CN117129464A - 一种表面增强拉曼光谱检测传感器及其制备方法和应用 - Google Patents

一种表面增强拉曼光谱检测传感器及其制备方法和应用 Download PDF

Info

Publication number
CN117129464A
CN117129464A CN202311107135.3A CN202311107135A CN117129464A CN 117129464 A CN117129464 A CN 117129464A CN 202311107135 A CN202311107135 A CN 202311107135A CN 117129464 A CN117129464 A CN 117129464A
Authority
CN
China
Prior art keywords
paper
heavy metal
solution
sers
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311107135.3A
Other languages
English (en)
Inventor
陈惠�
杨喆军
陈睿霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202311107135.3A priority Critical patent/CN117129464A/zh
Publication of CN117129464A publication Critical patent/CN117129464A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明属于光学传感技术领域,具体为一种表面增强拉曼光谱检测传感器及其制备方法和应用。本发明的传感器制备方法包括:在玻碳纤维纸基底上用硼氢化钠和抗坏血酸还原硝酸银,使银纳米颗粒沉积在玻碳纤维纸表面,形成SERS纸基底;使用还原剂TCEP将巯基修饰的重金属离子的核酸适配体DNA进行还原,形成修饰后的纸基SERS传感器,该SERS纸基底对相应的重金属离子具有识别和传感功能,可用于检测牛奶中的重金属离子含量,包括建立重金属离子浓度标准曲线;将牛奶样品置于重金属离子标准品溶液中,用拉曼光谱仪检测拉曼信号;根据标准曲线计算得到重金属离子含量。本发明具有快速、高效、灵敏度高、成本低、操作简单等优点。

Description

一种表面增强拉曼光谱检测传感器及其制备方法和应用
技术领域
本发明属于光学传感技术领域,具体涉及表面增强拉曼光谱检测传感器及其制备方法和应用。
背景技术
拉曼效应,指光波在被散射后频率发生变化的现象,1928年由印度物理学家C.V.Raman发现。拉曼光谱能够提供丰富的分子结构信息,且无需对检测样品进行处理,应用十分广泛。1974-1977年,Van Duyne等人发现了表面增强拉曼现象,通过在粗糙的金属表面吸附分子可以将拉曼信号增强106倍左右,这种技术成为表面增强拉曼光谱(SERS)。SERS的主要特点有:1.是一种超灵敏检测技术,可以实现痕量物质检测;2.不仅可以应用于实验室研究,而且在现实生活中的应用也十分广泛,且操作比较简单,是一种多功能的分析技术;3.SERS检测与其他分析技术或平台联用,可以形成色谱分离拉曼检测、毛细管电泳拉曼检测、微流控芯片(纸芯片)拉曼平台。因此,表面增强拉曼光谱以其优异的发光性质,引起了材料科学、化学生物学、生命科学研究者的广泛关注,并用于材料的结构和形貌表征、化学和生物传感器、食品与环境分析、单分子检测、化学反应动力学等领域。
“纸”作为我们生活、工作以及学习中必不可少的工具,给我们带来了很大的便捷。纸基底具有易于加工,吸水性较好,多孔,物理生化惰性、优良的机械强度、携带方便、成本低廉等优点,在临床诊断、食品安全检测、环境卫生监控等方面都具有广阔的应用前景,是未来便携式现场分析装置发展的重要方向,对生物分析和疾病诊断领域中急需的原位表征、临床床边诊断、现场检测等的实现具有重要意义。
重金属通常指自身密度大于4.5g/cm3的金属,其离子往往具备强氧化性等理化性质、能与人体功能蛋白活性部位特异性结合,导致人体的部分正常生理功能无法实现,对人类和多种生物都有毒害作用。其中铅(Pb)、汞(Hg)、镉(Cd)是三种重要的对人体有害的重金属。随着环境污染的加剧,饲养和养殖用水、饲料中有害重金属含量不断增加。随着重金属含量的不断增加,通过重金属的生物迁移,也会影响到农产品中重金属的含量,其中牛奶和水产品中重金属的含量也越来越受到重视。在《食品安全国家标准-食品中污染物限量》(GB[6]2-2017)中规定,生乳、巴氏杀菌乳、灭菌乳、调制乳、发酵乳中的Pb、Hg、Cr的限量分别为0.05mg/kg、0.01mg/kg、0.3mg/kg。因此,重金属离子的检测一直是分析化学领域的重要工作。
发明人的研究发现,利用硼氢化钠和抗坏血酸的还原性,硝酸银可以被逐步还原为均匀的纳米颗粒沉积在玻碳纤维纸上。而这种沉积了银纳米颗粒的玻碳纤维纸提供了高灵敏度和稳定性的拉曼效应增强效果,同时也是一种廉价便捷的表面增强拉曼检测基底。在沉积了银纳米颗粒的玻碳纤维纸上面修饰上特异性识别重金属离子的核酸适配体,能够定量检测不同种类的重金属离子。
使用该方法制备的基底配合BWTEK公司的便携式拉曼光谱仪,可以快速地检测标准样品的重金属离子,而且重金属离子的含量和拉曼光谱特征峰的强度有很好的线性关系。使用本发明对牛奶中的重金属离子进行检测,具有快速高效,灵敏度高,成本低,操作简单的特点。
发明内容
本发明的目的在于提出一种便携、廉价且具有高灵敏度和稳定性的表面增强拉曼光谱检测传感器及其制备方法和应用。
本发明提出的表面增强拉曼光谱检测传感器的制备方法,具体步骤为:
(一)表面增强拉曼光谱检测玻碳纤维纸基底的制备;
以玻碳纤维纸为底板,采用“二次还原法”,室温下,在玻碳纤维纸上分步用硼氢化钠和抗坏血酸还原硝酸银,使银纳米颗粒沉积在玻碳纤维纸表面,形成表面增强拉曼光谱检测纸基底,简称为SERS纸基底;
具体操作流程为:调节水平摇床的震荡速度,室温下,在两块六孔板中分别加入1~5mL0.05M硼氢化钠溶液、1~5mL水、1~5mL 0.05M硝酸银溶液,以及1~5mL 0.05M抗坏血酸溶液、1~5mL水、1~5mL 0.05M硝酸银溶液;将玻碳纤维纸分别浸入各孔中,反应30-60秒,循环8-12次,玻碳纤维纸由白色变为暗灰色,即表明在玻碳纤维纸上沉积上了银纳米颗粒,得到表面增强拉曼光谱检测玻碳纤维纸基底,简称为SERS纸基底;
上述得到的表面增强拉曼光谱检测基底与未修饰的玻碳纤维纸相比,表面颜色变为灰黑色,银纳米颗粒的直径在60nm左右,分布均一(通过扫描电镜图可知);
(二)表面增强拉曼光谱检测玻碳纤维纸基底的修饰;
使用还原剂TCEP(三一(2一甲酰乙基)膦盐酸盐)将巯基修饰的重金属离子的核酸适配体DNA进行还原,将前述SERS纸基底浸泡在还原后的巯基修饰的核酸适配体DNA溶液中反应一段时间,形成修饰后的SERS纸基底,该SERS纸基底对相应的重金属离子具有识别和传感功能,记为纸基SERS传感基底。
具体操作流程为:
(1)将上述得到的SERS纸基底与4-巯基吡啶溶液作用5-15min,得到明显增强的4-巯基吡啶信号,重复5次相同实验,至彼此之间的信号差距小于10%;
(2)将5-50μL的5-100μmol/L的巯基修饰的核酸适配体溶液与0.1-10μL的0.1-10mol/L的TCEP混合,室温下还原15-120min,得到还原态的巯基修饰的核酸适配体溶液;
(3)将4-巯基吡啶信号增强的SERS纸基底浸泡在还原后的巯基修饰的核酸适配体溶液中,静置2-24h,得到修饰后的表面增强拉曼检测传感器,简称为纸基SERS传感器。
本发明制备的纸基SERS传感器,可用于检测牛奶样品中重金属的含量,具体步骤为:
(1)建立标重金属离子浓度标准曲线
配置10-6-10-3M的重金属离子溶液,将纸基SERS传感器浸入溶液中10-20min,取出该纸基SERS传感器,置入定制的塑料模具中心,用便携式拉曼光谱仪检测纸基SERS传感器的拉曼信号,根据1500-1600cm-1处的拉曼信号强度与溶液中重金属离子浓度建立标准曲线;
(2)检测牛奶样品的重金属离子含量
将牛奶样品置于10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L的重金属离子标准品溶液中;加入1~10mL三氯乙酸和10~60mM EDTA,并在涡旋振荡器上振荡2~20分钟;将混合溶液以5000~20000g离心10~40分钟;收集上清液并通过0.22μm膜过滤;将纸基SERS传感器浸入上述所得的上清液中,10~40分钟,取出该纸基SERS传感器,在拉曼光谱仪上检测拉曼信号,通过1500-1600cm-1处的拉曼信号强度的拉曼信号强度,代入标准曲线计算,即得到样品中残留的重金属离子含量。
与现有方法相比,本发明的纸基SERS传感器制备方法简便,廉价无污染;用于检测标准品重金属离子,特征峰强度与浓度线性关系好,灵敏度高;用于检测牛奶样品中重金属离子,快速高效,便携且易现场检测。
(1)合成方法简便,廉价,无污染:表面增强拉曼检测基底的制备采用“两步还原法”,不需要复杂的仪器,不需要高温、强酸强碱等苛刻条件,反应条件比较温和,操作简单,玻碳纤维纸价格便宜,对环境十分友好。
(2)特征峰强度与浓度线性关系好:纸基SERS传感器检测重金属离子所得的特征峰强度与浓度线性关系(R2)在10-3-10-6M浓度之间为0.92。
(3)快速高效:利用该纸基SERS传感器检测牛奶样品中的重金属离子可在1h之内完成。
(4)便携且易现场检测:利用纸基SERS传感器以及便携式拉曼光谱仪检测牛奶样品中的重金属离子可以解决检测场地问题,可以做到现场检测。
附图说明
图1为表面增强拉曼检测基底制备及检测流程示意图。
图2为SERS纸芯片修饰银纳米颗粒的SEM图,小图为局部放大图。合成的银纳米颗粒平均直径为60nm。
图3为未经修饰的纸芯片(左)与经过纳米银颗粒修饰的纸芯片(右)置于载玻片的照片。
图4为10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L的铅离子溶液为样本检测得到的拉曼光谱。
图5为铅离子浓度与1505.42cm-1处拉曼峰强度的线性关系图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
制备纸基SERS传感器
调节水平摇床的震荡速度为120往复/分钟,室温下在两块六孔板中分别加入3mL0.05M硼氢化钠溶液、3mL水、3mL 0.05M硝酸银溶液和3mL 0.05M抗坏血酸溶液、3mL水、3mL0.05M硝酸银溶液,将玻碳纤维纸分别浸入各孔30s,循环8次,玻碳纤维纸由白色变为暗灰色,即在纸上沉淀了银纳米颗粒,SEM图如图2所示。
将10μL的15μmol/L的巯基修饰的核酸适配体溶液与1μL的1mol/L的TCEP混合,室温下还原30min,得到还原态的巯基修饰的核酸适配体溶液。其中核酸适配体的具体序列为:5′-ROX-CAACGGTTGGTGTGGTTGG-SH-3′。
将4-巯基吡啶信号增强的SERS纸基底浸泡在还原后的巯基修饰的核酸适配体溶液中,静置24h,得到纸基SERS传感器,如图3所示。
实施例2
检测牛奶样品中的Pb2+
配置10-6-10-3M的Pb2+标准品溶液,将制备好的SERS纸基底浸入溶液中20min,取出该基底,置入订制的塑料模具中心,用便携式拉曼光谱仪检测1500-1600cm-1处的拉曼信号强度,如图4所示。根据拉曼信号强度与溶液中Pb2+标准品的浓度建立标准曲线,如图5所示。
检测Pb2+所得的拉曼信号与10-6-10-3mol/L浓度之间呈线性关系,线性方程为拉曼强度(a.u.)=-359.32lg CPb(II)+2586.3。
将购买的牛奶置于10-6的Pb2+标准溶液中,加入10mL三氯乙酸和60mM EDTA,并在涡旋振荡器上振荡20分钟;将混合溶液以20000g离心40分钟。收集上清液并通过0.22μm膜过滤。将制备好的SERS纸基底浸入溶液中20min,取出该基底,置入订制的塑料模具中心,用便携式拉曼光谱仪检测1500-1600cm-1处的拉曼信号强度。带入标准曲线计算,即可得到用加标回收法测得的牛奶样品中残留的Pb2+含量。

Claims (6)

1.一种表面增强拉曼光谱检测传感器的制备方法,其特征在于,具体步骤为:
(一)表面增强拉曼光谱检测玻碳纤维纸基底的制备;
以玻碳纤维纸为底板,采用“二次还原法”,室温下,在玻碳纤维纸上分步用硼氢化钠和抗坏血酸还原硝酸银,使银纳米颗粒沉积在玻碳纤维纸表面,形成表面增强拉曼光谱检测纸基底,简称为SERS纸基底;
(二)表面增强拉曼光谱检测玻碳纤维纸基底的修饰;
使用还原剂TCEP将巯基修饰的重金属离子的核酸适配体DNA进行还原,将前述SERS纸基底浸泡在还原后的巯基修饰的核酸适配体DNA溶液中反应一段时间,形成修饰后的SERS纸基底,该SERS纸基底对相应的重金属离子具有识别和传感功能,记为纸基SERS传感器。
2.根据权利要求1所述的制备方法,其特征在于,步骤(一)的具体操作流程为:
调节水平摇床的震荡速度,室温下,在两块六孔板中分别加入1~5mL 0.05M硼氢化钠溶液、1~5mL水、1~5mL 0.05M硝酸银溶液,以及1~5mL 0.05M抗坏血酸溶液、1~5mL水、1~5mL0.05M硝酸银溶液;将玻碳纤维纸分别浸入各孔中,反应30-60秒,循环8-12次,玻碳纤维纸由白色变为暗灰色,即表明在玻碳纤维纸上沉积上了银纳米颗粒,得到表面增强拉曼光谱检测玻碳纤维纸基底。
3.根据权利要求2所述的制备方法,其特征在于,步骤(二)的具体操作流程为:
(1)将上述得到的SERS纸基底与4-巯基吡啶溶液作用5-15min,得到明显增强的4-巯基吡啶信号,重复5次相同实验,至彼此之间的信号差距小于10%;
(2)将5-50μL的5-100μmol/L的巯基修饰的核酸适配体溶液与0.1-10μL的0.1-10mol/L的TCEP混合,室温下还原15-120min,得到还原态的巯基修饰的核酸适配体溶液;
(3)将4-巯基吡啶信号增强的SERS纸基底浸泡在还原后的巯基修饰的核酸适配体溶液中,静置2-24h,得到修饰后的表面增强拉曼检测传感器,简称为纸基SERS传感器。
4.由权利要求1-3之一所述制备方法得到的表面增强拉曼光谱检测传感器。
5.如权利要求4所述的表面增强拉曼光谱检测传感器在检测牛奶样品中重金属的含量中的应用,具体步骤为:
(1)建立标重金属离子浓度标准曲线
配置10-6-10-3M的重金属离子溶液,将纸基SERS传感器浸入溶液中10-20min,取出该纸基SERS传感器,置入定制的塑料模具中心,用便携式拉曼光谱仪检测纸基SERS传感器的拉曼信号,根据1500-1600cm-1处的拉曼信号强度与溶液中重金属离子浓度建立标准曲线;
(2)检测牛奶样品的重金属离子含量
将牛奶样品置于10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L的重金属离子标准品溶液中;加入1~10mL三氯乙酸和10~60mM EDTA,并在涡旋振荡器上振荡2~20分钟;将混合溶液以5000~20000g离心10~40分钟;收集上清液并通过0.22μm膜过滤;将纸基SERS传感器浸入上述所得的上清液中,10~40分钟,取出该纸基SERS传感器,在拉曼光谱仪上检测拉曼信号,通过1500-1600cm-1处的拉曼信号强度的拉曼信号强度,代入标准曲线计算,即得到样品中残留的重金属离子含量。
6.根据权利要求5所述的应用,其特征在于,重金属离子Pb2+的浓度标准曲线为直线,其方程为:拉曼强度(a.u.)=-359.32lg CPb(II)+2586.3,浓度为10-6-10-3mol/L浓度。
CN202311107135.3A 2023-08-30 2023-08-30 一种表面增强拉曼光谱检测传感器及其制备方法和应用 Pending CN117129464A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311107135.3A CN117129464A (zh) 2023-08-30 2023-08-30 一种表面增强拉曼光谱检测传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311107135.3A CN117129464A (zh) 2023-08-30 2023-08-30 一种表面增强拉曼光谱检测传感器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117129464A true CN117129464A (zh) 2023-11-28

Family

ID=88862529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311107135.3A Pending CN117129464A (zh) 2023-08-30 2023-08-30 一种表面增强拉曼光谱检测传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117129464A (zh)

Similar Documents

Publication Publication Date Title
Bağ et al. Determination of Cu, Zn, Fe, Ni and Cd by flame atomic absorption spectrophotometry after preconcentration by Escherichia coli immobilized on sepiolite
CN109580575B (zh) 一种基于分子印迹-拉曼光谱的抗生素检测方法
Fu et al. Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens
Qian et al. Applications of smartphone-based colorimetric biosensors
CN105092683B (zh) 一种用于检测铅的电化学传感器及其制备方法和应用
CN107727717A (zh) 多氯联苯光电化学适配体传感器的制备方法及应用
CN102721728A (zh) 一种基于电化学DNA生物传感器的Pb2+、Hg2+同时测定方法
CN113842901B (zh) 一种海胆形MOFs@COFs核壳结构材料及其制备方法与应用
CN112033949B (zh) 一种水产品腐败菌的sers生物传感器快速检测方法
CN113406329A (zh) 一种检测小分子物质的通用型适配体胶体金侧向层析试纸
CN110186902A (zh) 一种检测汞离子的表面增强拉曼传感器
CN112858257A (zh) 一种检测食源性致病菌的多功能集成拉曼纳米传感器
Wei et al. Self-assembled electroactive MOF–magnetic dispersible aptasensor enables ultrasensitive microcystin-LR detection in eutrophic water
Zhang et al. An ultrasensitive electrochemical sensor based on antimonene simultaneously detect multiple heavy metal ions in food samples
CN113588745B (zh) 一种灵敏度可控的Pb2+诱导的双放大电化学发光检测方法
CN103616357A (zh) 一种可视化生物传感器件及其制备方法
Singh Electrochemical Biosensors: Applications in Diagnostics, Therapeutics, Environment, and Food Management
CN108459002A (zh) 一种磁性印迹传感器的制备方法与应用
CN117129464A (zh) 一种表面增强拉曼光谱检测传感器及其制备方法和应用
CN110553991B (zh) 基于中空金纳米粒-dna复合物的生物/化学检测试剂和检测方法
CN111337449A (zh) 用于检测atz的核酸适配体红外光谱传感器及检测方法
CN108398418B (zh) 一种内参比表面增强拉曼测试试纸、制备方法与应用
Xiang et al. Molecularly imprinted metal-organic frameworks assisted cloth and paper hybrid microfluidic devices for visual detection of gonyautoxin
CN111500682B (zh) 基于表面增强拉曼散射光谱技术的dna杂化检测方法
CN107356646B (zh) 一种检测cp4-epsps蛋白的电化学免疫传感器及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination