CN117244563A - 一种包覆型Ni基光热催化剂及其制备方法和应用 - Google Patents

一种包覆型Ni基光热催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN117244563A
CN117244563A CN202311515201.0A CN202311515201A CN117244563A CN 117244563 A CN117244563 A CN 117244563A CN 202311515201 A CN202311515201 A CN 202311515201A CN 117244563 A CN117244563 A CN 117244563A
Authority
CN
China
Prior art keywords
catalyst
hours
photo
reduction
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311515201.0A
Other languages
English (en)
Other versions
CN117244563B (zh
Inventor
牛强
钟良枢
代元元
林铁军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Erdos Electric Power Metallurgy Group Co Ltd
Original Assignee
Inner Mongolia Erdos Electric Power Metallurgy Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Erdos Electric Power Metallurgy Group Co Ltd filed Critical Inner Mongolia Erdos Electric Power Metallurgy Group Co Ltd
Priority to CN202311515201.0A priority Critical patent/CN117244563B/zh
Publication of CN117244563A publication Critical patent/CN117244563A/zh
Application granted granted Critical
Publication of CN117244563B publication Critical patent/CN117244563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于能源材料领域,涉及一种包覆型Ni基光热催化剂及其制备方法和应用。所述催化剂由Ni基负载型催化剂和硅源制备得到,通式为NiM/S@SiO2;其中,NiM/S表示所述Ni基负载型催化剂,M为金属助剂中的金属,S为载体;该催化剂在光热协同驱动下能将乙烷与二氧化碳进行重整反应制备得到合成气,且催化活性高、CO选择性高、且合成气中具有高的H2/CO摩尔比等优势,并且解决了烷烃和二氧化碳重整反应条件苛刻的问题;本发明制备方法简单,易于重复,可实现工业化生产。

Description

一种包覆型Ni基光热催化剂及其制备方法和应用
技术领域
本发明属于能源材料领域,涉及一种包覆型Ni基光热催化剂及其制备方法和应用。
背景技术
化石能源的大量使用造成了大气中CO2浓度显著上升,且温室效应也越来越明显,CO2减排已成为当务之急。从资源角度来讲,CO2也是一种有用的碳资源,通过催化作用能将CO2中的碳资源进一步利用,制备各种碳中性清洁燃料和化学品,从而减轻对现有化石能源的过度依赖,提高资源利用率。然而,CO2中的C-O键能达到799kJ/mol,化学分子惰性高,在所有含碳分子中的标准摩尔反应吉布斯自由能最低(-394.38kJ/mol),这在很大程度上抑制了CO2的化学转化利用。
为了实现CO2的有效转化利用,通常需要在高温高压等非常规条件下进行反应。最为典型的技术是CO2与甲烷的重整反应制备合成气,这是工业上实现二氧化碳资源利用的重要途径之一。该反应是个强吸热过程,通常需要在700-800℃反应下进行。在实际工业应用中,属于高能耗和高CO2排放的过程。同时,在如此高温的条件下,催化剂表面容易积碳,导致失活,且反应过程容易伴生逆水煤气变换反应,产物选择性不佳,合成气中H2/CO比例偏低。除了甲烷,CO2还可以与乙烷、丙烷等低碳烷烃进行重整制备合成气。同样的,需要在高温下才能进行,但相对甲烷较为容易一些。通过重整制备得到的合成气可以进一步通过合成气转化,如甲醇合成、费托合成等生产甲醇、乙醇、乙二醇、高级醇、低碳烯烃、高碳烯烃、航空煤油、柴油、芳烃等,是工业上极为重要的过程。
开发太阳能驱动的CO2与乙烷重整反应,是一个探讨太阳能与化石能源互补耦合的重要案例。针对该反应本身,将太阳能作为一种能量输入,可以摒弃传统化石能源燃烧供热的模式,减少化石能源的使用和CO2的排放,同时在合适催化剂条件下太阳能中高能光子还能激发产生光生载流子、空穴等促进反应分子的活化,光生电子迁移导致的电磁场变化也有利于C-O键/C-H键的极化,从而在低温条件下实现惰性分子的活化和转化。可见,相比传统的热催化技术,光热协同驱动的化学反应有可能突破原来的热力学平衡限制,取得低温高活性、高选择性等性能。
目前,绝大多数研究主要集中在CO2与甲烷的重整反应,如中国发明专利申请CN114570378A公开了一种用于光热驱动甲烷-二氧化碳重整的CeO2包覆Ni的硅酸盐纳米管催化剂及其制备方法和应用,该申请采用先采用水热法制备了包Ni的层状硅酸盐前驱体(Ni-psnts),再使用沉淀法在Ni-psnts上沉积一层CeO2薄层,最后经过高温煅烧和H2还原后制备得到Ni-psnts@CeO2;中国发明专利申请CN107497470A公开了一种用于甲烷和二氧化碳重整反应的镍负载碳化硅催化剂,该申请首先合成以SBA-15、KIT-6、MCM-41、SBA-16、MCM-48、ZSM-22和ZSM-5为模板的碳化硅有序介孔材料,然后通过吸附浸渍法将活性金属颗粒镍负载在碳化硅材料上,形成具有有序介孔孔道的负载型镍基碳化硅催化剂。
故针对CO2与乙烷的重整反应研究较少,基于此,本发明提供了一种包覆型Ni基光热催化剂,并将其应用在CO2与乙烷的重整反应中,可以实现高的CO选择性和H2/CO比。同时也将具有间歇性、波动性及低能量密度的太阳能转化为合成气进行储能,为能源转换和存储提供了替代性的绿色可持续发展途径,是解决当前和未来全球能源与环境问题的较有前途和实用的方案之一。
发明内容
本发明旨在提供一种包覆型Ni基光热催化剂及其制备方法,用以实现光热驱动的乙烷与CO2重整制备合成气。同时,本发明也可以作为探讨太阳能等可再生能源与化石能源互补耦合的典型案例,将具有间歇性、波动性及低能量密度的太阳能转化为合成气进行储能。
本发明通过以下技术方案实现:
本发明提供一种包覆型Ni基光热催化剂,所述催化剂由Ni基负载型催化剂和硅源制备得到,通式为NiM/S@SiO2;其中,NiM/S表示所述Ni基负载型催化剂,M为金属助剂中的金属,S为载体。
进一步地,所述NiM/S中,Ni的质量百分含量为0.5-50%;M的质量百分含量为0.01-10%;所述NiM/S@SiO2中SiO2的质量百分含量为0.1-20%。
进一步地,所述M选自Pt、Ru、Au、Cu、Rh、Ag、Ir、Fe、Mo和La中的至少一种。
进一步地,所述S选自二氧化钛、氧化铈、氧化锆和镁铝水滑石中的至少一种。
进一步地,所述硅源包括硅酸四甲酯、硅酸四乙酯、硅酸异丙酯、硅酸四丁酯和硅溶胶中的一种或多种;优选为硅酸乙酯。
进一步地,所述Ni基负载型催化剂采用浸渍法制备,包括以下步骤:将Ni盐和M盐溶于水形成NiM混合溶液,将其浸渍于载体S中,干燥、焙烧后即得。
更进一步地,所述Ni盐选自硝酸盐、卤化盐、硫酸盐,包括硝酸镍、氯化镍、硫酸镍;优选为硝酸镍。
更进一步地,所述浸渍温度为10-60℃,浸渍时间为0.1-24h。
更进一步地,所述干燥温度为60-120℃,干燥时间为1-72h。
更进一步地,所述焙烧温度为300-800℃,焙烧时间为1-72h。
本发明还提供一种如上所述包覆型Ni基光热催化剂的制备方法,包括以下步骤:
(1)制备Ni基负载型催化剂;
(2)将Ni基负载型催化剂分散在有机溶液中,并与硅源混合,在加热或搅拌下,加入碱性沉淀剂,得到沉淀物;
(3)将沉淀物进行洗涤、干燥和焙烧,得到包覆型Ni基光热催化剂。
进一步地,所述步骤(2)中,包括以下条件中的一项或多项:
所述Ni基负载型催化剂与有机溶液的固液比为1:5-1:100g/mL;
所述硅源与碱性沉淀剂的体积比为:1:1-1:20;
所述有机溶液优选为乙醚、丙酮、甲醇、乙醇、丙醇和丁醇中的至少一种;进一步优选为乙醇;
所述碱性沉淀剂为氢氧化钠、氢氧化钾、氨水;优选为氨水;
所述加热的温度为30-80℃;搅拌时间为:1-24h。
更进一步地,所述有机溶剂为乙醇;碱性沉淀剂为氨水。
进一步地,步骤(3)中,包括以下条件中的一项或多项:
所述洗涤用的溶剂为甲醇或乙醇或乙醇与水的混合液;
所述干燥温度为:60-120℃;干燥时间为:1-72h;
所述焙烧温度为:300-800℃;焙烧时间为:2-24h。
本发明还提供一种如上所述包覆型Ni基光热催化剂或上述的制备方法制备得到的包覆型Ni基光热催化剂在光热驱动乙烷和二氧化碳重整反应制备合成气中的应用。
进一步地,所述的应用先对包覆型Ni基光热催化剂进行还原再进行重整反应。
更进一步地,所述还原的反应条件为:
还原方式采用100-500mW/cm2强度的光还原或采用200-800℃的热还原;
和/或还原气体为氢气或稀释的氢气;
和/或还原时间为1-72h;
和/或还原空速为5000-50000mL/g/h;
和/或还原压力为常压;
所述重整反应的反应条件为:
光强度100-500mW/cm2
和/或原料气中乙烷和二氧化碳摩尔比为1:10-10:1
和/或反应空速5000-50000mL/g/h。
与现有技术相比,本发明的有益效果主要体现在以下方面:
(1)本发明的包覆型Ni基光热催化剂在光热驱动下可高效催化乙烷与CO2重整制备合成气,该催化剂具有较高的反应活性、产物中CO选择性高于88%,且合成气中H2/CO摩尔比高达0.72;该催化剂在光热下可有效抑制逆水煤气变换反应;
(2)本发明催化剂可采用太阳能驱动加热的方式取代传统高能耗和高碳排放的蒸汽或者天然气燃烧或者电加热的供热模式,将具有间歇性、波动性及低能量密度的太阳能转化为合成气进行储能或者将合成气进一步转化为碳中性燃料或化学品;有利于节能减排;
(3)本发明提供的包覆型Ni基光热催化剂制备方法简单,易于重复,适用于工业化生产。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本文中使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同意义。
值得说明的是,本发明中使用的原料均为普通市售产品,因此对其来源不做具体限定。
实施例1
将2.85g硝酸镍(Ni(NO3)2·6H2O))和0.15g四氨合硝酸铂([Pt(NH3)4](NO3)2)溶于50mL去离子水中,取5g二氧化钛(TiO2)载体分散于上述溶液中,在室温下搅拌4h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干,然后在500℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiPt/TiO2,其中,Ni的质量百分含量为10.2%,Pt的质量百分含量为1.3%;
取NiPt/TiO2催化剂5g,将其分散在50mL乙醇溶液中,取1.5mL硅酸四乙酯,加入上述溶液中,并在30℃下搅拌2h;按照硅酸四乙酯与氨水体积比为1:5加入氨水,将7.5 mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌8h;随后,过滤得到沉淀物,并用乙醇溶液进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在400℃烘箱中焙烧2h,即得到包覆型Ni基光热催化剂,记为NiPt/TiO2@SiO2,其中SiO2的质量百分含量为5.9%;
取15mg NiPt/TiO2@SiO2催化剂装于光热反应器中,并采用光强度为500mW/cm2的光源聚光后对催化剂进行还原,还原气体为50%H2/N2,气体空速为30000mL/g/h,还原时间为4h;还原结束后,光源强度维持500mW/cm2,通入反应气体摩尔比为1:2的乙烷与二氧化碳的混合气,气体空速为10000mL/g/h,反应压力为0.1MPa;结果见表1。
实施例2
将145.71g硝酸镍(Ni(NO3)2·6H2O)、1.85g硝酸银(AgNO3)和17.62g硝酸铜(Cu(NO3)2·3H2O)溶于200mL去离子水中,取30g镁铝水滑石(MgAl(OH)3CO3)载体分散于上述溶液中,在室温下搅拌2h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于100℃烘箱中烘干,然后在300℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiAgCu/MgAl,其中,Ni的质量百分含量为45.1%,Ag的质量百分含量为1.8%,Cu的质量百分含量为7.1%;
取NiAgCu/MgAl催化剂22g,将其分散在110mL乙醇溶液中,取1.5mL硅酸四丁酯,加入上述溶液中,并在80℃下搅拌1h;按照硅酸四乙酯与氨水体积比为1:10加入氨水,将15mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌20h;随后,过滤得到沉淀物,并用乙醇溶液进行洗涤;并在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥70h;将所得到的固体粉末在400℃烘箱中焙烧2h,即得到包覆型Ni基光热催化剂,记为NiAgCu/MgAl@SiO2,其中SiO2的质量百分含量为1.1%;
取15mg NiAgCu/MgAl@SiO2催化剂装于光热反应器中,并采用光强度为300mW/cm2的光源聚光后对催化剂进行还原,还原气体为H2,气体空速为5000mL/g/h,还原时间为72h;还原结束后,光源强度维持300mW/cm2,通入反应气体摩尔比为1:1的乙烷与二氧化碳的混合气,气体空速为50000mL/g/h,反应压力为0.1MPa;结果见表1。
实施例3
将3.38g硝酸镍(Ni(NO3)2·6H2O)和1.1g四氯金酸铵三水合物(HAuCl4·3H2O)溶于50mL去离子水中,取25g氧化锆(ZrO2)载体分散于上述溶液中,在室温下搅拌2h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干,然后在300℃马弗炉中焙烧10h得到Ni基负载型催化剂,记为NiAu/ZrO2,其中,Ni的质量百分含量为2.6%,Au的质量百分含量为2.1%;
取NiAu/ZrO2催化剂20g,将其分散在100mL乙醇溶液中,取30%固含量的硅溶胶0.3mL,加入上述含催化剂溶液中,并在60℃下搅拌1h;按照硅溶胶与氨水体积比为1:1加入氨水,将0.3mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌2h;随后,旋转蒸发除去水溶液,并用甲醇溶液洗涤所得到的固体产物;再将所得的固体产物在100℃烘箱中干燥72h;将所得到的固体粉末在300℃烘箱中焙烧24h,即得到包覆型Ni基光热催化剂,记为NiAu/ZrO2@SiO2,其中SiO2的质量百分含量为0.5%;
取15mgNiAu/ZrO2@SiO2催化剂装于光热反应器中,并在300℃温度下还原5h,还原气体为H2,气体空速为10000mL/g/h;还原结束后,调整光源强度为200mW/cm2,通入反应气体为10:1的乙烷与二氧化碳的混合气,气体空速为5000mL/g/h,反应压力为0.1MPa;结果见表1。
实施例4
将0.68g硝酸镍(Ni(NO3)2·6H2O)、0.0579g氯铱酸铵(H8Cl6IrN2)和15.78g硝酸铁(Fe(NO3)3·9H2O)溶于50mL去离子水中,取25g氧化铈(CeO2)分散于上述溶液中,在室温下搅拌2h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于100℃烘箱中烘干,然后在500℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiIrFe/CeO2,其中,Ni的质量百分含量为0.5%,Ir的质量百分含量为0.1%,Fe的质量百分含量为8.0%;
取NiIrFe/CeO2催化剂5g,将其分散在500mL乙醇溶液中,取2mL硅酸异丙酯,加入上述溶液中,并在60℃下搅拌1h;按照硅酸异丙酯与氨水体积比为1:20加入氨水,将40mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌20h;随后,过滤得到沉淀物,并用50%乙醇溶液(稀释剂为去离子水)进行洗涤;在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥48h;将所得到的固体粉末在800℃烘箱中焙烧2h,即得到包覆型Ni基光热催化剂,记为NiIrFe/CeO2@SiO2,其中SiO2的质量百分含量为19.8%;
取15mg NiIrFe/CeO2@SiO2催化剂装于光热反应器中,并在800℃温度下还原2h,还原气体为H2,气体空速为50000mL/g/h;还原结束后,调整光源强度为400mW/cm2,通入反应气体摩尔比为1:5的乙烷与二氧化碳的混合气,气体空速为15000mL/g/h,反应压力为0.1MPa;结果见表1。
实施例5
将2.62g硝酸镍(Ni(NO3)2·6H2O)、0.402g四水钼酸铵((NH4)6Mo7O24·4H2O)和1.16mg氯化铑(RhCl3·3H2O)溶于20mL去离子水中,取5g镁铝水滑石(MgAl(OH)3CO3)载体分散于上述溶液中,在室温下搅拌5h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干,然后在400℃马弗炉中焙烧3h得到Ni基负载型催化剂,记为NiMoRh/MgA,其中,Ni的质量百分含量为9.2%,Mo的质量百分含量为3.8%,Rh的质量百分含量为0.01%;
取NiMoRh/MgAl催化剂5g,将其分散在100mL乙醇溶液中,取2.5 mL硅酸四乙酯,加入上述溶液中,并在40℃下搅拌2h;按照硅酸四乙酯与氨水体积比为1:10加入氨水,将25mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌6h;随后,过滤得到沉淀物,并用乙醇溶液进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在500℃烘箱中焙烧8h,即得到包覆型Ni基光热催化剂,记为NiMoRh/MgAl@SiO2,其中SiO2的质量百分含量为10.5%;
取15mg NiMoRh/MgAl@SiO2催化剂装于光热反应器中,并采用光强度为400mW/cm2的光源聚光后对催化剂进行还原,还原气体为20%H2/N2,气体空速为10000mL/g/h;还原结束后,调整光源强度为500mW/cm2,通入反应气体摩尔比为1:1的乙烷与二氧化碳的混合气,气体空速为40000mL/g/h,反应压力为0.1MPa;结果见表1。
实施例6
将1.49g硝酸镍(Ni(NO3)2·6H2O)和0.16g四氨合硝酸铂([Pt(NH3)4](NO3)2) 溶于20mL去离子水中,取5g二氧化铈(CeO2)载体分散于上述溶液中,在室温下搅拌4h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干,然后在500℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiPt/CeO2,其中,Ni的质量百分含量为5.6%,Pt的质量百分含量为1.5%;
取NiPt/CeO2催化剂2g,将其分散在100mL乙醇溶液中,取2mL硅酸四丁酯,加入上述溶液中,并在30℃下搅拌2h;按照硅酸四丁酯与氨水体积比为1:5加入氨水,将3mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌8h;随后,过滤得到沉淀物,并用乙醇溶液进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在400℃烘箱中焙烧2h,即得到包覆型Ni基光热催化剂,记为NiPt/CeO2@SiO2,其中SiO2的质量百分含量为14.6%;
取15mg NiPt/CeO2@SiO2催化剂装于光热反应器中,并在300℃下还原24h,还原气体为H2,气体空速为20000mL/g/h;还原结束后,调整光源强度为200mW/cm2,通入反应气体摩尔比为2:1的乙烷与二氧化碳的混合气,气体空速为30000mL/g/h,反应压力为0.1MPa;结果见表1。
实施例7
将5.1g氯化镍(NiCl2·6H2O)和12.9mg三氯化钌(RuCl3)溶于30mL去离子水中,取5g二氧化钛(TiO2)载体分散于上述溶液中,在室温下搅拌4h;然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干,然后在400℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiRu/TiO2,其中,Ni的质量百分含量为20.0%,Ru的质量百分含量为0.1%;
取NiRu/TiO2催化剂2g,将其分散在20mL乙醇溶液中,取1.2 mL硅酸四丁酯,加入上述溶液中,并在30℃下搅拌2h;按照硅酸四丁酯与氨水体积比为1:5加入氨水,将6 ml氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌8h;随后,过滤得到沉淀物,并用乙醇溶液进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在400℃烘箱中焙烧2h,即得到包覆型Ni基光热催化剂,记为NiRu/TiO2@SiO2,其中SiO2的质量百分含量为8.0%;
取15mg NiRu/TiO2@SiO2催化剂装于光热反应器中,并在300℃下还原6h,还原气体为H2,气体空速为20000mL/g/h;还原结束后,调整光源强度为300mW/cm2,通入反应气体摩尔比为1:2的乙烷与二氧化碳的混合气,气体空速为20000mL/g/h,反应压力为0.1MPa;结果见表1。
实施例8
将3.71g硝酸镍(Ni(NO3)2·6H2O)、18.31mg亚硝酰硝酸钌(Ru(NO)(NO3)3)和0.18g硝酸镧(La(NO3)3·6H2O)溶于30mL去离子水中,取5g二氧化钛(TiO2)载体分散于上述溶液中,在室温下搅拌4h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干;然后在400℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiRuLa/TiO2,其中,Ni的质量百分含量为12.9%,Ru的质量百分含量为0.1%,La的质量百分含量为1%;
取NiRuLa/TiO2催化剂5g,将其分散在25mL乙醇溶液中,取1.5 mL硅酸四乙酯,加入上述溶液中,并在60℃下搅拌2h;按照硅酸四乙酯与氨水体积比为1:2加入氨水,将3 mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌10h;随后,过滤得到沉淀物,并用20%乙醇溶液(稀释剂为去离子水)进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在400℃烘箱中焙烧4h,即得到包覆型Ni基光热催化剂,记为NiRuLa/TiO2@SiO2,其中SiO2的质量百分含量为5.9%。
取15mg NiRuLa/TiO2@SiO2催化剂装于光热反应器中,并在500℃下还原5h,还原气体为H2,气体空速为20000mL/g/h;还原结束后,调整光源强度为400mW/cm2,通入反应气体摩尔比为1:10的乙烷与二氧化碳的混合气,气体空速为24000mL/g/h,反应压力为0.1MPa;结果见表1。
实施例9
将2.5g硫酸镍(NiSO4·6H2O)和0.11g三氯化钌(RuCl3)溶于30mL去离子水中,取5g二氧化钛(TiO2)载体分散于上述溶液中,在室温下搅拌4h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干,然后在400℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiRu/TiO2,其中,Ni的质量百分含量为10.0%,Ru的质量百分含量为0.1%;
取NiRu/TiO2催化剂2g,将其分散在20mL乙醇溶液中,取0.6 mL硅酸四甲酯,加入上述溶液中,并在30℃下搅拌2h;取0.3g氢氧化钠,加入6.7ml去离子水配成浓度为1mol/L的沉淀剂水溶液,将沉淀剂水溶液逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌8h;随后,过滤得到沉淀物,并用乙醇溶液进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在400℃烘箱中焙烧2h,即得到包覆型Ni基光热催化剂,记为NiRu/TiO2@SiO2,其中SiO2的质量百分含量为8.0%;
取15mg NiRu/TiO2@SiO2催化剂装于光热反应器中,并在500℃下还原6h,还原气体为H2,气体空速为20000mL/g/h;还原结束后,调整光源强度为300 mW/cm2,通入反应气体摩尔比为1:2的乙烷与二氧化碳的混合气,气体空速为20000mL/g/h,反应压力为0.1MPa;结果见表1。
对比例1
取15mg 实施例1制备得到的NiPt/TiO2@SiO2催化剂装于光热反应器中,并采用光强度为500mW/cm2的光源聚光后对催化剂进行还原,还原气体为50%H2/N2,气体空速为30000mL/g/h,还原时间为4h;还原结束后,采用电加热的方式将反应器的温度加热到600℃,通入反应气体摩尔比为1:2的乙烷与二氧化碳的混合气,气体空速为10000mL/g/h,反应压力为0.1MPa;结果见表1。
对比例2
取15 mg实施例7制备得到的NiRu/TiO2@SiO2催化剂装于光热反应器中,并在300℃下还原6h,还原气体为H2,气体空速为20000mL/g/h;还原结束后,将反应温度升高到700℃,通入反应气体摩尔比为1:2的乙烷与二氧化碳的混合气,气体空速为20000mL/g/h,反应压力为0.1MPa;结果见表1。
对比例3
将5.1g氯化镍(NiCl2·6H2O)溶于30mL去离子水中,取5g二氧化钛(TiO2)载体分散于上述溶液中,在室温下搅拌4h;然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干,然后在400℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为Ni/TiO2,其中,Ni的质量百分含量为20.0%;
取Ni/TiO2催化剂2g,将其分散在20mL乙醇溶液中,取1.2 mL硅酸四丁酯,加入上述溶液中,并在30℃下搅拌2h;按照硅酸四丁酯与氨水体积比为1:5加入氨水,将6 ml氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌8h;随后,过滤得到沉淀物,并用乙醇溶液进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在400℃烘箱中焙烧2h,即得到包覆型Ni基光热催化剂,记为Ni/TiO2@SiO2,其中SiO2的质量百分含量为8.0%;
取15mg Ni/TiO2@SiO2催化剂装于光热反应器中,并在300℃下还原6h,还原气体为H2,气体空速为20000mL/g/h;还原结束后,调整光源强度为300mW/cm2,通入反应气体摩尔比为1:2的乙烷与二氧化碳的混合气,气体空速为20000mL/g/h,反应压力为0.1MPa;结果见表1。
对比例4
将2.85g硝酸镍(Ni(NO3)2·6H2O))和0.15g四氨合硝酸铂([Pt(NH3)4](NO3)2)溶于50mL去离子水中,取5g二氧化钛(TiO2)载体分散于上述溶液中,在室温下搅拌4h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干,然后在500℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiPt/TiO2,其中,Ni的质量百分含量为10.2%,Pt的质量百分含量为1.3%;
取NiPt/TiO2催化剂5g,将其分散在50mL乙醇溶液中,取9.0mL硅酸四乙酯,加入上述溶液中,并在30℃下搅拌2h;按照硅酸四乙酯与氨水体积比为1:5加入氨水,将45 mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌8h;随后,过滤得到沉淀物,并用乙醇溶液进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在400℃烘箱中焙烧2h,即得到包覆型Ni基光热催化剂,记为NiPt/TiO2@SiO2,其中SiO2的质量百分含量为35.1%;
取15mg NiPt/TiO2@SiO2催化剂装于光热反应器中,并采用光强度为500mW/cm2的光源聚光后对催化剂进行还原,还原气体为50%H2/N2,气体空速为30000mL/g/h,还原时间为4h;还原结束后,光源强度维持500mW/cm2,通入反应气体摩尔比为1:2的乙烷与二氧化碳的混合气,气体空速为10000mL/g/h,反应压力为0.1MPa;结果见表1。
对比例5
将43.9g硝酸镍(Ni(NO3)2·6H2O))和0.36g四氨合硝酸铂([Pt(NH3)4](NO3)2))溶于200mL去离子水中,取5g二氧化钛(TiO2)载体分散于上述溶液中,在室温下搅拌4h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干,然后在500℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiPt/TiO2,其中,Ni的质量百分含量为63.1%,Pt的质量百分含量为1.3%;
取NiPt/TiO2催化剂5g,将其分散在50mL乙醇溶液中,取1.5 mL硅酸四乙酯,加入上述溶液中,并在30℃下搅拌2h;按照硅酸四乙酯与氨水体积比为1:5加入氨水,将7.5 mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌8h;随后,过滤得到沉淀物,并用乙醇溶液进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在400℃烘箱中焙烧2h,即得到包覆型Ni基光热催化剂,记为NiPt/TiO2@SiO2,其中SiO2的质量百分含量为5.9%;
取15mg NiPt/TiO2@SiO2催化剂装于光热反应器中,并采用光强度为500mW/cm2的光源聚光后对催化剂进行还原,还原气体为50%H2/N2,气体空速为30000mL/g/h,还原时间为4h;还原结束后,光源强度维持500mW/cm2,通入反应气体摩尔比为1:2的乙烷与二氧化碳的混合气,气体空速为10000mL/g/h,反应压力为0.1MPa;结果见表1。
对比例6
将5.2g硝酸镍(Ni(NO3)2·6H2O)、25.4mg亚硝酰硝酸钌(Ru(NO)(NO3)3)和6.4g硝酸镧(La(NO3)3·6H2O)溶于30mL去离子水中,取5g二氧化钛(TiO2)载体分散于上述溶液中,在室温下搅拌4h,然后在80℃下旋转蒸干,得到固体粉末;将该固体粉末置于120℃烘箱中烘干;然后在400℃马弗炉中焙烧5h得到Ni基负载型催化剂,记为NiRuLa/TiO2,其中,Ni的质量百分含量为12.9%,Ru的质量百分含量为0.1%,La的质量百分含量为25%;
取NiRuLa/TiO2催化剂5g,将其分散在25mL乙醇溶液中,取1.5mL硅酸四乙酯,加入上述溶液中,并在60℃下搅拌2h;按照硅酸四乙酯与氨水体积比为1:2加入氨水,将3 mL氨水逐滴加入上述含催化剂溶液中,待滴加结束后继续搅拌10h;随后,过滤得到沉淀物,并用20%乙醇溶液(稀释剂为去离子水)进行洗涤;随后在60℃真空烘箱中干燥2h,再转移至120℃烘箱中干燥12h;将所得到的固体粉末在400℃烘箱中焙烧4h,即得到包覆型Ni基光热催化剂,记为NiRuLa/TiO2@SiO2,其中SiO2的质量百分含量为5.9%。
取15mg NiRuLa/TiO2@SiO2催化剂装于光热反应器中,并在500℃下还原5h,还原气体为H2,气体空速为20000mL/g/h;还原结束后,调整光源强度为400mW/cm2,通入反应气体摩尔比为1:10的乙烷与二氧化碳的混合气,气体空速为24000mL/g/h,反应压力为0.1MPa;结果见表1。
表1 乙烷与二氧化碳重整反应催化性能结果
由表1可看出,采用本发明所制备的包覆型Ni基光热催化剂在光热驱动下可高效催化乙烷与CO2重整制备合成气,该催化剂具有较高的反应活性、产物中CO选择性高于88%,且合成气中H2/CO比高,说明光热下可有效抑制逆水煤气变换反应。
实施例1与对比例1,实施例7与对比例2的对比结果表明:光热耦合的催化剂性能要明显优于传统热催化条件下的性能。
实施例7与对比例3的对比结果表明:过渡金属的加入能够显著提高催化活性、产物选择性和H2/CO比。
实施例1与对比例4,实施例1与对比例5,实施例8与对比例6的对比结果表明:催化剂中Ni、过渡金属M以及载体占比过高,其催化活性、CO选择性以及H2/CO比均显著下降,只有在三者合适的占比条件下才能达到好的效果。
这些结果同时说明,针对乙烷与CO2重整这个需要高能量输入的反应,本发明的催化剂仅仅通过光照就可以驱动反应的进行,不需要额外进行能量供给;本发明提供的包覆型Ni基光热催化剂制备简单,易于重复,稳定性良好,具有潜在的工业应用前景。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术人员皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种包覆型Ni基光热催化剂,其特征在于,所述催化剂由Ni基负载型催化剂和硅源制备得到,通式为NiM/S@SiO2;其中,NiM/S表示所述Ni基负载型催化剂,M为金属助剂中的金属,S为载体。
2.根据权利要求1所述的催化剂,其特征在于,所述NiM/S中,Ni的质量百分含量为0.5-50%;M的质量百分含量为0.01-10%;所述NiM/S@SiO2中SiO2的质量百分含量为0.1-20%。
3.根据权利要求1所述的催化剂,其特征在于,所述M选自Pt、Ru、Au、Cu、Rh、Ag、Ir、Fe、Mo和La中的至少一种;S选自二氧化钛、氧化铈、氧化锆和镁铝水滑石中的至少一种;所述硅源包括硅酸四甲酯、硅酸四乙酯、硅酸异丙酯、硅酸四丁酯和硅溶胶中的至少一种。
4.根据权利要求1-3任一所述的催化剂,其特征在于,所述Ni基负载型催化剂采用浸渍法制备,包括以下步骤:将Ni盐和M盐溶于水形成NiM混合溶液,将其浸渍于载体S中,干燥、焙烧后即得;其中,Ni盐包括硝酸镍、氯化镍和硫酸镍中的至少一种。
5.根据权利要求4所述的催化剂,其特征在于,所述Ni盐为硝酸镍。
6.根据权利要求1-5任一所述的催化剂的制备方法,其特征在于,包括如下步骤:
(1)制备Ni基负载型催化剂;
(2)将Ni基负载型催化剂分散在有机溶液中,并与硅源混合,在加热搅拌下,加入碱性沉淀剂,得到沉淀物;
(3)将沉淀物进行洗涤、干燥和焙烧,得到包覆型Ni基光热催化剂。
7.根据权利要求6所述的制备方法,其特征在于,步骤(2)中,包括以下条件中的一项或多项:
所述Ni基负载型催化剂与有机溶液的固液比为1:5-1:100g/mL;所述有机溶液选自乙醚、丙酮、甲醇、乙醇、丙醇和丁醇中的至少一种;
所述硅源与碱性沉淀剂的体积比为1:1-1:20;所述碱性沉淀剂为氢氧化钠、氢氧化钾、氨水中的任一种;
所述加热的温度为30-80℃;搅拌时间为1-24h;
步骤(3)中,包括以下条件中的一项或多项:
所述洗涤用的溶剂为甲醇或乙醇或乙醇与水的混合液;
所述干燥温度为60-120℃;干燥时间为1-72h;
所述焙烧温度为300-800℃;焙烧时间为2-24h。
8.根据权利要求7所述的制备方法,其特征在于,所述有机溶剂为乙醇;所述碱性沉淀剂为氨水。
9.权利要求1-5任一所述的催化剂或权利要求6-8任一所述的制备方法制备得到的催化剂在光热驱动乙烷和二氧化碳重整反应制备合成气中的应用。
10.根据权利要求9所述的应用,其特征在于,先对包覆型Ni基光热催化剂进行还原再进行重整反应;
所述还原的反应条件为:
还原方式采用100-500mW/cm2强度的光还原或采用200-800℃的热还原;
和/或还原气体为氢气或稀释的氢气;
和/或还原时间为1-72h;
和/或还原空速为5000-50000mL/g/h;
和/或还原压力为常压;
所述重整反应的反应条件为:
光强度100-500mW/cm2
和/或原料气中乙烷和二氧化碳摩尔比为1:10-10:1;
和/或反应空速5000-50000mL/g/h。
CN202311515201.0A 2023-11-15 2023-11-15 一种包覆型Ni基光热催化剂及其制备方法和应用 Active CN117244563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311515201.0A CN117244563B (zh) 2023-11-15 2023-11-15 一种包覆型Ni基光热催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311515201.0A CN117244563B (zh) 2023-11-15 2023-11-15 一种包覆型Ni基光热催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN117244563A true CN117244563A (zh) 2023-12-19
CN117244563B CN117244563B (zh) 2024-02-09

Family

ID=89131633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311515201.0A Active CN117244563B (zh) 2023-11-15 2023-11-15 一种包覆型Ni基光热催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117244563B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117563612A (zh) * 2024-01-15 2024-02-20 昆明理工大学 一种氧化铈-镍铝水滑石复合异质结光催化剂的制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345480A (zh) * 2016-08-01 2017-01-25 陕西省能源化工研究院 一种用于烃类二氧化碳重整反应的系列催化剂及其制备方法和应用方法
CN108704647A (zh) * 2018-06-15 2018-10-26 华东理工大学 一种抗积碳型甲烷干气重整包覆型镍催化剂及制备方法
CN109967081A (zh) * 2019-04-01 2019-07-05 大连理工大学 一种高活性、抗积碳甲烷干气重整催化剂及其制备方法
CN110813341A (zh) * 2019-11-21 2020-02-21 浙江科技学院 一种甲烷干重整反应催化剂及其制备方法和应用
CN115155595A (zh) * 2022-06-27 2022-10-11 东南大学 一种核壳结构镍催化剂及其制备方法
CN115888725A (zh) * 2022-09-20 2023-04-04 山西大学 一种c2 +烷烃和二氧化碳向合成气转化反应的催化剂及制备
CN116273054A (zh) * 2023-03-24 2023-06-23 中国科学院上海高等研究院 光热催化甲烷与二氧化碳重整制合成气的催化剂、制备方法及其应用
CN116495701A (zh) * 2023-04-26 2023-07-28 中国科学技术大学 一种由光热驱动甲烷干重整制备合成气的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345480A (zh) * 2016-08-01 2017-01-25 陕西省能源化工研究院 一种用于烃类二氧化碳重整反应的系列催化剂及其制备方法和应用方法
CN108704647A (zh) * 2018-06-15 2018-10-26 华东理工大学 一种抗积碳型甲烷干气重整包覆型镍催化剂及制备方法
CN109967081A (zh) * 2019-04-01 2019-07-05 大连理工大学 一种高活性、抗积碳甲烷干气重整催化剂及其制备方法
CN110813341A (zh) * 2019-11-21 2020-02-21 浙江科技学院 一种甲烷干重整反应催化剂及其制备方法和应用
CN115155595A (zh) * 2022-06-27 2022-10-11 东南大学 一种核壳结构镍催化剂及其制备方法
CN115888725A (zh) * 2022-09-20 2023-04-04 山西大学 一种c2 +烷烃和二氧化碳向合成气转化反应的催化剂及制备
CN116273054A (zh) * 2023-03-24 2023-06-23 中国科学院上海高等研究院 光热催化甲烷与二氧化碳重整制合成气的催化剂、制备方法及其应用
CN116495701A (zh) * 2023-04-26 2023-07-28 中国科学技术大学 一种由光热驱动甲烷干重整制备合成气的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZICHEN DU ET AL.: ""Efficient photothermochemical dry reforming of methane over Ni supported on ZrO2 with CeO2 incorporation"", 《CATALYSIS TODAY》, vol. 409, pages 31 - 41 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117563612A (zh) * 2024-01-15 2024-02-20 昆明理工大学 一种氧化铈-镍铝水滑石复合异质结光催化剂的制备方法和应用

Also Published As

Publication number Publication date
CN117244563B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
Li et al. Catalysts for CO 2 reforming of CH 4: A review
Huang et al. The catalytic dehydrogenation of ethanol by heterogeneous catalysts
CN117244563B (zh) 一种包覆型Ni基光热催化剂及其制备方法和应用
Liu et al. Recent advances in thermal catalytic CO2 methanation on hydrotalcite-derived catalysts
BRPI0808255B1 (pt) Precursor for fischer-tropsch catalyst, catalyst, use of a catalyst and method of preparing a catalyst precursor
CN110479280B (zh) 一种CO低温选择性甲烷化Ni-ZrO2/NiAl2O4催化剂及其制备方法和应用
Serrano et al. Advances in the design of ordered mesoporous materials for low-carbon catalytic hydrogen production
CN107597119B (zh) 抗积碳型钴基低温甲烷二氧化碳重整催化剂及其制备方法
CN110711582B (zh) 一种调控甲烷和一氧化碳选择性的催化剂制备方法及其应用
Chen et al. Highly Efficient CO2 to CO Transformation over Cu‐Based Catalyst Derived from a CuMgAl‐Layered Double Hydroxide (LDH)
Wang et al. Synergy of oxygen vacancies and Ni0 species to promote the stability of a Ni/ZrO2 catalyst for dry reforming of methane at low temperatures
An et al. Co0− Coδ+ active pairs tailored by Ga-Al-O spinel for CO2-to-ethanol synthesis
CN110721678A (zh) 一种光热耦合催化CO2甲烷化的Ru基催化剂
WO2021042874A1 (zh) 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
KR20140087264A (ko) 중형기공성 니켈-x-알루미나 제어로젤 촉매, 이의 제조방법 및 상기 촉매를 사용하는 메탄 제조방법
Antoniassi et al. One-Step synthesis of PtFe/CeO2 catalyst for the Co-Preferential oxidation reaction at low temperatures
KR100858924B1 (ko) 액화천연가스의 수증기 개질반응에 의한 수소가스 제조용담지 촉매, 그 제조방법 및 상기 담지 촉매를 이용한수소가스 제조방법
US9079165B2 (en) Ethanol reforming catalyst composition and method of producing ethanol reforming catalyst
Zagaynov Active components of catalysts of methane conversion to synthesis gas: brief perspectives
JP2010029822A (ja) 水蒸気改質触媒
Qin et al. Efficient CO catalytic oxidation by the combination of cobalt and excellent carrier Ta2O5
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN111111676A (zh) 一种包裹型镍基催化剂及其制备方法
Xiang et al. Fast synthesis of highly crystallized LSX zeolite with boosted carbon dioxide hydrogenation activity
US9598644B1 (en) Method of CO and/or CO2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant