CN117101728B - VOCs废气治理工程催化剂的制备方法及装置 - Google Patents

VOCs废气治理工程催化剂的制备方法及装置 Download PDF

Info

Publication number
CN117101728B
CN117101728B CN202311028039.XA CN202311028039A CN117101728B CN 117101728 B CN117101728 B CN 117101728B CN 202311028039 A CN202311028039 A CN 202311028039A CN 117101728 B CN117101728 B CN 117101728B
Authority
CN
China
Prior art keywords
catalyst
powder
cofemno
reaction chamber
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311028039.XA
Other languages
English (en)
Other versions
CN117101728A (zh
Inventor
邓永洪
王浩焱
叶洋
蒲川
刘思洋
谢志豪
陆钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Xianghong Ecological Environment Engineering Co ltd
Original Assignee
Guangdong Xianghong Ecological Environment Engineering Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Xianghong Ecological Environment Engineering Co ltd filed Critical Guangdong Xianghong Ecological Environment Engineering Co ltd
Priority to CN202311028039.XA priority Critical patent/CN117101728B/zh
Publication of CN117101728A publication Critical patent/CN117101728A/zh
Application granted granted Critical
Publication of CN117101728B publication Critical patent/CN117101728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/048Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/32Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/0488Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种VOCs废气治理工程催化剂的制备方法及装置,其制备得到的整体式催化剂可在RCO中的应用,在整体式催化剂中,其不仅具有三种金属相互协同作用,提高了催化剂在催化活性。还具有有序的介孔,能够为贵金属提供良好的负载空间。负载的Au、Ag贵金属颗粒被限域在孔道内,达到高分散、高稳定的状态,促进贵金属的负载时的均匀分散,提高贵金属与载体间的相互作用。通过对铁矾石表面进行修饰,并将粉末式催化剂负载于修饰过的样品上,使获得的催化剂分散性良好,活性位点丰富,催化活性强。

Description

VOCs废气治理工程催化剂的制备方法及装置
技术领域
本发明涉及大气污染治理领域技术,尤其是指一种VOCs废气治理工程催化剂的制备方法及装置。
背景技术
工业生产过程中会排放大量废气,其中挥发性有机化合物(VOCs)是其中的一种主要成分。VOCs的排放不仅对环境造成了污染,也对人类健康造成了极大威胁。工业废气中的VOCs主要来源于有机溶剂、汽车尾气、油漆、印刷、涂装等过程,这些行业中大量的化学反应会产生VOCs的排放。VOCs对环境的影响非常大。首先,VOCs的排放会导致臭氧的形成,从而影响空气质量。其次,VOCs也是光化学烟雾的主要成分之一,会对大气层造成破坏。此外,VOCs还会导致酸雨和温室效应等环境问题。除了对环境造成的影响,VOCs还对人类健康带来了威胁。VOCs是一种有毒物质,人体吸入后会对呼吸系统、神经系统和免疫系统造成损害。长期接触VOCs还会导致癌症和其他严重疾病。由于VOCs的危害性和影响,治理工业废气中的VOCs已成为迫切需要解决的问题。
催化燃烧技术(RCO)是一种高效的VOCs处理技术,具有能耗低、处理效率高、废气排放量小等优点,广泛应用于工业生产过程中的VOCs处理和空气净化等领域。催化剂是该技术的关键因素之一,它可以在较低的起燃温度下完全燃烧VOCs,从而实现废气的净化。常用的催化剂包括贵金属、过渡金属和稀土等。其中,贵金属催化剂具有较高的催化活性和选择性,但成本较高;过渡金属催化剂具有催化活性高、稳定性好等优点,但易受SOx等污染物的干扰;稀土催化剂具有催化活性高、耐腐蚀性好等特点,但目前尚未得到广泛应用。另外RCO技术在实际应用中还存在催化剂的催化活性低、使用寿命短、耐腐蚀性差等问题。因此,开发制备高效的RCO催化剂是当前大气污染治理领域中的一个迫切需求。本发明的高效RCO催化剂具有催化活性高、使用寿命长、耐腐蚀性好等优点,在工业生产过程中的VOCs处理和空气净化等领域具有广阔的应用前景。
发明内容
有鉴于此,本发明针对现有技术存在之缺失,其主要目的是提供一种一种VOCs废气治理工程催化剂的制备方法及装置,其所制备出的催化剂具有催化活性高、使用寿命长、耐腐蚀性好等优点。
为实现上述目的,本发明采用如下之技术方案:
一种VOCs废气治理工程催化剂的制备方法,包括有以下步骤:
(1)将铁盐、锰盐和钴盐溶于去离子水中,三者的摩尔比为(0.55-1.45):(1.55-2.45):(2.55-3.45),超声处理后通过搅拌器搅拌均匀,再缓慢滴加碱性溶液,并调节pH至10.5-11.5,得到溶液;
(2)将步骤(1)所得的溶液转移到反应釜中,并在烘箱中加热,加热温度为180-220℃,加热时间为10-12h;
(3)将步骤(2)中反应釜的溶液降温至室温,接着,用高速离心机分离离心得到黑色粉末,然后,将离心后的黑色粉末用蒸馏水和乙醇洗涤,洗涤后将其烘干,得到粉末;
(4)将步骤(3)得到的粉末放入至管式炉中进行煅烧,煅烧温度为600-720℃,煅烧时间为3-4h,得到CoFeMnO4粉末式载体。
(5)将CoFeMnO4粉末式载体、HAuCl4·3H2O、AgCl分散于去离子水中,HAuCl4·3H2O的质量为CoFeMnO4粉末式载体的3%-5%,AgCl的质量为CoFeMnO4粉末式载体的3%-5%,充分搅拌后加入表面活性剂,静置,得到悬浮液;
(6)将步骤(5)所得的悬浮液进行蒸发,对其蒸发后的残留物放入真空烘箱中进行干燥,干燥温度为40-45℃,干燥时间为5-6h,然后放入至管式炉中进行煅烧,煅烧温度为500-600℃,煅烧时间为5-6h,即得Au-Ag/CoFeMnO4粉末式催化剂;
(7)使用有机溶剂和去离子水清洗铁矾石表面,去除杂质和表面污染物,将铁矾石样品放置在化学气相沉积法反应室中,保持反应室内的真空度为10-2-10-3torr,将SiO2前驱体蒸发至气态,并通过气体进料系统将其导入反应室中,控制反应室内的气体流量为10-5-10-4sccm,反应温度为450-550℃,反应压力为550-650torr,沉积时间为25-30min,SiO2前驱体在反应室中分解并沉积在铁矾石表面上,形成一层均匀的SiO2氧化物薄膜,在SiO2沉积完毕后,关闭进料系统并将反应室冷却至室温,然后,打开反应室门并取出样品;
(8)使用有机硅化合物对步骤(7)所得样品进行修饰,用紫外光照射使修饰层牢固地附着在样品的表面,紫外光的光强为500-600μW/cm2,光照时间为5-10min,得到修饰过的样品;
(9)将步骤(6)所得的Au-Ag/CoFeMnO4粉末式催化剂放入蒸馏水中,搅拌,加入增稠剂形成稠状液体;然后,将稠状液体负载于修饰过的样品上,再进行干燥,即得到整体式催化剂。
作为一种优选方案,所述步骤(1)中,铁盐为Fe(NO3)3·9H2O,锰盐为Mn(NO3)2·4H2O,钴盐为Co(NO3)2·6H2O,三者的纯度均为99%以上。
作为一种优选方案,所述步骤(1)中,超声处理的条件为在30-35Hz下超声7-10min,该碱性溶液为氨水。
作为一种优选方案,所述氨水的体积分数为45-55%。
作为一种优选方案,所述步骤(1)和步骤(5)中的搅拌方式均为机械搅拌,步骤(1)的搅拌时间为25-30min,步骤(5)的搅拌时间为15-20min,搅拌后静置至颗粒物完全沉淀至底部。
作为一种优选方案,所述步骤(3)中,高速离心机的离心条件为在12000-13000rpm/min下离心7-10min,且蒸馏水和乙醇洗涤的方式为通过真空泵抽滤方式进行洗涤,蒸馏水洗涤三遍,后再用乙醇洗涤至溶液pH为8.0。
作为一种优选方案,所述步骤(4)和步骤(6)中,均向管式炉中通入氮气后再进行煅烧。
作为一种优选方案,所述步骤(5)中的表面活性剂为十二烷基苯磺酸钠;步骤(7)中的有机溶剂为乙醇,SiO2前驱体为三氯硅烷;所述步骤(8)中的有机硅化合物为六甲基二硅氮烷,其浓度为0.0045-0.0055mol/L;步骤(9)中的增稠剂为羟乙基纤维素。
作为一种优选方案,所述步骤(9)中,该整体式催化剂中的Au-Ag/CoFeMnO4粉末式催化剂的负载量为10-15%。
一种设备,其包括有管道机架、过滤器、风机、热交换器以及铺垫有前述整体式催化剂的格栅;该管道机架具有依次连通的进气口、蓄热空间、反应空间和出气口;该过滤器设置于进气口内;该风机设置于进气口与蓄热空间之间;该热交换器设置于蓄热空间内;格栅设置于反应空间内。
作为一种优选方案,所述热交换器为2-3个。
作为一种优选方案,所述格栅为4-6层。
作为一种优选方案,所述格栅的面积为1-2m2,厚度为20-30mm。
作为一种优选方案,所述格栅为陶瓷材质。
本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知:
以CoFeMnO4作为载体,负载的Au、Ag贵金属颗粒被限域在孔道内,达到高分散、高稳定的状态,促进贵金属的负载时的均匀分散,提高贵金属与载体间的相互作用;同时,本发明采用超声处理和机械搅拌的方法,使铁盐、锰盐和钴盐能够均匀溶解于去离子水中,从而得到均匀的溶液,提高了制备催化剂的效率;并且,步骤(2)采用缓慢滴加碱性溶液调节pH值的方法,能够避免溶液中出现剧烈的pH值波动,从而使得催化剂的制备更加稳定可靠,步骤(4)采用高温煅烧的方法,能够使CoFeMnO4催化剂更加稳定和活性更高,且通过将HAuCl4·3H2O晶体分散于含银溶液中,加入一定量的表面活性剂,如十二烷基苯磺酸钠(SDS),使得Au和Ag更均匀地分散在载体上,从而提高催化剂的活性;另外,步骤(7)采用化学气相沉积法制备SiO2氧化物薄膜,并通过有机溶剂和去离子水清洗铁矾石表面,能够提高铁矾石的纯度和表面质量,从而使得整体式催化剂的质量更加稳定可靠;步骤(8)通过使用有机硅化合物对样品进行修饰,使得修饰层能够牢固地附着在铁矾石表面,从而提高整体式催化剂的稳定性和活性;以及,步骤(9)采用稠状液体负载的方法将粉末式催化剂负载于SiO2修饰过的样品上,能够使得整体式催化剂的分散性更好,从而提高了其活性和稳定性。
为更清楚地阐述本发明的结构特征和功效,下面结合附图与具体实施例来对本发明进行详细说明:
附图说明
图1是本发明之制备方法的流程图;
图2为实施例1-6的催化剂活性评价图;。
图3是本发明之Au-Ag/CoFeMnO4粉末式催化剂的HRTEM图;
图4是本发明之Au-Ag/CoFeMnO4粉末式催化剂的EDS-mapping图和HADDF图;
图5是本发明之Au-Ag/CoFeMnO4粉末式催化剂处理VOCs的机制图;
图6是本发明之整体式催化剂活性衰减曲线图;
图7是本发明之设备的结构图。
附图标识说明:
1、进气口 2、过滤器
3、风机 4、热交换器
5、格栅 6、出气口。
具体实施方式
本发明揭示一种VOCs废气治理工程催化剂的制备方法,包括有以下步骤:
(1)将铁盐、锰盐和钴盐溶于去离子水中,三者的摩尔比为(0.55-1.45):(1.55-2.45):(2.55-3.45),超声处理后通过搅拌器搅拌均匀,再缓慢滴加碱性溶液,并调节pH至10.5-11.5,得到溶液;其中,铁盐为Fe(NO3)3·9H2O,锰盐为Mn(NO3)2·4H2O,钴盐为Co(NO3)2·6H2O,三者的纯度均为99%以上,超声处理的条件为在30-35Hz下超声7-10min,该碱性溶液为氨水,氨水的体积分数为45-55%;并且,搅拌方式均为机械搅拌,搅拌时间为25-30min。
(2)将步骤(1)所得的溶液转移到反应釜中,并在烘箱中加热,加热温度为180-220℃,加热时间为10-12h。
(3)将步骤(2)中反应釜的溶液降温至室温,接着,用高速离心机分离离心得到黑色粉末,然后,将离心后的黑色粉末用蒸馏水和乙醇洗涤,洗涤后将其烘干,得到粉末;其中,高速离心机的离心条件为在12000-13000rpm/min下离心7-10min,且蒸馏水和乙醇洗涤的方式为通过真空泵抽滤方式进行洗涤,蒸馏水洗涤三遍,后再用乙醇洗涤至溶液pH为8.0。
(4)将步骤(3)得到的粉末放入至管式炉中,通入氮气后进行煅烧,煅烧温度为600-720℃,煅烧时间为3-4h,得到CoFeMnO4粉末式载体。
(5)将CoFeMnO4粉末式载体、HAuCl4·3H2O、AgCl分散于去离子水中,HAuCl4·3H2O的质量为CoFeMnO4粉末式载体的3%-5%,AgCl的质量为CoFeMnO4粉末式载体的3%-5%,充分搅拌后加入表面活性剂,静置,得到悬浮液;其中,搅拌方式为机械搅拌,搅拌时间为15-20min,搅拌后静置至颗粒物完全沉淀至底部;并且,该表面活性剂为十二烷基苯磺酸钠。
(6)将步骤(5)所得的悬浮液进行蒸发,对其蒸发后的残留物放入真空烘箱中进行干燥,干燥温度为40-45℃,干燥时间为5-6h,然后放入至管式炉中,通入氮气后进行煅烧,煅烧温度为500-600℃,煅烧时间为5-6h,即得Au-Ag/CoFeMnO4粉末式催化剂。
(7)使用有机溶剂和去离子水清洗铁矾石表面,去除杂质和表面污染物,将铁矾石样品放置在化学气相沉积法反应室中,保持反应室内的真空度为10-2-10-3torr,将SiO2前驱体蒸发至气态,并通过气体进料系统将其导入反应室中,控制反应室内的气体流量为10-5-10-4sccm,反应温度为450-550℃,反应压力为550-650torr,沉积时间为25-30min,SiO2前驱体在反应室中分解并沉积在铁矾石表面上,形成一层均匀的SiO2氧化物薄膜,在SiO2沉积完毕后,关闭进料系统并将反应室冷却至室温,然后,打开反应室门并取出样品;其中,有机溶剂为乙醇,SiO2前驱体为三氯硅烷。
(8)使用有机硅化合物对步骤(7)所得样品进行修饰,用紫外光照射使修饰层牢固地附着在样品的表面,紫外光的光强为500-600μW/cm2,光照时间为5-10min,得到修饰过的样品;其中,有机硅化合物为六甲基二硅氮烷,其浓度为0.0045-0.0055mol/L。
(9)将步骤(6)所得的Au-Ag/CoFeMnO4粉末式催化剂放入蒸馏水中,搅拌,加入增稠剂形成稠状液体;然后,将稠状液体负载于修饰过的样品上,再进行干燥,即得到整体式催化剂;其中,增稠剂为羟乙基纤维素,且整体式催化剂中的Au-Ag/CoFeMnO4粉末式催化剂的负载量为10-15%。
本发明还揭示一种设备,其包括有管道机架、过滤器2、风机3、热交换器4以及铺垫有前述整体式催化剂的格栅5;该管道机架具有依次连通的进气口1、蓄热空间、反应空间和出气口6;该过滤器2设置于进气口1内;该风机3设置于进气口1与蓄热空间之间;该热交换器4设置于蓄热空间内;格栅5设置于反应空间内;具体而言,该热交换器4为2-3个;该格栅5为4-6层,该格栅5的面积为1-2m2,厚度为20-30mm,以增加反应表面积并提高催化效果,该格栅5为陶瓷材质,并平均分布在反应空间内。
本设备采用了特定的设计,包括反应部分和蓄热部分,以提高处理挥发性有机物(VOCs)等废气的效率,废气从进气口1进入,在风机3的作用下经过过滤器2,过滤器2过滤掉一些较大的颗粒物,防治堵塞催化床中格栅5的孔隙,然后,通过热交换器4进入反应空间,接着,从反应空间的顶部进入反应空间,并通过格栅5从上往下流动,最后,通过出气口6排出。通过这种从上往下流动的方式,废气与整体式催化剂接触的时间和面积得到增加,促使污染物更充分地与整体式催化剂接触,使催化效果充分,进而污染物反应完全;并且,本整体式催化剂会随着使用时间的增加,活性逐渐降低,在使用时间达到18000-20000小时需进行更换;以及,整体式催化剂的中毒分为可逆中毒和不可逆中毒,可逆中毒包括:卤素、硫、氮的化合物等物质,整体式催化剂可逆中毒后,可通过高温焙烧等方法,恢复整体式催化剂活性,而与磷、砷、铅、锌这类物质结合的不可逆中毒则无法复原。为了实现蓄热效果,使反应温度保持在150-350℃,该设备还配备了一个高效的蓄热系统,在蓄热空间内布置有2-3个热交换器4,用于热量传递,使得在进气阶段,废气中的热量被传递给整体式催化剂和格栅5,使二者升温,在排气阶段,热质料中的热量被再次传递回即将进入反应空间的废气,预热废气并减少外部加热需求,此设计可提高能量利用效率,并有效降低处理过程中的能耗。
下面结合具体实施例进行详细说明。
实施例1
(1)称取1mM的Fe(NO3)3·9H2O、2mM的Mn(NO3)2·4H2O和3mM的Co(NO3)2·6H2O加入100mM的去离子水中,然后在超声30Hz下超声10min,然后在溶液中缓慢滴加体积分数为45%的氨水溶液调节pH至10.5。
(2)将步骤(1)所得溶液转移到反应釜中,并在烘箱中加热,加热温度为200℃,加热时间为12h。
(3)将步骤(2)中反应釜的溶液降温至室温,用高速离心机分在12000rpm/min下离心10min得到黑色粉末,然后,将离心后的黑色粉末通过真空泵抽滤的方式进行洗涤,先用蒸馏水洗三遍,再用乙醇洗涤至溶液pH为8.0,接着,放进真空烘箱烘干,温度设置45℃,时间为8h,得到粉末。
(4)将步骤(3)得到的粉末放进管式炉,并在管式炉中冲入氮气后进行煅烧,煅烧温度为600℃,煅烧时间为4h,得到CoFeMnO4粉末式载体。
(5)将1g的CoFeMnO4粉末式载体、0.05g的HAuCl4·3H2O和0.05g的AgCl分散于去离子水中,机械搅拌20min并加入1g的十二烷基苯磺酸钠,静置,得到悬浮液。
(6)将步骤(5)所得的悬浮液进行蒸发,对其蒸发后的残留物放入真空烘箱中干燥,干燥温度为40℃,干燥时间为5h,然后放入管式炉中,冲入氮气后进行煅烧,煅烧温度为600℃,煅烧时间为5h,即得到Au-Ag/CoFeMnO4粉末式催化剂。
(7)使用乙醇和去离子水清洗铁矾石表面,去除杂质和表面污染物。将铁矾石样品放置在化学气相沉积法反应室中,保持反应室内的真空度10-2torr,将三氯硅烷蒸发至气态,并通过气体进料系统将其导入反应室中,控制反应室内的气体流量为10-5sccm、反应温度为550℃和反应压力为650torr,沉积时间为25min,在SiO2沉积完毕后,关闭进料系统并将反应室冷却至室温,然后,打开反应室门并取出样品。
(8)使用0.0055mol/L的六甲基二硅氮烷对步骤(7)所得样品进行修饰,用光强为600μW/cm2的紫外光照射铁矾石表面5min,得到修饰过的样品。
(9)将步骤(6)所得的1g Au-Ag/CoFeMnO4粉末式催化剂放入蒸馏水中,搅拌,加入1g的羟乙基纤维素形成稠状液体;然后将稠状液体负载于10g的SiO2修饰过的样品上,干燥,即得到整体式催化剂。
实施例2
(1)称取1.3mM的Fe(NO3)3·9H2O、2.3mM的Mn(NO3)2·4H2O和2.8mM的Co(NO3)2·6H2O加入100mM的去离子水中,然后在超声35Hz下超声7min,然后在溶液中缓慢滴加体积分数为50%的氨水溶液调节pH至11.0。
(2)将步骤(1)所得溶液转移到反应釜中,并在烘箱中加热,加热温度为180℃,加热时间为10h。
(3)将步骤(2)中反应釜的溶液降温至室温,用高速离心机分在13000rpm/min下离心10min得到黑色粉末,然后,将离心后的黑色粉末通过真空泵抽滤的方式进行洗涤,先用蒸馏水洗三遍,再用乙醇洗涤至溶液pH为8.0,接着,放进真空烘箱烘干,温度设置40℃,时间为8h,得到粉末。
(4)将步骤(3)得到的粉末放进管式炉,并在管式炉中冲入氮气后进行煅烧,煅烧温度为720℃,煅烧时间为3h,得到CoFeMnO4催粉末式载体。
(5)将1g的CoFeMnO4粉末式载体、0.03g的HAuCl4·3H2O和0.03g的AgCl分散于去离子水中,机械搅拌17min并加入1g的十二烷基苯磺酸钠,静置,得到悬浮液。
(6)将步骤(5)所得的悬浮液进行蒸发,对其蒸发后的残留物放入真空烘箱中干燥,干燥温度为45℃,干燥时间为6h,然后放入管式炉中,冲入氮气后进行煅烧,煅烧温度为500℃,煅烧时间为6h,即得Au-Ag/CoFeMnO4粉末式催化剂。
(7)使用乙醇和去离子水清洗铁矾石表面,去除杂质和表面污染物。将铁矾石样品放置在化学气相沉积法反应室中,保持反应室内的真空度10-2torr,将三氯硅烷蒸发至气态,并通过气体进料系统将其导入反应室中,控制反应室内的气体流量为10-5sccm、反应温度为450℃和反应压力为550torr,沉积时间为30min,在SiO2沉积完毕后,关闭进料系统并将反应室冷却至室温,然后打开反应室门并取出样品。
(8)使用0.0045mol/L的六甲基二硅氮烷对步骤(7)所得样品进行修饰,用光强为500μW/cm2的紫外光照射铁矾石表面10min,得到修饰过的样品。
(9)将步骤(6)所得的1g Au-Ag/CoFeMnO4粉末式催化剂放入蒸馏水中,搅拌,加入1g的羟乙基纤维素形成稠状液体;然后将稠状液体负载于10g的SiO2修饰过的样品上,干燥,即得到整体式催化剂。
实施例3
(1)称取0.55mM的Fe(NO3)3·9H2O、1.55mM的Mn(NO3)2·4H2O和2.55mM的Co(NO3)2·6H2O加入100mM的去离子水中,然后在超声33Hz下超声8min。然后在溶液中缓慢滴加体积分数为55%的氨水溶液调节pH至11.5。
(2)将步骤(1)所得溶液转移到反应釜中,并在烘箱中加热,加热温度为210℃,加热时间为10h。
(3)将步骤(2)中反应釜的溶液降温至室温,用高速离心机分在12500rpm/min下离心8min得到黑色粉末,然后,将离心后的黑色粉末通过真空泵抽滤的方式进行洗涤,先用蒸馏水洗三遍,再用乙醇洗涤至溶液pH为8.0,接着,放进真空烘箱烘干,温度设置40℃,时间为7h,得到粉末。
(4)将步骤(3)得到的粉末放进管式炉,并在管式炉中冲入氮气后进行煅烧,煅烧温度为630℃,煅烧时间为4h,得到CoFeMnO4粉末式载体。
(5)将1g的CoFeMnO4粉末式载体、0.04g的HAuCl4·3H2O和0.04g的AgCl分散于去离子水中,机械搅拌15min并加入1g的十二烷基苯磺酸钠,静置,得到悬浮液。
(6)将步骤(5)所得的悬浮液进行蒸发,对其蒸发后的残留物放入真空烘箱中干燥,干燥温度为40℃,干燥时间为6h,然后放入管式炉中,冲入氮气后进行煅烧,煅烧温度为580℃,煅烧时间为5h,即得1.5gAu-Ag/CoFeMnO4粉末式催化剂。
(7)使用乙醇和去离子水清洗铁矾石表面,去除杂质和表面污染物。将铁矾石样品放置在化学气相沉积法反应室中,保持反应室内的真空度10-2torr,将三氯硅烷蒸发至气态,并通过气体进料系统将其导入反应室中,控制反应室内的气体流量为10-5sccm、反应温度为470℃和反应压力为570torr,沉积时间为30min,在SiO2沉积完毕后,关闭进料系统并将反应室冷却至室温,然后打开反应室门并取出样品。
(8)使用0.0045mol/L的六甲基二硅氮烷对步骤(7)所得样品进行修饰,用光强为500μW/cm2的紫外光照射铁矾石表面10min,得到修饰过的样品。
(9)将步骤(6)所得的1.5g Au-Ag/CoFeMnO4粉末式催化剂,搅拌,加入1.5g的羟乙基纤维素形成稠状液体;然后将稠状液体负载于10g的SiO2修饰过的样品上,干燥,即得到整体式催化剂。
实施例4
一种铁矾土负载Au-Ag/CoFeMnO4催化剂的制备方法,包括以下步骤:
(1)称取0.85mM的Fe(NO3)3·9H2O、1.85mM的Mn(NO3)2·4H2O和2.95mM的Co(NO3)2·6H2O加入100mM的去离子水中,然后在超声32Hz下超声9min,然后在溶液中缓慢滴加体积分数为45%的氨水溶液调节pH至10.5。
(2)将步骤(1)所得溶液转移到反应釜中,并在烘箱中加热,加热温度为190℃,加热时间为12h。
(3)将步骤(2)中反应釜的溶液降温至室温,用高速离心机分在12300rpm/min下离心9min得到黑色粉末,然后,将离心后的黑色粉末通过真空泵抽滤的方式进行洗涤,先用蒸馏水洗三遍,再用乙醇洗涤至溶液pH为8.0,接着,放进真空烘箱烘干,温度设置42℃,时间为7h,得到粉末。
(4)将步骤(3)得到的粉末放进管式炉,并在管式炉中冲入氮气后进行煅烧,温度设置为650℃,煅烧时间为3h,得到CoFeMnO4粉末式载体。
(5)将1g的CoFeMnO4粉末式载体、0.03g的HAuCl4·3H2O和0.03g的AgCl分散于去离子水中,机械搅拌15min并加入1g的十二烷基苯磺酸钠,静置,得到悬浮液。
(6)将步骤(5)所得的悬浮液进行蒸发,对其蒸发后的残留物放入真空烘箱中干燥,干燥温度为41℃,干燥时间设置为6h,然后放入管式炉中,冲入氮气后进行煅烧,煅烧温度为590℃,煅烧时间为5h,得到Au-Ag/CoFeMnO4粉末式催化剂。
(7)使用乙醇和去离子水清洗铁矾石表面,去除杂质和表面污染物。将铁矾石样品放置在化学气相沉积法反应室中,保持反应室内的真空度10-2torr,将三氯硅烷蒸发至气态,并通过气体进料系统将其导入反应室中,控制反应室内的气体流量为10-5sccm、反应温度为490℃和反应压力为590torr,沉积时间为30min,在SiO2沉积完毕后,关闭进料系统并将反应室冷却至室温,然后打开反应室门并取出样品。
(8)使用0.0050mol/L的六甲基二硅氮烷对步骤(7)所得样品进行修饰,用光强为530μW/cm2的紫外光照射铁矾石表面8min,得到修饰过的样品。
(9)将步骤(6)所得的1.5g Au-Ag/CoFeMnO4粉末式催化剂,搅拌,加入1.5g的羟乙基纤维素形成稠状液体;然后将稠状液体负载于10g的SiO2修饰过的样品上,干燥,即得到整体式催化剂。
实施例5
(1)称取1.15mM的Fe(NO3)3·9H2O、2.15mM的Mn(NO3)2·4H2O和3.15mM的Co(NO3)2·6H2O加入100mM的去离子水中,然后在超声31Hz下超声9min,然后在溶液中缓慢滴加体积分数为50%的氨水溶液调节pH至11。
(2)将步骤(1)所得溶液转移到反应釜中,并在烘箱中加热,加热温度为220℃,加热时间为10h。
(3)将步骤(2)中反应釜的溶液降温至室温,用高速离心机分在12700rpm/min下离心8min得到黑色粉末,然后,将离心后的黑色粉末通过真空泵抽滤的方式进行洗涤,先用蒸馏水洗三遍,再用乙醇洗涤至溶液pH为8.0,接着,放进真空烘箱烘干,温度设置43℃,时间为7h,得到粉末。
(4)将步骤(3)得到的粉末放进管式炉,并在管式炉中冲入氮气后进行煅烧,煅烧温度为690℃,煅烧时间为3h,得到CoFeMnO4粉末式载体。
(5)将1g的CoFeMnO4粉末式载体、0.04g的HAuCl4·3H2O和0.04g的AgCl分散于去离子水中,机械搅拌17min并加入1g的十二烷基苯磺酸钠,静置,得到悬浮液。
(6)将步骤(5)所得的悬浮液进行蒸发,对其蒸发后的残留物放入真空烘箱中干燥,干燥温度为43℃,干燥时间为6h,然后放入管式炉中,冲入氮气后进行煅烧,煅烧温度为560℃,煅烧时间为5h,得到Au-Ag/CoFeMnO4粉末式催化剂。
(7)使用乙醇和去离子水清洗铁矾石表面,去除杂质和表面污染物。将铁矾石样品放置在化学气相沉积法反应室中,保持反应室内的真空度10-2torr,将三氯硅烷蒸发至气态,并通过气体进料系统将其导入反应室中,控制反应室内的气体流量为10-5sccm、反应温度为510℃和反应压力为610torr,沉积时间为27min,在SiO2沉积完毕后,关闭进料系统并将反应室冷却至室温,然后打开反应室门并取出样品。
(8)使用0.0055mol/L的六甲基二硅氮烷对步骤(7)所得样品进行修饰,用光强为560μW/cm2的紫外光照射铁矾石表面7min,得到修饰过的样品。
(9)将步骤(6)所得的1.5g Au-Ag/CoFeMnO4粉末式催化剂,搅拌,加入1.5g的羟乙基纤维素形成稠状液体;然后将稠状液体负载于10g的SiO2修饰过的样品上,干燥,即得到整体式催化剂。
实施例6
(1)称取1.45mM的Fe(NO3)3·9H2O、2.45mM的Mn(NO3)2·4H2O和3.45mM的Co(NO3)2·6H2O加入100mM的去离子水中,然后在超声34Hz下超声8min,然后在溶液中缓慢滴加体积分数为55%的氨水溶液调节pH至11.5。
(2)将步骤(1)所得溶液转移到反应釜中,并在烘箱中加热,加热温度为220℃,加热时间为11h。
(3)将步骤(2)中反应釜的溶液降温至室温,用高速离心机分在12500rpm/min下离心8min得到黑色粉末,然后,将离心后的黑色粉末通过真空泵抽滤的方式进行洗涤,先用蒸馏水洗三遍,再用乙醇洗涤至溶液pH为8.0,接着,放进真空烘箱烘干,温度设置44℃,时间为7h,得到粉末。
(4)将步骤(3)得到的粉末放进管式炉,并在管式炉中冲入氮气后进行煅烧,煅烧温度为700℃,煅烧时间为3h,得到CoFeMnO4粉末式载体。
(5)将1g的CoFeMnO4粉末式载体、0.05g的HAuCl4·3H2O和0.05g的AgCl分散于去离子水中,机械搅拌20min并加入1g的十二烷基苯磺酸钠,静置,得到悬浮液。
(6)将步骤(5)所得的悬浮液进行蒸发,对其蒸发后的残留物放入真空烘箱中干燥,干燥温度为45℃,干燥时间为6h,然后放入管式炉中,冲入氮气后进行煅烧,煅烧温度为530℃,煅烧时间为6h,即得Au-Ag/CoFeMnO4粉末式催化剂。
(7)使用乙醇和去离子水清洗铁矾石表面,去除杂质和表面污染物。将铁矾石样品放置在化学气相沉积法反应室中,保持反应室内的真空度10-2torr,将三氯硅烷蒸发至气态,并通过气体进料系统将其导入反应室中,控制反应室内的气体流量为10-5sccm、反应温度为530℃和反应压力为630torr,沉积时间为26min,在SiO2沉积完毕后,关闭进料系统并将反应室冷却至室温,然后打开反应室门并取出样品。
(8)使用0.0045mol/L的六甲基二硅氮烷对步骤(7)所得样品进行修饰,用光强为590μW/cm2的紫外光照射铁矾石表面6min,得到修饰过的样品。
(9)将步骤(6)所得的1.5g Au-Ag/CoFeMnO4粉末式催化剂,搅拌,加入1.5g的羟乙基纤维素形成稠状液体;然后将稠状液体负载于10g的SiO2修饰过的样品上,干燥,即得到整体式催化剂。
性能测试
在管式炉反应器内评价实施例1-6所得的整体式催化剂的催化燃烧性能,催化剂用量10g,GHSV=10000h-1(体积空速:单位时间内通过单位体积催化剂床层的气体量),反应气体成分为VOCs,反应尾气利用气相色谱仪进行在线分析,分析结果如图2所示,且VOCs的去除率如表1所示。
表1
结果表明,通过本发明的制备方法所制备出的整体式催化剂具有非常优异的催化活性,在高温下仍然具备优异的、稳定的催化性能。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种VOCs废气治理工程催化剂的制备方法,其特征在于:包括有以下步骤:
(1)将铁盐、锰盐和钴盐溶于去离子水中,三者的摩尔比为(0.55-1.45):(1.55-2.45):(2.55-3.45),超声处理后通过搅拌器搅拌均匀,再缓慢滴加碱性溶液,并调节pH至10.5-11.5,得到溶液;
(2)将步骤(1)所得的溶液转移到反应釜中,并在烘箱中加热,加热温度为180-220℃,加热时间为10-12h;
(3)将步骤(2)中反应釜的溶液降温至室温,接着,用高速离心机分离离心得到黑色粉末,然后,将离心后的黑色粉末用蒸馏水和乙醇洗涤,洗涤后将其烘干,得到粉末;
(4)将步骤(3)得到的粉末放入至管式炉中进行煅烧,煅烧温度为600-720℃,煅烧时间为3-4h,得到CoFeMnO4粉末式载体;
(5)将CoFeMnO4粉末式载体、HAuCl4·3H2O、AgCl分散于去离子水中,HAuCl4·3H2O的质量为CoFeMnO4粉末式载体的3%-5%,AgCl的质量为CoFeMnO4粉末式载体的3%-5%,充分搅拌后加入表面活性剂,静置,得到悬浮液;
(6)将步骤(5)所得的悬浮液进行蒸发,对其蒸发后的残留物放入真空烘箱中进行干燥,干燥温度为40-45℃,干燥时间为5-6h,然后放入至管式炉中进行煅烧,煅烧温度为500-600℃,煅烧时间为5-6h,即得Au-Ag/CoFeMnO4粉末式催化剂;
(7)使用有机溶剂和去离子水清洗铁矾石表面,去除杂质和表面污染物,将铁矾石样品放置在化学气相沉积法反应室中,保持反应室内的真空度为10-2-10-3torr,将SiO2前驱体蒸发至气态,并通过气体进料系统将其导入反应室中,控制反应室内的气体流量为10-5-10- 4sccm,反应温度为450-550℃,反应压力为550-650torr,沉积时间为25-30min,SiO2前驱体在反应室中分解并沉积在铁矾石表面上,形成一层均匀的SiO2氧化物薄膜,在SiO2沉积完毕后,关闭进料系统并将反应室冷却至室温,然后,打开反应室门并取出样品;
(8)使用有机硅化合物对步骤(7)所得样品进行修饰,用紫外光照射使修饰层牢固地附着在样品的表面,紫外光的光强为500-600μW/cm2,光照时间为5-10min,得到修饰过的样品;
(9)将步骤(6)所得的Au-Ag/CoFeMnO4粉末式催化剂放入蒸馏水中,搅拌,加入增稠剂形成稠状液体;然后,将稠状液体负载于修饰过的样品上,再进行干燥,即得到整体式催化剂。
2.根据权利要求1所述的VOCs废气治理工程催化剂的制备方法,其特征在于:所述步骤(1)中,铁盐为Fe(NO3)3·9H2O,锰盐为Mn(NO3)2·4H2O,钴盐为Co(NO3)2·6H2O,三者的纯度均为99%以上。
3.根据权利要求1所述的VOCs废气治理工程催化剂的制备方法,其特征在于:所述步骤(1)中,超声处理的条件为在30-35Hz下超声7-10min,该碱性溶液为氨水。
4.根据权利要求3所述的VOCs废气治理工程催化剂的制备方法,其特征在于:所述氨水的体积分数为45-55%。
5.根据权利要求1所述的VOCs废气治理工程催化剂的制备方法,其特征在于:所述步骤(1)和步骤(5)中的搅拌方式均为机械搅拌,步骤(1)的搅拌时间为25-30min,步骤(5)的搅拌时间为15-20min,搅拌后静置至颗粒物完全沉淀至底部。
6.根据权利要求1所述的VOCs废气治理工程催化剂的制备方法,其特征在于:所述步骤(3)中,高速离心机的离心条件为在12000-13000rpm/min下离心7-10min,且蒸馏水和乙醇洗涤的方式为通过真空泵抽滤方式进行洗涤,蒸馏水洗涤三遍,后再用乙醇洗涤至溶液pH为8.0。
7.根据权利要求1所述的VOCs废气治理工程催化剂的制备方法,其特征在于:所述步骤(4)和步骤(6)中,均向管式炉中通入氮气后再进行煅烧。
8.根据权利要求1所述的VOCs废气治理工程催化剂的制备方法,其特征在于:所述步骤(5)中的表面活性剂为十二烷基苯磺酸钠;步骤(7)中的有机溶剂为乙醇,SiO2前驱体为三氯硅烷;所述步骤(8)中的有机硅化合物为六甲基二硅氮烷,其浓度为0.0045-0.0055mol/L;步骤(9)中的增稠剂为羟乙基纤维素。
9.根据权利要求1所述的VOCs废气治理工程催化剂的制备方法,其特征在于:所述步骤(9)中,该整体式催化剂中的Au-Ag/CoFeMnO4粉末式催化剂的负载量为10-15%。
10.一种设备,其特征在于:其包括有管道机架、过滤器、风机、热交换器以及铺垫有权利要求1-9任一项所述的整体式催化剂的格栅;该管道机架具有依次连通的进气口、蓄热空间、反应空间和出气口;该过滤器设置于进气口内;该风机设置于进气口与蓄热空间之间;该热交换器设置于蓄热空间内;格栅设置于反应空间内。
CN202311028039.XA 2023-08-15 2023-08-15 VOCs废气治理工程催化剂的制备方法及装置 Active CN117101728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311028039.XA CN117101728B (zh) 2023-08-15 2023-08-15 VOCs废气治理工程催化剂的制备方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311028039.XA CN117101728B (zh) 2023-08-15 2023-08-15 VOCs废气治理工程催化剂的制备方法及装置

Publications (2)

Publication Number Publication Date
CN117101728A CN117101728A (zh) 2023-11-24
CN117101728B true CN117101728B (zh) 2024-01-30

Family

ID=88803220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311028039.XA Active CN117101728B (zh) 2023-08-15 2023-08-15 VOCs废气治理工程催化剂的制备方法及装置

Country Status (1)

Country Link
CN (1) CN117101728B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882506A1 (fr) * 1997-05-22 1998-12-09 Ecia - Equipements Et Composants Pour L'industrie Automobile Procédé de fabrication d'un convertisseur catalytique à base d'oxydes
CN104971719A (zh) * 2015-05-25 2015-10-14 浙江大学 用于rco-scr一体式反应的催化剂的制备方法
CN111420660A (zh) * 2020-03-21 2020-07-17 华南理工大学 一种用于净化燃煤烟气中有机废气的贵金属复合钒钛催化剂及其制备方法与应用
AU2020103124A4 (en) * 2020-10-29 2021-01-07 Tianjin University Preparation method of atomically active sites catalyst supported by integral nitrogen-doped porous carbon for catalyzing VOCs degradation at room temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882506A1 (fr) * 1997-05-22 1998-12-09 Ecia - Equipements Et Composants Pour L'industrie Automobile Procédé de fabrication d'un convertisseur catalytique à base d'oxydes
CN104971719A (zh) * 2015-05-25 2015-10-14 浙江大学 用于rco-scr一体式反应的催化剂的制备方法
CN111420660A (zh) * 2020-03-21 2020-07-17 华南理工大学 一种用于净化燃煤烟气中有机废气的贵金属复合钒钛催化剂及其制备方法与应用
AU2020103124A4 (en) * 2020-10-29 2021-01-07 Tianjin University Preparation method of atomically active sites catalyst supported by integral nitrogen-doped porous carbon for catalyzing VOCs degradation at room temperature

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
双金属催化剂去除VOCs研究进展;石静;陈丹;沈华瑶;;化工环保(02);全文 *

Also Published As

Publication number Publication date
CN117101728A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN109759063B (zh) 一种核壳型co氧化催化剂及其制备方法与应用
CN113262808B (zh) 室温高效去除甲醛的水溶性石墨相氮化碳纳米片催化剂及其制备方法
CN106622227A (zh) 一种室内空气净化的单原子催化剂的制备方法
CN113548686B (zh) 一种二氧化铈纳米材料及其制备方法和应用
CN108722464B (zh) 一种以氮掺杂二氧化钛为载体的Pd三效低温催化剂及其制备方法和应用
CN106268787A (zh) 一种钐掺杂MnOx低温SCR催化剂及其制备方法和应用
CN109107572B (zh) 激光烧蚀制备钙钛矿催化剂的方法
CN110665531A (zh) 一种Pt/g-C3N4/CeO2复合光催化剂及其制备方法与应用
US10549235B2 (en) Ozone oxidation decomposition treatment method for VOCs and/or gaseous inorganic reducing compounds in gas
CN117101728B (zh) VOCs废气治理工程催化剂的制备方法及装置
CN110075909A (zh) 一种净化含氮有机化合物废气用催化剂
CN111569922B (zh) 用于催化燃烧voc废气的稀土掺杂类水滑石衍生氧化物催化剂及其制备方法
CN107185555B (zh) 一种铜掺杂的硫化铈基纳米晶脱硝催化剂的制备方法
CN116272860B (zh) 一种VOCs治理的再生活性炭及其制备方法
CN113731445B (zh) 一种以锡酸钡为载体负载硫化镉量子点的光催化剂及其制备方法和应用
CN108772075A (zh) 一种用于去除可挥发性苯系污染物的催化剂及其制备方法
CN214389551U (zh) 一种氮氧化物处理系统
CN112870932B (zh) 一种氮氧化物处理系统及处理方法
CN114653356A (zh) 镧掺杂二氧化铈催化剂材料的制备方法和去甲醛复合物
CN112536044A (zh) 利用复合催化剂进行空气污染处理的方法
CN112588298A (zh) 空气净化用复合催化剂及其制备方法与应用
CN114522677B (zh) 一种低温高效去除氮氧化物的电气化scr催化剂及其制备方法和应用
CN111545191B (zh) 一种可加热再生的臭氧分解用锂钾锰复合氧化物催化剂及其制备方法
CN112755991B (zh) 一种用于协同去除燃煤烟气中有机废气和NOx的改性整体式催化剂及其制备方法与应用
CN115007105B (zh) 一种鳞片状铜基吸附剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant