation of single-layer and multilayer coatings for aluminum bipolar plate in polymer electrolyte membrane fuel cell
JP2010248572A (ja) チタン系材料、その製造方法及び燃料電池用セパレータ
US20150125620A1 (en) Bipolar plate for a fuel cell and method of manufacturing the same
CN1211500C (zh) 基于表面纳米构筑的金属表面防腐蚀方法
CN111244493B (zh) 一种质子交换膜燃料电池薄钛双极板的表面改性方法
CN110061257A (zh) 用于pemfc的金属基双极板及其制备方法
CN111430713A (zh) 一种金属锂负极的制备方法、金属锂负极及电池和应用
CN108598497A (zh) 一种用于燃料电池金属极板的纳米金属层及制备方法
US20110135813A1 (en) Method of manufacturing unit cell of solid oxide fuel cell using transfer process
JP2001357859A (ja) 燃料電池用セパレータ
CN101609898B (zh) 具有憎水性的金属基燃料电池双极板的制备方法
CN116855900A (zh) 一种改性碳基复合涂层及制备方法、双极板
CN115000444A (zh) 多层复合碳涂层及其制备方法、应用、燃料电池双极板、燃料电池
CN115044869A (zh) 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用
JP2004071321A (ja) 燃料電池用金属製セパレータおよびその製造方法
CN117626183B (zh) 一种导电耐蚀涂层及其制备方法和应用
Zhang et al. Preparation and characterization of TiN-SBR coating on metallic bipolar plates for polymer electrolyte membrane fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination